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Abstract

Identifying stenotic blood vessel narrowing caused by
underlying coronary artery disease (CAD) has been of
significant interest due to its profound clinical impact.
We present a flexible, generalizable stenosis segmenta-
tion model for X-ray Coronary Angiography (XCA) im-
ages with potential for real-time clinical diagnostics. We
build upon Mask R-CNN and incorporate a pseudo-labeling
data augmentation procedure. Specifically, a supervised
base Mask R-CNN model trained on labeled stenosis im-
ages is subsequently used to propose labels on other un-
labeled XCA images, which can be then fed back into a
final pseudo-label model for training. Our pseudo-label
augmentation resulted in a modest boost to the F1 eval-
uation metric on the ARCADE dataset, an expert-labeled
XCA stenosis image set. More importantly, the pseudo-
labeling procedure enables the incorporation of XCA im-
ages in other datasets coming from diverse hospitals, equip-
ment, and patient populations during training. All of our
models significantly outperformed the baseline F1 scores
achieved by YOLOv8n-seg, with our best model achieving
a test F1 score of 0.51. Current SOTA architecture on
the ARCADE dataset achieves an F1 score of 0.54 with
significantly more compute. Our code can be found at:
https://github.com/liuemi001/ArterySeg.

1. Introduction
Coronary artery disease (CAD) is a cardiovascular

condition caused by a buildup of atherosclerotic plaque
in the coronary arteries, and is one of the leading causes
of death worldwide, affecting about 5% of the global
population [20]. The plaque buildup causes a narrowing in
these vessels, referred to as stenosis, which can endanger
the patient by reducing blood supply to the heart.

One of the most commonly used tools to diagnose
coronary artery disease is X-ray Coronary Angiography
(XCA), wherein a contrast agent is injected into a patient’s
coronary arteries via a catheter, and subsequent X-ray

imaging is performed to visualize the arteries. Although
some argue that Computed Tomography Coronary An-
giography (CTCA) is a more valuable tool in assessment
of coronary artery disease due to its ability to capture
3D structures [6], we chose to work with XCA due to its
superior diagnostic ability in severe and obstructive CAD
cases [18].

Traditional vessel segmentation and stenotic lesion
segmentation techniques are labor-intensive and time-
consuming, making them unscalable to large amounts
of data. Several deep learning methods have been
developed for general coronary artery segmentation,
yet, to our knowledge, no such established methods are
commonly used in a clinical setting to automate stenosis
segmentation in XCA images using deep learning. Thus,
constructing a deep learning computer vision system to
augment stenosis segmentation with high precision and
computational efficiency for clinical deployment would be
extremely valuable. Such an automatic stenosis detection
system could serve as an assistant to radiologists, perform-
ing a ”first pass” over the huge number of XCA images
produced per year in order to reduce the workload of
radiologists. This would help streamline clinical pipelines,
and also potentially ameliorate the high rates of burnout
experienced by radiologists, largely due to substantially
increased workloads in the past 20 years. [2]

To this end, we develop an algorithm which takes an
XCA image of any size as input, and uses a Mask R-CNN
model to produce a predicted binary segmentation mask in-
dicating regions of stenosis.

2. Related Works
Previous works have demonstrated the potential of

deep learning for the task of coronary artery and stenosis
localization using CTCA data. For example, Li et al. were
able to achieve an F1 score of 0.775 on the task of stenosis
segmentation [13], while Huang et al. report a Dice score
of 0.71 for artery segmentation [9], both with U-Net-based
architectures. However, very few works have utilized XCA
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images, and most of these works have found success only
on artery segmentation [5] [21].

There are very few released methods on stenosis detec-
tion, one of which was developed by Du et al. and is called
DeepDiscern [4]. DeepDiscern uses two parallel deep
neural networks—one that detects artery segments, and
one that detects lesions–to generate high-level diagnostic
information. The model achieved an F1 score of 0.829
on the stenotic lesion detection task. However, this work
produces bounding boxes as their output, which are much
less precise than segmentation masks, and can be more am-
biguous. We purport that pixelwise instance segmentation
of stenotic arteries would provide greater clinical value due
to its greater precision, which is why we choose pixel-wise
stenosis segmentation as our objective. The different
objective of DeepDiscern (object detection vs instance seg-
mentation), coupled with the fact that neither their model
or dataset are publicly available, means that we are unable
to directly compare our results with their evaluation metrics.

Currently, the most accessible dataset and benchmark for
coronary artery stenosis segmentation from XCA images
is the publicly released Automatic Region-based Coronary
Artery Disease Diagnostics using X-ray angiography
images (ARCADE) dataset, which contains 1500 XCA
images with segmentation annotations of stenotic regions
[18]. The annotations are provided in both YOLO and
COCO formats, two established formats for representing
segmentation masks. When releasing the dataset, the
authors also trained a YOLOv8 model on the stenosis
dataset as a public baseline and were able to achieve an F1
score of 0.38.

A number of other models have made use of the AR-
CADE dataset. Some, like Pokhrel et al. [17], have made
use of the portion of the ARCADE dataset that contains
labels for different segments of the coronary arteries, rather
than for stenoses. Others have tackled the same task as us,
the stenosis segmentation task, including StenUNet [14],
Bilal et al. [1], and SSASS [11], which is the current SOTA,
achieving a test F1 score of 0.54. However, many of these
models use a YOLO-based architecture. Our work explores
the usage of Mask R-CNN for stenosis segmentation,
which has not been done before to our knowledge.

Another publicly released dataset for stenosis detection
in XCA images is one published by Danilov et al. [3],
containing 8325 images from 100 patients who underwent
XCA imaging at the Research Institute for Complex Prob-
lems of Cardiovascular Diseases (Kemerovo, Russia). Al-
though this dataset contains only bounding box annotations
of stenotic regions, making the results in [3] not directly

comparable to ours, it is still useful as an additional source
of XCA images containing stenoses. We opt to incorporate
this dataset in our training set, as described in Section 3.4,
because we felt it could be helpful for the generalizability
of our models.

3. Methods and Technical Approach
3.1. Baselines

As a baseline, we finetune YOLOv8 nano, a well es-
tablished object detection and image segmentation model,
on the raw ARCADE stenosis dataset. Specifically, we
fine-tuned YOLOv8n-seg, which was pretrained on COCO
2017 and whose architecture is identical to YOLOv8 except
that the object detection head of YOLOv8 is replaced with
a segmentation head.

YOLO is a single-stage object detector, and instead of
using region proposals to locate objects like in R-CNNs,
YOLO runs a single convolutional network over the com-
plete image to directly predict bounding boxes and class
probabilities in a single, unified detection pipeline [19].
Specifically, YOLO divides the image into an S × S grid.
Then, each of those grid cells predicts several bounding
boxes and associated confidence scores, plus conditional
class probabilities for that cell. The confidence score rep-
resents both how likely that there is an object in the box,
as well as how accurate the bounds of the box are, and is
defined as:

Conf = Pr(Object) ∗ IOUtruth
pred (1)

During inference, the confidence scores for each box
are multiplied by the class probabilities, yielding class
confidence scores for each box (Figure 1). One important
strength of the YOLO model is that since it takes in and
considers the whole image, it can reason globally about the
image and receive context from outside of the region or cell
of interest.

For instance segmentation using YOLOv8n-seg, the
YOLO architecture is modified slightly to include a small
fully connected network called Proto, which generates seg-
mentation masks [10].

3.2. Mask R-CNN

In addition to our baseline YOLO model, we propose
three Mask R-CNN-based methods.

We first propose simply finetuning pre-trained Mask R-
CNN ResNet-50 FPN [8] on the ARCADE stenosis dataset.
We call this model StenosisSeg-base. Mask R-CNN is
a two-stage object detector utilizing an initial ResNet
backbone with a subsequent Region Proposal Network and



Figure 1. Diagram from Redmon et al. [19] of YOLO’s unified
detection network, demonstrating the synthesis of bounding box
confidence scores and class probabilities for each of the S × S
grid cells.

RoI pooling layer to identify the regions of the feature map
to perform predictions on. When making predictions and
computing losses, Mask R-CNN extends Faster R-CNN
by incorporating a small network branch that predicts a
segmentation mask for each RoI in parallel to the bounding
box prediction that Faster R-CNN originally computes
[8]. Specifically, we believe Mask R-CNN outperforms
YOLO architecture because of its aforementioned ability
to generate region proposals, which is notably absent in
YOLO, hence the name [19]. While dividing images into
cells and rapidly producing classifications lends well to
real-time processing, when more compute and time can be
afforded in the case of stenosis segmentation, we believe
more complex region proposals have the edge.

In addition, Mask R-CNN implements RoIAlign, which
helps decouple the mask prediction process from classifi-
cation. Furthermore, in a task like image segmentation, the
precise mapping of masks on small features maps to the
original image afforded by RoIAlign is critical.

Specifically, RoIAlign does not quantize the floating-
point RoI into the discrete feature map, which can lead to
error. Instead, RoI Align retains the floating-point accuracy
and then performs bilinear interpolation to ”fill” the discrete
boxes with a max or average value [8]. From Figure 2,

f(x, y) =

2∑
i,j=1

fi,jmax(0, 1−|x−xi|)max(0, 1−|y−yi|)

(2)
Thus, we hypothesize Mask R-CNN performs better in our
stenosis segmentation task.

Figure 2. Illustration from Stanford University’s CS 231N course
[12] of RoIAlign’s methodology.

The input image size of the Mask R-CNN architecture
is 224x224, so we resize our images from 512x512 to
224x224 before model training. Finding that this simple
training procedure results in significant overfitting over
50 epochs, while still not surpassing the ARCADE SOTA
on validation set, we look into further data augmentation
procedures.

3.3. Data Augmentation

The ARCADE dataset [18] consists of two different sets
of 1000 CAD training images, one of which is labeled with
stenosis segmentation masks (the ”stenosis” dataset), and
the other of which is labeled only with segmentation masks
of different branches of the coronary arteries (the ”syntax”
dataset).

Our StenosisSeg-base model made use of only the
”stenosis” dataset, but as the SSASS team [11] observed,
while the syntax dataset is not explicitly labeled for
stenoses, there are still stenoses present in each example of
the syntax dataset. Thus, we make use of the syntax dataset
as well by generating ”pseudo-labels” of stenotic regions
by running inference with StenosisSeg-base, following a
similar procedure as the authors of the SSASS model [11].
The syntax mask and image combinations from inference
are then concatenated with the initial stenosis dataset.
We then train another Mask R-CNN model jointly on the
combined stenosis and pseudo-labeled syntax dataset and
call this model StenosisSeg-pl (see Figure 3).

3.4. Exploring Other Datasets

Additionally, to further augment our dataset and improve
our models’ generalizability outside the ARCADE dataset,
we also explore incorporating another angiography dataset
for stenosis detection introduced by Danilov et al. [3].
We choose not to train on the annotations in this dataset



Figure 3. Schematic illustrating our data augmentation procedure,
inspired by [11].

directly, as this dataset contains only bounding box anno-
tations for stenotic regions and not segmentation masks,
and converting bounding box labels to masks naively
by labeling all pixels within the box as stenotic would
introduce a significant amount of noise (many pixels not
even within a vessel would be falsely labeled as stenotic).
Instead, we opt to generate our own labels using the same
pseudo-labeling procedure as described in Section 3.3.

4. Dataset and Features

The main dataset used, the ARCADE dataset, is an
XCA image set labeled by medical experts spanning 1500
patients with a median age of 60. The images were obtained
from a study cohort at the Research Institute of Cardiology
and Internal Diseases (Almaty, Kazakhstan). Note that
while each patient generated 60-120 frames, 0-12 frames
were selected based on optimal contrast filling within the
arteries and minimal blurriness among other properties to
maximize training efficiency. In a direct clinical pipeline,
this preprocessing would be necessary to ascertain live
predictions from an XCA imaging machine [18].

The ARCADE dataset consists of two separate parts:
the stenosis dataset and the syntax dataset. The stenosis
dataset is the one that we primarily investigated and trained
our models on. It consists of 1000 training images, 200
validation images, and 300 test images, all with associated
bounding box and segmentation mask annotations in
YOLO format. The second dataset, the syntax dataset,
consists of images labeled with segmentation masks of
different branches/regions of the coronary arteries. This
dataset is also procured from patients with coronary artery
disease. The syntax dataset is the same size as the stenosis
dataset, with 1000 training images, 200 validation images,

and 300 test images. All the images in these two datasets
have dimensions of 512x512.

In order to prepare the dataset for Mask R-CNN training,
we preprocessed the YOLO annotations, which consisted
of polygon coordinates, into binary segmentation masks.

The second dataset incorporated from Danilov et al. [3]
included 8325 XCA images. While bounding box annota-
tions of stenotic regions were available, we used the raw
images only for our pseudo-labeling pipeline.

5. Results and Discussion

5.1. Experimental Setup

We used batch size of 4 and an SGD optimizer with
learning rate = 0.005, momentum = 0.9, and weight
decay of 5 × 10−4, and performed all training with a
single NVIDIA T4 GPU. We chose these hyperparameters
because we found that all our models were able to reach
a very low training loss and very high training F1 score
within 50 epochs or several hours using these hyperpa-
rameters. We used the publicly available pre-trained Mask
R-CNN ResNet-50-FPN checkpoint for all Mask R-CNN
fine-tuning experiments.

In order to evaluate performance of our models, we first
threshold the segmentation masks produced by our Mask-
RCNN-based models, which are not binary, but instead have
soft values ranging from 0 to 1, representing the model’s
confidence that a particular pixel contains a stenotic vessel.
Pixels given a score above a confidence threshold (which
we tune using our validation set) are set to 1, while all other
pixels are set to 0, in order to construct a binary mask of
predicted stenotic regions. We then combine all predicted
stenosis masks by performing a logical OR operation in
order to produce one aggregated predicted mask. We use
the same procedure to obtain an aggregated ground truth
mask. We then compare the aggregated ground truth and
predicted masks pixel-wise to calculate pixelwise F1 scores
(a.k.a Dice similarity coefficients) [15].

F1 =
2 ∗ precision ∗ recall

precision + recall
=

TP
TP + 0.5(FP + FN)

(3)

We choose our confidence threshold for each model by
evaluating each model with all possible confidence thresh-
olds (0-1) in increments of 0.05, and choosing the con-
fidence threshold which yields the highest validation F1
score. Our proposed methods will be benchmarked against
the baseline YOLOv8 results reported by the authors of AR-
CADE as well as our own baseline as described above.



Model Val F1 Test F1
YOLOv8 (from [18]) - 0.38

YOLOv8n-seg 0.35 0.31
StenosisSeg-base 0.54 0.51
StenosisSeg-pl 0.55 0.51

StenosisSeg-other 0.49 0.47

Table 1. Validation and test set F1 scores of our methods. We also
report metrics for two baseline methods: a YOLOv8-seg model
trained by [18], and a YOLOv8n-seg we trained ourselves.

5.2. Baselines - YOLOv8

As a baseline, we fine-tuned YOLOv8n-seg on the
ARCADE stenosis training set (n=1000) for 50 epochs and
achieved an F1 score of 0.35 on the validation set and an
F1 score of 0.31 on the test set (Table 5.1). The authors
of ARCADE reported that their baseline YOLOv8 model
achieved an F1 score of 0.38 [18]. The ARCADE team’s
slightly higher performance is likely due to their usage of
a larger YOLO checkpoint (versus the ”nano” checkpoint
that we used), as well as a more thorough hyperparameter
tuning process.

Figure 4. Left: Labels for a batch of validation images. Right:
Predictions from baseline YOLOv8-seg for the same validation
images at conf=0.01.

While some images are labeled accurately, the model
was unable to segment certain images and provided more
predictions than expected in others (Figure 4).

5.3. StenosisSeg-base Results

We trained a Mask R-CNN on the training set for 50
epochs. We found that although there was considerable
overfitting by the 50th epoch (training F1 score was
considerably higher, at around 0.80), the 50-epoch model
still performed better on the validation set than all previous
checkpoints. This checkpoint achieved the best validation

F1 score of 0.54 at a confidence threshold of 0.55. When
evaluated on the test set with the same confidence threshold,
the model achieved an F1 score of 0.51 (Table 5.1).

Qualitatively, we also find that StenosisSeg-base outputs
reasonably high-quality stenosis masks (Figure 5), validat-
ing our decision to use this model to generate pseudo-labels
for further training. However, we do note that StenosisSeg-
base is far from perfect, evident from Figure 6 and Fig-
ure 7, where StenosisSeg-base incorrectly identifies healthy
vessels as stenotic or fails to identify the correct region of
stenosis altogether, respectively. Additionally, it is interest-
ing to note that sometimes when StenosisSeg-base correctly
identifies the stenotic region in the image, it identifies mul-
tiple instances of stenosis when there is only one. 5

5.4. Data Augmentation Results - StenosisSeg-pl

As described in Section 3.3, we trained another Mask R-
CNN on the combined dataset, which consisted of the orig-
inal stenosis dataset as well as the syntax dataset pseudo-
labeled with StenosisSeg-base (see Figure 3). We found
that this model began to overfit at a much earlier epoch than
the base Mask R-CNN model, likely due to the fact that
the size of the dataset was double that of StenosisSeg-base.
After evaluating several different checkpoints at different
epochs on the ARCADE stenosis validation set, the epoch
30 checkpoint was found to have the best performance. We
then did the same sweep of confidence threshold values on
this checkpoint to find that this model achieved the best val-
idation F1 score of 0.55 at a confidence threshold of 0.5.
When evaluated on the test set, the model achieved an F1
score of 0.51 (Table 5.1).

Figure 5. StenosisSeg-base predicted stenosis masks (middle)
are qualitatively reasonably similar to ground truth stenosis la-
bels (right), validating the use of StenosisSeg-base predictions as
pseudo-labels. Stenosis-pl (left) also performs very well compared
to ground truth. Each yellow bounding box in the ground truth la-
bels represents a different predicted stenosis.

5.5. Training with Additional Datasets -
StenosisSeg-other

In the spirit of improving generalizability, we experi-
ment with incorporating data from a more diverse set of
sources. We curate a combined dataset consisting of 1000
labeled examples from the ARCADE stenosis dataset,



Figure 6. StenosisSeg-base predicted stenosis masks (middle) may
predict additional stenotic regions compared to the ground truth
(right). Stenosis-pl (left) correctly identifies the stenotic regions.

Figure 7. StenosisSeg-base predicted stenosis masks (middle)
might fail to capture the correct region of stenosis compared to the
ground truth (right). In addition, Stenosis-pl (left) has a tendency
to predict additional stenotic regions.

1000 pseudo-labeled examples from the ARCADE syntax
dataset, and 1000 pseudo-labeled examples from Danilov
et al. [3]. The 1000 examples from Danilov et al. [3] were
randomly subsampled from the original dataset of 8325
images in order to maintain balance between our three
data sources, as we hypothesized that a training dataset
still consisting mostly of images from ARCADE would
perform better on the ARCADE validation and test sets.

Following the same procedure as our other Mask
R-CNN based models, we fine-tune a pre-trained Mask
R-CNN for a total of 30 epochs and evaluate checkpoints
every 5 epochs on the validation set. We call the resulting
model StenosisSeg-other. We find that this model achieved
maximum performance after 10 epochs of training and at
a confidence threshold of 0.65, at which it achieves an
F1 score of 0.493. Running inference of the 10 epoch
checkpoint with a confidence threshold of 0.65 on the test
set yields an F1 score of 0.47 (Table 5.1).

While the F1 score on the ARCADE test set decreased,
we hypothesize this was due to introducing images outside
of the dataset. However, because not all images in the clin-
ical setting will resemble ARCADE, StenosisSeg-other is
still a meaningful step toward developing a general stenosis
segmentation model.

6. Conclusion and Future Work
6.1. Conclusion

We introduce StenosisSeg, a new model built upon Mask
R-CNN designed to segment stenotic lesions in patients
with coronary artery disease (CAD). Specifically, this
model operates on X-ray Coronoary Angiography (XCA)
instead of Computed Tomography Coronary Angiography
(CTCA), as XCA retains superior diagnostic ability in
severe cases [18].

The pseudo-labeling data augmentation pipeline
(StenosisSeg-pl) demonstrated potential compared to the
vanilla Mask R-CNN model (StenosisSeg-base). While test
F1 scores were very similar when rounded to two decimals
(0.51 vs. 0.51), StenosisSeg-pl did achieve a higher F1
score on the validation dataset (0.55 vs 0.54). While
improvements due to data augmentation currently seem
marginal, note that we only incorporated 1000 additional
images from the unlabeled Syntax dataset derived from
the same overarching ARCADE dataset. There are vast
quantities of unlabeled XCA angiography data, and being
able to access them all for training would likely create both
more effective and generalizable models.

This was demonstrated through StenosisSeg-other, a
model that incorporated 1000 images from the Danilov
et al. [3] dataset as well. While F1 score decreased to
0.47 on the test set likely because of incorporation of
non-ARCADE images, the model had a broader range of
training images and we hypothesize it will likely perform
better in the real world.

All StenosisSeg models significantly outperformed the
baseline YOLOv8-seg model, which achieved an F1 score
of 0.35 and 0.31 on validation and test sets, respectively.

6.2. Future Work

Due to the surprising result that diversifying our training
dataset to images collected from different sources hindered
our performance on the ARCADE test set, we propose
development of XCA stenosis segmentation benchmarks
with images from diverse sources as an avenue of future
work. We hypothesize that this will strengthen future
model development, as the data would be more diverse and
reflective of a clinical setting.

In addition, we would like to contact radiologists to
receive their qualitative hypotheses on why our model
might be providing incorrect stenosis segmentations in our
failure cases. If there are recurring patterns (i.e. artifacts
during imaging, common anatomical structures visually
similar to stenosis), perhaps we can employ some form of



contrastive loss to capture these features and minimize our
error.

Finally, we would like to bolster our data augmentation
pipeline further. This could include adding geometric trans-
formations, color space transformations, blurring, or nois-
ing. Another notable future improvement could be utiliz-
ing ”soft” [7] masks instead of binary classification masks,
which might provide a less black-and-white approach to
segmenting stenosis on XCA images where there is inherent
uncertainty.
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