
Stable Image Colorization via Reference Image Cross-Attention

Anshu Bansal
Stanford University
anshub@stanford.edu

Abstract

Existing colorization methods typically encode all rele-
vant priors in their learned weights. Previous work by Von-
drick et al. [19] demonstrated that attending to prior video
frames is a powerful method for frame colorization. In this
work, we combine the attention mechanism introduced by
Vondrick et al. with a U-Net-based colorization network to
encode priors not captured by prior frames. Specifically,
we aim to allow the network to use reference images that
are temporally distant from the target image. Experimen-
tal results show that the trained model performs poorly in
practice, however it shows significant improvements over
a similarly architected and trained non-attention coloriza-
tion network. Additionally, we detail construction of a high-
quality image-pair dataset for reference colorization.

1. Introduction
Image colorization is the problem of inferring colors

from greyscale images. In addition to its prevalence as a
self-supervised task for image embedder training, it has in-
dependent applications in art and animation, as well as his-
torical archiving. [15]

Existing colorization techniques largely rely on mem-
orizing object-color relationships in the network parame-
ters. This presents several problems: the network must
have enough capacity and enough training data to memorize
these, the model may generalize poorly (especially given
that in colorization, an object can have many equally plau-
sible colors. For example, absent any other context, a T-shirt
can be any color.), and the model may colorize the same ob-
ject with different colors in slightly different contexts. For
example, a person’s hair may be colorized red in one pic-
ture of them, but black in another. These issues are seen in
existing works. [15] [22]

Reference colorization is a relaxation of the general col-
orization problem. In reference colorization, we are sup-
plied a reference image in addition to the target image.
The reference image is assumed to show similar objects to
the target image, and provides grounding for colorization

choices (for example, supplying the model with color in-
formation for a T-shirt in the image). Vondrick et al. [19]
showed that supplying a reference frame in video coloriza-
tion led to substantially improved results over prior tech-
niques without reference images. Their approach extracted
a feature embedding for each pixel (in a low-resolution ver-
sion of the reference and target image) and used a simple
softmax attention mechanism to retrieve the color directly
from the reference image. This was then assumed to be the
color of the pixel in the target image. Note that coloriza-
tion was not the primary focus of Vondrick et al’s work –
rather, colorization was a self-supervised task in service of
performing object tracking. [19].

This presents two major problems for colorization. First,
objects which are present in the target image but not in the
reference image may have a color that is not in the refer-
ence image at all. Thus, coloring them by retrieving the
most likely color from the reference image would be inac-
curate. Second, objects in subsequent frames may change
color (for example, if the illumination changes). As before,
simply retrieving colors from the reference image would not
suffice.

In this work, we fuse Vondrick et al.’s attention-based ap-
proach with prior U-Net approaches [17] [23], allowing the
model to retrieve colors from the reference image, color ob-
jects which lack reference colors according to the model’s
learned priors, and account for objects which change color
across frames. Similar work has been performed by Yoo
et al. [21], however their model, data, and full results are
proprietary, and thus our work contributes an open imple-
mentation for further study. As part of this contribution,
we also detail the construction of a high-quality image-pair
dataset, which was extremely beneficial in exploring refer-
ence colorization models.

2. Related Work

Anwar et al. [15] provide an excellent review of the
image colorization problem and existing approaches. Here,
we summarize their findings, with particular focus on the
approaches which directly inspired our work.

1

2.1. Single Image Approaches

These approaches attempt to solve the “hard” version of
colorization, in which only the greyscale image is provided,
without any further context grounding the colors of the im-
age.

2.1.1 Colorful Colorization

Colorful Colorization [24] is an early approach to coloriza-
tion which trained a simple CNN to predict the “ab” compo-
nents of the input image’s L*ab representation. The model
is quite large by the standards of the time, with a maximum
of 512 channels and trained for 450k iterations.

2.1.2 U-Net Image Colorization

Zayd et al. [23] developed a U-Net [14] based architecture
for image colorization. This is trained similarly to the Col-
orful Colorization model, however, the “skip” connections
in the U-Net architecture grant the model to access the orig-
inal image’s lightness component, allowing it to make bet-
ter color choices during the upsampling phase. Their work
uses ResNet [5] blocks in the downsampling arm of the U-
Net architecture, potentially allowing more efficient use of
the downsampling component’s parameters. Note that even
with this more efficient architecture (as compared to a sim-
ple CNN), the model still requires roughly 63M parameters.

2.2. User-Guided Networks

These approaches rely on “hints” which disambiguate
the color for key segments of the image. These “hints” may
be provided by an end user or taken from the environment.

2.2.1 Scribbler

Scribbler [16] is a GAN colorizer which takes as input
small strokes of color over segments of the target image.
This could be, for instance, a stroke of red over a red T-shirt,
indicating that that segment of the output image should be
red. The generator is constructed similarly to Zayd et al’s
U-Net.

2.2.2 Hint-Guided Anime Colorization

Hint-Guided Anime Colorization [22] is similar to Scrib-
bler, in that it takes in small scribbles indicating the true
colors of various segments. However, it is trained specif-
ically on anime line art. The original image in this case
tends to have very bold patches of color, and thus may be
more amenable to colorization by propagating the provided
colors.

2.3. Reference Image Colorization

This category is most similar to our approach, as these
provide a similar image, which contains subjects present in
the target image, as a reference image for the model. Thus,
the model is able to disambiguate color choices by referring
to the supplied image.

2.3.1 Colorization via Attention

Vondrick et al. [19] determined that a simple atten-
tion mechanism (originally designed for object tracking
in video) performed well when trained against a coloriza-
tion self-supervision task. However, colorization was not
the primary focus of Vondrick’s work; rather, the attention
maps learned as part of colorization were effective in track-
ing pixel motion on a frame-by-frame basis. Viewed from
the perspective of colorization, there are significant draw-
backs to this approach. Because all pixel colors had to be
derived from attending to the previous frame, new objects
that weren’t present in the previous frame could not be ac-
curately colored. Furthermore, the model was only shown
to work on a frame-by-frame basis, where the target and
reference image had very little difference due to their close
temporal proximity.

2.3.2 Memo Painter

MemoPainter [21] is an approach which augments a U-
Net-inspired GAN with a memory mechanism. This mem-
ory mechanism holds learned representations of individual
training examples, allowing the generator to reference spe-
cific objects. Thus, it does not receive an explicit reference
image during training, instead retrieving reference features
from its memory. However, the model, data, and training
pipeline used by Yoo et al. are not open, and thus we are
unable to corroborate their results.

2.3.3 Deep Exemplar-based Colorization

Deep Exemplar-based Colorization [6] solves reference
colorization by using the luminance channels from the L*ab
representations of the reference and target images to explic-
itly align pixels between the two images. This is then used
to explicitly “stack” the chrominance channels of the refer-
ence image with the target image’s luminance channel as a
preprocessing step to a U-Net. The model is trained as a
GAN.

2.4. Classical Approaches

2.4.1 Color Transfer

Welsh et al. [20] introduced a reference-coloring algorithm
which matches 5x5 pixel neighborhoods in the target image
against neighborhoods in the reference image. Pixels in the

2

target image are matched to the reference image by compar-
ing the mean and standard deviation of the luminance chan-
nels in their neighborhood, and the chrominance channels
are taken from the most matching reference pixel.

3. Proposed Method
Given a reference full-color image and a target greyscale

image, we train a deep network to synthesize a full-color
version of the target greyscale image.

3.1. Learning Framework for Reference Coloriza-
tion

The reference image for our network is an image Xref ∈
R3×Href×Wref . The target image is a greyscale image
Xtarget ∈ R3×Htarget×Wtarget . Note that in this framework,
the target image also has three channels, even though it
is greyscale. In our learning framework, we keep images
in the RGB color space, so for Xtarget all channel values
will be the same per-pixel. For training and validation,
Xtarget is derived by converting an original image Xorig ∈
R3×Htarget×Wtarget to greyscale according to the standard Py-
Torch [13] Grayscale functionality.

The original image forms the ground-truth for coloriza-
tion, as detailed in the “Loss Function” section below. The
reference image is assumed to be “similar” to the target im-
age. That is, it should show many of the same subjects as
the target image. This allows the model to extract relevant
color information from the reference image. We detail this
further in the “Datasets” section below.

3.2. Loss Function

Ballester et al. [1] provide a comprehensive overview
of the various loss functions commonly (and uncommonly)
used in colorization. To reduce GPU consumption, we
chose a loss function for simplicity and computational ef-
ficiency. Thus we use mean-squared error as the sample
loss between a colorized image and the ground-truth image.

Given images u, v ∈ RC×H×W , the mean-squared error
(MSE) is defined as

MSE(u, v) =

C∑
i=1

H∑
j=1

W∑
k=1

(ui,j,k − vi,j,k)
2 (1)

Ballester et al. note that MSE is not robust to outliers
in the data, and is tolerant to small absolute per-pixel er-
rors over a large region of the image. Our experiments did
show this failure case. However as our goal is to evaluate
the relative lift in performance across differing model ar-
chitectures, the quality of the loss function is less relevant
to our analysis than the relative performance of the differ-
ent loss functions on it. We discuss the potential pitfalls and
corrections to this in the “Further Work” section.

During training and validation, we compare the colorized
image, f(Xtarget) against the original image, Xorig. Thus,
the loss incurred on a single image, with colorizer function
f , is MSE(f(Xtarget), Xorig)

3.3. Model Architecture

We evaluate two distinct model architectures. Inspired
by Zayd et al. [23] we train a simple U-Net colorization
model as a baseline model. This does not use the reference
image, relying on the learned network parameters to encode
information about what colors are relevant for objects in
the target image. We also train StableColorizer, which aug-
ments the U-Net model with a cross-attention mechanism to
attend to features extracted from the reference image. We
extract these features with a simple encoder derived from an
autoencoder which we also train.

3.3.1 Baseline U-Net Architecture

Our implementation of a U-Net colorizer is significantly
smaller than the implementation provided by Zayd et al.
Specifically, this implementation uses a total of 177,132
trainable parameters, in contrast to the roughly 63M train-
able parameters in the U-Net trained by Zayd et al. [23].
This is done to optimize for computational efficiency, as the
StableColorizer will have a similarly small number of pa-
rameters.

Our U-Net colorizer consists of four stride-2 down-
convolutional blocks. Each down-convolution uses a 3x3
kernel, and is followed by batch-normalization [9] and a
GELU nonlinearity.

Following the down-convolutional layers we up-
convolve the image back to its original height and width, us-
ing the same number and configuration of up-convolutional
blocks as we had down-convolutional blocks. As in the
U-Net architecture, we introduce skip-connections between
each down-convolutional block and its corresponding up-
convolutional block. We do this by concatenating the down-
convolved image with the previous up-convolutional layer’s
output along their channel dimension. As with the down-
convolutions, we follow each up-convolution with a batch-
normalization and GELU nonlinearity.

At the end, we concatenate the greyscale input image
with the final upconvolved image, and apply a 1x1 convolu-
tion to map it back to 3 RGB channels. Figure 1 shows the
architecture of our baseline model.

3.3.2 StableColorizer Architecture

StableColorizer augments the baseline U-Net architecture
with an attention mechanism to attend to features extracted
from the reference image. Specifically, we use a frozen en-
coder (trained as part of an autoencoder) to featurize the
reference image, and use the final down-convolutional layer

3

Figure 1. Architecture of our baseline colorizer. Note that skip
connections are implemented by concatenating along the channel
dimension, and all convolutions are followed by batch normaliza-
tion and GELU nonlinearity

of the U-Net to compute queries which we use to attend to
the autoencoder features. We discuss the autoencoder archi-
tecture in the Autoencoder Architecture subsection below.
Here we assume that it encodes images into 64-dimensional
patches.

We insert a 64x1x1 convolutional block after the en-
coder to adapt its outputs for the attention module. This
includes a batch normalization and GELU nonlinearity af-
ter the convolutional layer. We attach an identical adapter
block to the output of the final U-Net down-convolutional
block. Following this, we use a multiheaded attention mod-
ule with 4 attention heads, using keys and values from
the encoder adapter and queries from the U-Net down-
convolution adapter. We finally use another convolutional
block with batch normalization and GELU nonlinearity
on this output, and add it to the adapted U-Net down-
convolutional output. This is then concatenated with the
raw U-Net down-convolutional output as input to the first
up-convolutional layer. Following this, the network archi-
tecture proceeds as in the baseline U-Net. Figure 2 shows
the architecture of StableColorizer. The StableColorizer has
a total of 309,452 parameters, including the frozen parame-
ters in its reference image encoder.

3.3.3 Autoencoder Architecture

We use a simple encoder, derived from an autoencoder, to
featurize the reference image. We chose to train an autoen-
coder rather than use a pretrained image embedder such as
ResNet both to keep the parameter count low and to ensure
that color information is preserved in the encoder. Given
that ResNet is trained on image classification, we believe
that the autoencoder training problem forces the network to
preserve color information rather than focusing on higher-
level object features.

The autoencoder has effectively the same architecture
as the basic U-Net, but without any skip connections be-
tween the down-convolutional and up-convolutional blocks.

Figure 2. Architecture of StableColorizer. Note that skip connec-
tions are implemented by concatenating along the channel dimen-
sion, and all convolutions are followed by batch normalization and
GELU nonlinearity. Components not present in the baseline U-Net
are highlighted in red.

That is, it contains four down-convolutional blocks in the
encoder, each with 3x3 kernels applied with a stride of 2,
outputting 32, 32, 64, and 64 channels, in order. This re-
duces the height and width of the image each by a factor of
16. The up-convolutional blocks are inverses of the down-
convolutional blocks, and form the entirety of the decoder.
Every convolution is followed by a batch normalization and
GELU layer. The full autoencoder has 131,721 parameters,
with 65,952 in the encoder.

4. Datasets and Data Processing
We required significant image data sources to train and

evaluate the autoencoder, basic colorizer, and StableCol-
orizer models. While autoencoding and simple coloriza-
tion can use any image data, reference colorization requires
pairs of related images. In this section, we detail each of the
datasets we used, and our process for cleaning and collating
the data required for model training and validation.

4.1. Datasets

4.1.1 COCO

In order to train our autoencoder, we simply needed a di-
verse source of natural images. We used the 2017 COCO
validation dataset for this [12]. COCO is an open dataset
of images used for a variety of vision model benchmarks.
Since autoencoder training does not require labels, we sim-
ply used the raw images, and did not use any of the an-
notation data provided. This COCO dataset contains 5000
images, each at a size above 512x512 pixels.

4.1.2 KoNViD

For reference colorization, we required pairs of images
which shared subjects, such that one image provided mean-
ingful context for colorization decisions in the other. We

4

could not find a ready source of image data for this. Thus,
we synthesized image pairs from video data. Specifically,
we used the KoNViD-1K [7] [8] and KoNViD-150K-B
[3] [4] datasets to provide (reference, target) image pairs.
These datasets provide a total of 2,776 8 to 10 second
videos, originally intended for video quality assessment. A
qualitative assessment indicated that the first and last ex-
tracted frames of the video tend to be significantly different
from each other, but contain many objects in common. Thus
we constructed a dataset of 2776 image pairs by taking the
first and last frame from each video. Figure 5 shows an ex-
ample of frame pairs extracted from KoNViD. These videos
(and thus, the frames) are at 960 x 540 resolution.

Figure 3. First Frame

Figure 4. Final Frame
Figure 5. Example frames of videos from the KoNViD dataset.
Note that the frames share common objects, such as the white
cone.

4.2. Data Processing

In order to reduce the computational expense of training
our models, we resized all images to 256 x 256 resolution.
This resolution was chosen so that our down-convolutional
layers in the autoencoder, basic colorizer, and StableCol-
orizer, which reduced the height and width of the image by
a factor of 16, could cleanly reduce the image dimensions.
For the target image to colorization, we converted the last
frame of each image pair to greyscale, and used the first
frame as the reference image.

Conversion from RGB to L*ab color space is frequently
performed in colorization tasks. However, we encountered
technical difficulties in performing this conversion in Py-
Torch, and continued with RGB color space.

5. Experiments, Results, and Discussion
5.1. Comparison of Network Sizes and Resource

Usage

Our closest point of network size comparison, as mea-
sured by number of trainable parameters, is from Zayd et al.
[23]. The U-Net constructed in their work was roughly 63M
parameters, and significantly underperforms other models
mentioned in the Related Work section. By contrast, the
baseline colorizer trained in these experiments has 177K
parameters, and the StableColorizer has 309K parameters.
This led to very quick model training, with each model tak-
ing less than an hour to train on readily available Google
Colab instances (with a total training cost of roughly $4).
However, their relatively tiny size makes them unsuitable to
compare directly against state-of-the-art models. Rather, we
compare them to each other to understand the performance
differences which arise from their different architectures.

5.2. Autoencoder Training

We trained the autoencoder for 20 epochs on the COCO
dataset, with an 80/20 training/validation data split. Adam
[10] was chosen as the optimizer, with a learning rate of
0.001, and otherwise default optimizer parameters. This
learning rate successfully achieved model convergence, as
shown by the loss curves in figure 6. Figure 9 shows ex-
ample images reconstructed by the autoencoder at epochs
5 and 20. We used this to qualitatively verify that our au-
toencoder training was behaving as expected. These quali-
tative results indicate that the autoencoder is not maintain-
ing very accurate color representations, especially in rarer
colors. For example, it seems to correctly color the sky as
white or blue, and water as blue, but the pink umbrella be-
comes grey. This is significant to our later interpretation of
the StableColorizer results.

5.3. Colorizer Training

We trained the basic U-Net and StableColorizer for 30
epochs on the image pairs in the processed KoNViD dataset.
Note that the basic U-Net does not actually use a reference
image – our implementation still accepts a reference image
in order to maintain API parity with the later StableCol-
orizer. Thus, both are trained with the same set of training
and validation images. As with the autoencoder, we used an
80/20 training/validation data split. We again used Adam as
the optimizer, however we found that the default learning
rate of 0.001 led to very slow model convergence. We hy-
pothesize that this is because the loss values for MSE loss

5

Figure 6. Autoencoder Loss Curves

in RGB color space tends to be quite small. Increasing to
0.01 provided a much more rapid and stable convergence,
and thus we applied this to both the basic U-Net and to the
StableColorizer.

As stated above, we provided the frozen encoder from
the autoencoder to the StableColorizer. Its parameters were
not fine-tuned for colorization. Figure 12 shows the loss
curves obtained by training the basic colorizer and Stable-
Colorizer. Figure 15 shows images colorized by the basic
colorizer and StableColorizer models after training.

The loss curves demonstrate that in both cases the model
has effectively converged, however, the qualitative results
indicate that the colorization is not typically high qual-
ity in either case. Both colorizers output relatively muted
colors, with the basic colorizer in some cases outputting
a nearly-monochrome image. By contrast, the StableCol-
orizer seems to much more readily produce more vibrant
colors, as can be seen in the sky on the second image. How-
ever, it also seems to mis-transfer colors sometimes, as seen
in the red colorized background of the first image, where the
ground truth is brown. The muted colors may be accounted
for by an observation by Ballester et al. [1], that MSE loss
tends to prioritize avoiding large losses on a single point;
instead, it will often mis-color large regions of the image
slightly. Given that these images are represented in RGB
color space, the model may be able to get “close enough”
by maintaining the same greyscale value as it’s given, and
only colorizing regions where it’s highly likely to get the
color correct.

5.3.1 The “Cheating” StableColorizer

The StableColorizer showed qualitative improvements over
the basic colorizer, but still produced low-quality images.
The “Cheating StableColorizer” is trained identically to

Figure 7. Epoch 5

Figure 8. Epoch 20
Figure 9. Validation-set reconstructed images from autoencoder
training.

the StableColorizer. However, rather than using a simi-
lar image to the target image as its reference, it uses the
original image. That is, Xref = Xorig, and Xtarget =
Grayscale(Xorig) . Since the model is provided exactly
the desired output as input, this represents the best perfor-
mance we could hope to obtain from the original Stable-
Colorizer model given its architecture, image processing,
and training pipeline. Figure 16 shows the loss curve for
this model, and Figure 17 shows example images produced
after training the Cheating StableColorizer.

We see from these results that the Cheating StableCol-
orizer achieves a final training loss of 0.017, similar to that
of the ordinary StableColorizer. However, it has a signif-
icantly lower validation loss, at 0.019, vs the StableCol-
orizer’s 0.024. This indicates that indeed, the Cheating Sta-
bleColorizer is able to learn to copy as directly as possi-
ble from the reference image. However, examining the re-

6

Figure 10. Basic Colorizer

Figure 11. StableColorizer
Figure 12. Loss curves for the Basic and Stable Colorizers

constructed images from the autoencoder model, it appears
that the autoencoder does not maintain color information
accurately. This may be the root cause for the Cheating
StableColorizer’s poor image quality. Note also that both
the Cheating StableColorizer and StableColorizer have very
low MSE losses (in absolute terms), given their extremely
poor colorization quality. This indicates that MSE may be a
poor loss metric for colorization.

6. Conclusions and Future Work
The results support our hypothesis that cross-attention to

extracted reference image features can improve colorization
accuracy, however, given the small size of the models tested,
it is unclear if this is necessary in order to improve image
quality at larger scales. Overall, the muted color palettes
corroborate Ballester et al.’s [1] finding that MSE loss is a
poor choice for colorization training.

The KoNViD image-pair dataset prepared as part of this

Figure 13. Basic Colorizer

Figure 14. StableColorizer
Figure 15. Validation images taken from the Basic and Stable Col-
orizers

work represents a significant building block for future work
on reference image colorization. Previous work in the
space, such as those by Vondrick et al. [19] and Yoo et
al. [21] either directly used video data or used propriety
datasets. With the preprocessing and frame extraction per-
formed on the KoNViD videos, there is now a high-quality
set of related image pairs to build future reference coloriza-
tion models on.

Significant follow-up work is possible to increase the
performance of these models. Improvements may be pos-
sible from training and evaluating in L*ab space, instead of
RGB space, as Anwar et al. [15] suggest. More aggressive
loss functions, such as MAE loss, may also improve the
perceived color accuracy. Following these improvements,
increasing the size of the model to be on-par with existing
state-of-the-art models may prove useful in getting an accu-
rate qualitative comparison of the architecture here against

7

Figure 16. “Cheating StableColorizer” Loss Curves

Figure 17. “Cheating StableColorizer” sample validation images
after 30 epochs of training

existing methods.

7. Contributions and Acknowledgements
Much of the background for this project was taken from

the Stanford CS231N course. We would like to thank the
teaching staff of the course for their work.

Jenny Xu served as a research mentor for this project,
giving valuable feedback on missing components, and help-
ing us refine our ideas.

References
[1] C. Ballester, A. Bugeau, H. Carrillo, M. Clément, R. Giraud,

L. Raad, and P. Vitoria. Analysis of different losses for deep
learning image colorization, 2022.

[2] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization, 2016.
[3] F. Götz-Hahn, V. Hosu, H. Lin, and D. Saupe. The konstanz

150k in-the-wild video database (konvid-150k), 2021.

[4] F. Götz-Hahn, V. Hosu, H. Lin, and D. Saupe. Konvid-150k:
A dataset for no-reference video quality assessment of videos
in-the-wild. In IEEE Access 9, pages 72139–72160. IEEE,
2021.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition, 2015.

[6] M. He, D. Chen, J. Liao, P. V. Sander, and L. Yuan. Deep
exemplar-based colorization, 2018.

[7] V. Hosu, F. Hahn, M. Jenadeleh, H. Lin, H. Men, T. Szirányi,
S. Li, and D. Saupe. The konstanz natural video database,
2017.

[8] V. Hosu, F. Hahn, M. Jenadeleh, H. Lin, H. Men, T. Szirányi,
S. Li, and D. Saupe. The konstanz natural video database
(konvid-1k). In 2017 Ninth International Conference on
Quality of Multimedia Experience (QoMEX), pages 1–6.
IEEE, 2017.

[9] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
2015.

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization, 2017.

[11] M. Kumar, D. Weissenborn, and N. Kalchbrenner. Coloriza-
tion transformer, 2021.

[12] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár.
Microsoft coco: Common objects in context, 2015.

[13] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala. Pytorch: An imperative style, high-performance
deep learning library, 2019.

[14] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation, 2015.

[15] . Saeed Anwar, Muhammad Tahir. Image colorization: A
survey and datase. https://arxiv.org/pdf/2008.10774.

[16] P. Sangkloy, J. Lu, C. Fang, F. Yu, and J. Hays. Scrib-
bler: Controlling deep image synthesis with sketch and color,
2016.

[17] M. Shariatnia. Baseline code. https://github.com/moein-
shariatnia/Deep-Learning/tree/main/Image

[18] A. Unknown. Autoencoder tutorial. http:
//www.eecs.qmul.ac.uk/˜sgg/_ECS795P_
/papers/WK07-8_PyTorch_Tutorial2.html.

[19] C. Vondrick, A. Shrivastava, A. Fathi, S. Guadarrama, and
K. Murphy. Tracking emerges by colorizing videos, 2018.

[20] T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color
to greyscale images. ACM Trans. Graph., 21:277–280, 07
2002.

[21] S. Yoo, H. Bahng, S. Chung, J. Lee, J. Chang, and
J. Choo. Coloring with limited data: Few-shot colorization
via memory-augmented networks, 2019.

[22] . Yuanzheng Ci, Xinzhu Ma. User-guided deep anime
line art colorization with conditional adversarial networks.
https://arxiv.org/pdf/1808.03240.

[23] M. H. Zayd, N. Yudistira, and R. C. Wihandika. Image col-
orization using u-net with skip connections and fusion layer
on landscape images, 2022.

8

http://www.eecs.qmul.ac.uk/~sgg/_ECS795P_/papers/WK07-8_PyTorch_Tutorial2.html
http://www.eecs.qmul.ac.uk/~sgg/_ECS795P_/papers/WK07-8_PyTorch_Tutorial2.html
http://www.eecs.qmul.ac.uk/~sgg/_ECS795P_/papers/WK07-8_PyTorch_Tutorial2.html

[24] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion, 2016.

9

