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Abstract

Monthly projections of crop yield in the United States are
published by the US Department of Agriculture (USDA) us-
ing surveys, ground level measurements, and weather fore-
casts. These projects can assist farmers and governments in
setting prices and managing imports and exports. However,
these measurements are not available in low resource areas,
which hinders global agricultural forecasting. Additionally,
monitoring global agricultural yield is a critical component
of developing strategies to combat food shortages and rec-
ognize trends in land management. High resolution satellite
imagery has made recent advances in frequency and quality
in recent decades. We propose predicting crop yields from
satellite imagery data. We describe a method to preprocess
and construct simple features from satellite data which can
be used to train regression models. We also discuss several
challenges due to predicting sparse data with high dimen-
sional inputs.

1. Introduction

Scientists predict the combined effects of climate change
and a rising population will continue to make food inse-
curity a growing issue [3]. Additionally, these effects will
be most severely felt in developing nations, where regular
monitoring of crop yields is not in place. Remote sens-
ing using high resolution satellite data has already been de-
ployed for monitoring deforestation, methane gas emission,
and a other geological applications [!]. In this paper, we
propose using publically available satellite data to monitor
and predict crop yields. We use ML methods to produce es-
timates of yield, and train models using the World Agricul-
tural Supply and Demand Estimate (WASDE) report pro-
duced by the USDA. Satellite data can be noisy and high
dimensional, so we discuss a few preprocessing methods
to condense this data. These models may then be applied
to low resource areas to provide rough yield estimates to
farmers and food distributors.
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2. Literature Review
2.1. Remote Sensing

Previous work has explored using satellite imagery to
understand supply and demand of commodities. Piette et. al
regress satellite data against World Agricultural Supply and
Demand Estimate (WASDE) reports, however their work is
limited to linear regression on a single commodity (corn)
and a single satellite band. They regress using the NDVI in-
dex, a normalized difference between red and near infrared
reflection[10]. Remote sensing has improved significantly
in recent years. A number of works use satellite data as
input to machine learning algorithms to monitor geological
processes. Examples include monitoring changes in forest
biomass[!] and understanding how topography changes af-
fect likelihood of landslides [13]. Yu et. al even used daily
satellite imagery to identify and invest in emerging foreign
markets by monitoring port activity[12].

While satellite imagery has the ability to monitor global
changes almost in real time, there are several challenges in
implementation that these works reference. Satellite data
often requires supervised labels to train sophisticated mod-
els. Obtaining these labels over large regions is costly and
inefficient. The quantity of training data is also limited by
the frequency of labelling. Prior work has proposed using
weakly supervised labels, such as commodity futures prices
[10][12] to obtain labels with high frequency. While a few
papers seek to estimate crop yield using satellite data, there
are several gaps in the current literature that we hope to ad-
dress with this work.

1. Some papers supplement their feature space with
ground level measurements such as COy concentration
[8]. Ground level measurements are difficult to obtain
over large areas with poor infrastructure. We seek to
estimate yield using only publically available satellite
data.

2. Piette et. al limited their scope to linear regression and
single feature. We hope to address the same problem
using a few more satellite derived features, for multi-
ple commodities, and using more sophisticated algo-



rithms.

2.2. Algorithms

Papers using satellite data may infer trends from re-
flectance levels without any regression or classification.
E.g. Hicks et. al monitor the presence of petroleum prod-
ucts in sea ice exclusively through reflectance of certain
wavelengths[5]. Other papers implement simple regres-
sion models because there is often limited data, and simpler
models have more interpretability. Examples include the
support vector machine (SVM), random forest, multilayer
perceptron (MLP), and linear regression [1 1][13] [&].

2.2.1 Graph Convolutional Networks

The input to these algorithms is mean reflectance of spe-
cific wavelength bands within a region of interest. An aver-
age over a region neglects the spatial component of satellite
data. Prior work generally assumes this spatial information
is unimportant. E.g. if one is interested in the total agri-
cultural yield of a region, the performance of specific crop
fields is unimportant, so long as a good aggregate estimate
is formed. Another reason for this aggregation may be the
irregular shape of satellite data. The set of satellite pixels
corresponding to a specific commodity is an irregular shape
and does not lend itself to CNNs or other classic computer
vision architectures that derive features using spatial infor-
mation. Graph Neural Networks (GNNs) have the ability
to digest points directly [9]. Recent approaches construct
a K-nearest neighbor (KNN) graph from a point cloud and
use GNNs to conduct inference on the resulting input [9].
This method achieves gains over discretization methods by
directly incorporating point geometries. More details of this
technique are presented in the methods section.

3. Dataset

We regress our satellite data against yield projections
given by the WASDE report as in [ 1 0]. Projections are given
each month for the total quantity of corn, cotton, soy, and
wheat that will be produced in the subsequent year. These
projects are determined with surveys and extensive ground
level measurements. Our dataset includes data since March
2013. We collect LandSat satellite data from this year to the
present. Each pixel contains measurements for a 30m x 30m
area. Seven reflectance measurements, corresponding to a
specific wavelength range, are taken for each pixel. In order
to filter satellite images for clouds and missing band mea-
surements, we take the median of all images over a month
(LandSat visits the continental US approximately once ev-
ery week). Additionally, non-agricultural locations must be
masked out to include only relevant pixels. This yields a
noncontinuous irregular image shape, presented in Figure 1.
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Figure 1. US corn (top) and soybean (middle) and wheat (bottom)
fields for 2021. Note the irregular shape which does not easily
lend itself to CNNs or other computer vision models. Additionally,
there are a different number of active pixels for each commodity.

3.1. GCN Feature Space

Using this data, we create a feature space that can be an
input to a graph convolutional network. An directed edge
is constructed between each point and its K = 5 nearest
neighbors.

3.2. Simple Regression Feature Space

For our simpler regression models, we take 10t", 50",
and 90" percentiles for each feature across all pixels. This
yields a total of 3 x 7 = 21 monthly features. With this
transform, we provide a low dimensional approximation of
the distribution of band measurements that can accommo-
date any number of points.



4. Methods
4.1. Graph Neural Network

We implement a graph convolutional network (GCN) to
predict aggregate yield given the input graph. The GCN is
implemented in pytorch geometric [2] and described in [7].
The convolution operation of a GCN can be described as

HD) — o (b—1/2AD—1/2H(l)W(l))

where:

« H®" is the matrix of activations in the I-th layer H (%)
is the reflectance features for each point.

« W is the trainable weight matrix for the I-th layer.

e A= A+ TIisthe adjacency matrix with added self-
loops.

« D is the degree matrix of A.

The described operation computes the activation for
node ¢ with a linear layer over all nodes 7. The mean out-
put over all nodes such that (7, j) is an edge in the graph is
passed through a nonlinearity o (in this case ReLU) and is
the next layer’s activation for node 7. Self loops are added
to the adjacency matrix to allow the GCN to “remember”
activations of previous layers. Note GCNs are generaliza-
tions of CNNs. By constructing appropriate edges between
adjacent pixels or activations, one can recreate a CNN using
a GCN architecture.

For our GCN architecture, we stack 3 GCN layers with a
hidden dimension & = 32. Mean pooling and a linear layer
is used to compute the final output. We chose a small GCN
architecture to minimize overfitting on the training dataset,
and selected hidden dimension size and number of hidden
layers using cross validation. Our datasets consisted of a
103 — 15 — 10 train-validation-test split. The train and val-
idation datasets are chronologically before the test dataset,
as we are interested in seeing if a model trained on previous
data can generalize well to the current time period. Training
was done using the Adam optimizer [6] with learning rate
a = 0.001 and for 80 epochs.

4.2. Baseline Methods

We implement a three simpler regression models (ran-
dom forest, SVM, and linear regression) that do not use
deep learning. These models take in the features described
in section 3.2. Random Forest models develop a collection
decision trees using subsets of the training data. Each deci-
sion tree is constructed using the split that minimized mean
squared error. This produces trees with high variance, but
the variance of the overall random forest is reduced due to

Train Error for Regression Algorithms

Corn Cotton Soybean Wheat
Model
Naive Mean 74.46  44.68 106.66  46.96
SVM 1.87 3.10 2.39 0.89
Linear Regression ~ 2.95 11.78 7.41 6.31
Random forest 1.50 5.47 3.77 3.11
GNN 15.00 62.86 726  18.28

the averaging of individual predictors. The number of de-
cision trees was selected using K fold cross validation with
K = 10. Support vector machines form regression as a
convex optimization problem[4]. The objective is to find a
hyperplane with minimal L2 norm such that residuals be-
tween the hyperplane and training data is €. Support vec-
tor regression can also quickly compute high dimensional
transforms of the feature space using the “kernel trick” [4].
The complete details of the SVM are outside of the scope
of this paper, and will not be discussed in depth. Our SVM
implementation uses the radial basis function as the kernel
and selects the regularization hyperparameter C' via cross
validation. Finally, we implement linear regression with an
L2 penalty (Ridge). The regularization term A is selected
using K = 10 fold cross validation. The loss function for
Ridge regression can be written as

N P
1 N
L=+ D i — 92+ A w3
i=1 j=1
where y;, y; represent the true and predicted outputs, and
w is the vector of weights for the model.

5. Results

Results for each model are presented in Table 1. Each
crop has a different magnitude of yield. Corn averages ap-
proximately 300 million metric tons per year, whereas Cot-
ton is on the order of 14 million metric tons per year. To
account for this, we present results as percent errors:

1 lyi — Uil
Mean Percent Error = — 2 % 100%
N Z i 0

K2

Where y;,y; represent the ground truth and predicted
yields, respectively. Additionally, we include a naive
method for comparison. For the naive method, we predict
the yield for each year is the mean yield over the training
set. We observe that all baseline models perform quite simi-
larly, with linear regression outperforming the other models
on two of the four tasks.



Test Error for Regression Algorithms

Corn Cotton Soybean Wheat
Model
Naive Mean 10597  54.10 3691  81.25
SVM 3.60 18.58 6.97  13.58
Linear Regression 419 1181 6.25 12.24
Random forest 4.61 17.93 6.03 12.70
GNN 1211 9512 1013 1375

Table 1. The average relative error of regression algorithms on the
train set (top) and test set (bottom). The best results are shown
in bold. We observe Linear Regression with a L2 penalty has the
least tendency to overfit. All values are presented are percentages.

5.1. GNN performance

The GNN performs poorly on all tasks, and fails to fit
even the training dataset well. One hypothesis for why this
might be the case is the GCN architecture includes an un-
necessary inductive bias. Graph convolutional networks as-
sume there is information that needs to be aggregated along
edges in the graph, i.e. that edge relationships encode some
meaning. In our model, we construct a KNN Graph, encod-
ing the assumption that the measurements of nearby farms
is useful in predicting the productivity of a portion of land.
This may be valid for example, if poor performance in one
patch of land indicates a blight or pest problem. However,
it appears this assumption does not necessarily hold in our
remote sensing problem. Total agricultural yield is likely in-
dependent of the arrangement of farms. IL.e. the productivity
of some land is not affected by the productivity of adjacent
land.

5.2. Baseline Method Performance

Each baseline method outperforms the naive mean
method, suggesting the input features are valuable in de-
termining crop yield. Figure 2 presents a time series plot
of predicted crop yields. While the test fit is not as ac-
curate as the train fit, we observe there may be an ability
to predict trend in agricultural returns. Models generally
perform best on Corn, then Soybean, Wheat, and Cotton.
This also describes the number of pixels in satellite data that
correspond to a particular commodity. L.e., corn is planted
over the greatest area, and cotton the least. Our decision to
embed satellite images based on percentile measurements
is dependent on somewhat consistent distributions of band
measurements, which is problematic with a small number
of measurements.

Train and test time performance on Corn for Linear Regression
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Figure 2. Linear Regression performance at train and test time.
The y axis is measured million metric tons of commodity pro-
duced, and the x axis is the timestep for which the prediction was
made. Note the linear regression model even picks up the uptick
in yield in the test set for corn, even though it is slightly translated.
Other instances of “predicting upticks” are present, though more
work needs to be done to determine if this is can be predicted con-
sistently.

6. Analysis of Weights

Because the linear regression model performs well on
this task, we may learn what features are relevant by exam-
ining the weights of the trained model. Weights for the lin-



Feature Weights for Linear Regression model

SR_B1l
SR_B2
SR_B3
SR_B4
SR_B5
SR_B6
SR_B7

0.00 III I. -. —.-—— _.

-0.01 4

Coefficient

-0.02 4

—0.03 {

PP P PP P D 65’ LY ‘30 q° P P P P
R iR R S I i 24 e? e?’ L é” e" é" ~z>° ¢>‘°’ L S
Feature

Feature Weights for Linear Regression model, Normalized

SR_B1
SR_B2
SR_B3
SR_B4
SR_B5
SR_B6
SR_B7

) I I I II

—100

—200 4

—300

Coefficient
o

0 "Q QQ ,»0 ‘,0 qa
@ ‘za“’ e? e?‘ ‘z? ‘2;" e;"’e;" e?’e?” L R A A1
Feature

Q 0 ﬁ G 0 Q 0
QS" e?" e;“’ @ e;“" & e;“’

Figure 3. Linear Regression weights by input feature, trained on
the corn dataset. Recall the features taken are the 10t*, 50" and
90" percentiles of each band measurement for all pixels corre-
sponding to a commodity. From left to right, each set of three
bars represent percentile measurements for blue (moisture), blue,
green, red, near infrared, short wave infrared, and medium wave
infrared wavelengths respectively.

ear regression model trained for the corn data are available
in Figure 3. Because the magnitude of feature determines
the magnitude of linear regression coefficient, we addition-
ally include a plot of weights multiplied by average magni-
tude of the corresponding feature. Bands 1 — 7 correspond
to ultra blue (moisture), blue, green, red, near infrared, short
wave infrared, and medium wave infrared wavelengths re-
spectively. The bar plots illustrate that multispectral mea-
surements may be useful in predicting yield, as opposed
to prior work which regressed on single bands or a single
band derived feature (e.g. NDVI) [10]. However, we do not
reproduce these methods for our dataset, so cannot say to
what extent multiband inference outperforms single feature
regression.

7. Conclusion

We present a simple method for predicting crop yields
from publically available satellite data. This yield infor-
mation can be used for mitigating food shortages, com-
modities trading, and developing food distribution policies.
We present a method to apply deep learning to noncon-
tinuous satellite pixels that develops intermediate features
through spatial information. This method introduces induc-
tive bias that is likely unproductive for the intended regres-
sion. However, there is likely a simple relationship be-
tween our input features and regression target. As a re-
sult, linear regression, SVM and random forest regression
show promising results on this task. We note our analysis
is limited by the quantity of data available for this problem.
Future work may evaluate these methods on European or
Asian yield estimations.



7.1. Contributions and Acknowledgements

Contributions: Peter and Suhas equally contributed to
both code and technical writing. Peter was more involved
in accumulating the WASDE data, while Suhas obtained the
LandSAT data. Both team members felt there was an appro-
priate split of work for this project.

Sharing project with MS&E 244: Suhas’ MS&E 244
project involves deriving a trading strategy for agricultural
commodities using WASDE data. We may also include, in
that project, the results of predicting WASDE report infor-
mation, and then trading based on predicted WASDE infor-
mation. The bulk of our MS&E 244 project will consist of
describing the methods used to trade based on WASDE in-
formation, and the satellite portion may be included as an
interesting aside. The final report in MS&E 244 is due on
June 12th, and as a result is incomplete. However, our cur-
rent progress can be found here.
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