
StrawberrAI: Strawberry Classification using a Convolutional Neural Network

Ivan Liongson
Stanford University

ivanlion@stanford.edu

Erik Luna
Stanford University
eluna1@stanford.edu

Abstract

Strawberry shape and ripeness are critical in agricul-
tural quality control, as it influences consumer preferences
and marketability. This project presents a two-step ap-
proach to first detecting strawberries and then classifying
them by shape and ripeness using a custom Convolutional
Neural Network (CNN). We used YOLOv7 to object detect
strawberries against a black background found in ”Clas-
sification and Quantification of Strawberry Fruit Shape”.
After which, we utilized labeled datasets of shapes and
ripenesses, and applied our custom CNN to apply to the in-
dividual strawberry images segmented by YOLOv7. We pro-
cessed raw RGB images to isolate individual strawberries,
standardized their dimensions for model, and performed
data augmentation to have a balanced distribution across
all classes.

Our method involves a CNN architecture for improved
accuracy over simpler modeling techniques. Preliminary
results demonstrate a performance increase, achieving a
test set accuracy of 0.90 after 5 epochs, compared to the
baseline K-nearest neighbor classifier accuracy of 0.71.

Our baseline for strawberry detection was the YOLOv7
base model which did not have a strawberry class, and thus
0 accuracy. After finetuning YOLOv7 on our dataset of
boxes, we achieved near perfect detection.

After the strawberries were identified and isolated, we
extracted those bounding boxes and classified them by
shape and ripeness. The shape classification model was
trained on the original strawberry extractions, and the
ripeness model was trained on another dataset. We com-
bined these to perform a multitask detection and classi-
fication. Finally, we evaluated the performance of our
pipeline by measuring the accuracy of each individual task
as well as the overall efficiency of the end-to-end segmen-
tation and classification process. Our final results demon-
strated a 100% detection accuracy with YOLOv7, a 95%
accuracy for the shape classifier, and an 85% accuracy for
the ripeness classifier.

1. Introduction

The strawberry, known as the ”Queen of Fruits”, comes
in different shapes and sizes as it is picked from the field.
Strawberry shape, ripeness, and size are visual features that
consumers look into when picking their produce. Straw-
berry classification by shape is important for quality con-
trol, as consumers prefer purchasing more desirable straw-
berry shapes. Based on their visual appearance and quality,
strawberries may be sorted for direct sale to consumers at
markets, or sorted for alternatives such as jam production.
Shape can even be indicative of different strawberry vari-
eties or suggest the presence of some diseases. While some
machines learning models have attempted to automate this
process, none have used ConvNets to solve this problem.
We plan to create a multitask classifier that performs ob-
ject detection and classification. We used a dataset that has
labeled strawberries by shape and another that has strawber-
ries by ripeness. We finetuned YOLOv7 to detect strawber-
ries in a picture, and from those extracted pictures, we clas-
sified them based into 10 shapes and 6 ripeness levels. For
our project, classes will range from 1 through 10, with each
representing different shapes along a general continuum of
wider-than-taller or taller-than-wider. Our baseline model
was a sklearn library KNN model for 10 shape classes. Fi-
nally, we measure the pipeline’s performance through indi-
vidual task accuracy and an end-to-end segmentation and
classification pipeline. For our final results, we achieved
a YOLOv7 100% detection accuracy, 95% shape classifier,
and a 85% ripeness classifier test accuracy.

2. Related Work

We are classifying strawberries by shape given a dataset
of strawberry pictures split into 10 classes based on their
geometric qualities and by ripeness based on a dataset of
ripeness scores. Our objective is developing a high accuracy
finetuned YOLO model, a shape classifier and a ripeness
classifier. Much of these tasks of finding strawberries are
manual tasks and not much implemented automation exists.
We looked into existing work for classifying strawberries
by shapes and ripeness to automate the process.

1



2.1. General machine learning approaches

Furthermore, we reviewed a Random Forest classifier
for the strawberries dataset [3]. Another paper also uses
Random Forest and SVM classification based on dimen-
sional measurements of strawberry shapes into 9 classes
with promising results[5]. These classes were defined by
their measurements, including curvature and dimensions
and relate to our project since they inspired our 10 class sys-
tem we chose. Additionally, papers have investigated using
CNNs for disease identification but not for shape classifi-
cation [4]. Compared to previous models focused on mea-
surements taken from the images, the CNN captures smaller
granular data like texture which our model could learn from
to make decisions on the shape. While these machine learn-
ing approaches result in good accuracy, we plan to perform
even better through a CNN architecture.

2.2. CNN approaches

A state-of-the-art model, YOLO, is good at varied ob-
ject detection [7]. In general, this is very accurate and very
quick during inference. These quick inference times could
could help agricultural farmers look through their strawber-
ries and determine their ripeness and size for picking. Addi-
tionally, Current pretrained YOLOs exist, such as that one
pretrained on the COCO dataset [6]. A downside to this
dataset is that it does not have any strawberry class.

More specifically, a paper looks at strawberry field de-
tection from pictures of plants from a birds-eye view from
a drone which are processed with YOLOv2 [1]. They run
these images through YOLO to detect strawberries and clas-
sify their maturity levels. The maturity classification was
0.88 for a test data set at 2 meters from the ground. This
effectively does two tasks: object identification and classi-
fication and proves the versatility of YOLO. Some down-
sides are that this was a less accurate YOLO model and that
the data only has three classes: flower, immature and ma-
ture ripeness. We are tackling 6 classes of maturity and
9 shapes, so there is less delta between classes. This is
also an outdated YOLO model but we can look into using a
more recent one, such as v7, which performs better for de-
tection [2]. As a downside, there are no publicly available
pretrained weights that locate strawberries.

3. Data

Our data involved two original datasets, one for shapes
of strawberries and another for ripeness levels of strawber-
ries. Post generating one of our own after outputting it from
YOLO. Further processing of our dataset for the YOLO
model is discussed in the Methods section.

Figure 1. Feldmann shape dataset example

3.1. Shape Dataset

Our base data was the ”Classification and Quantifica-
tion of Strawberry Fruit Shape” dataset by Feldmann. [3].
We are working directly from raw RGB images contain-
ing one to three different strawberries taken against a black
background. Each image is identified by a plot ID and
progeny ID number. Feldmann provides a features csv
file which contains mathematically extracted features for
each strawberry shape in addition to their shape classifica-
tion labels. After processing, our train, validation, and test
counts were were 5440/680/686. The images were JPG in
full color RGB as in Fig. 1. Feldmann’s original pictures
were 3840x2160 and after processing, they were resized to
1000x1000 including black padding for the smaller dimen-
sion.

There were around 2,000 original images in this format:

In order to use the labels Feldmann provides, we had
to extract individual strawberries from the raw RGB im-
ages. Because there are thousands of raw images with each
containing multiple strawberries, we wrote a script using
the OpenCV library to autmatically rotate images, crop out
large unnecessary regions, mask out red objects, and iden-
tify contours for strawberry shapes. We use these contours
to save every isolated strawberry image, and then manually
removed any remaining false positive images. Fig. 1 shows
contours and individual extracted fruits on a sample raw im-
age. Each single strawberry has an associated fruit number
that uniquely identifies it within the csv. We were able to
map strawberries to their fruit number based on their rela-
tive x coordinate position within each raw image. Finally,
we performed data augmentations to even out the class dis-
tributions. As shown by the bar plot in Fig. 2, the largest
class had over 800 points while the smallest had around 400.
To minimize the destructiveness or interference of our arti-
ficial augmentations, we decided to create new data points
by horizontally flipping images. We selected a random sub-
set of images to flip based on the number of extra images
required to match the largest class size. After data aug-
mentation, we we had equally sized classes. We chose to
normalize the image scale since shape classification is not



Figure 2. Ripeness dataset example

Figure 3. Strawberry contour detection by red color thresholding.
Above is the original image, below shows the drawn on contours.
Small artifacts were removed by setting a size threshold. On the
right are the extracted individual strawberry images.

dependent on the relative size of a given strawberry.

3.2. Ripeness Dataset

We gathered a ripeness dataset called Strawberry-DS
which had 247 pictures of plants which a varying number of
fruits per picture, totaling over a thousand strawberries. We
split for this dataset into the ratio 80/10/10. Likewise, for
this ripeness dataset, the original pictures were 3840x2160,
and after processing, they were resized to 1000x1000 in-
cluding black padding on the smaller dimension. This data
was gathered by the Central Laboratory for Agricultural
Climate in Egypt [?].

4. Methods
4.1. Shape and Ripeness Classifiers

To establish a baseline for our shape and ripeness classi-
fication tasks, we first trained a K-nearest neighbor (KNN)
multiclass classifier using scikit-learn. For the purpose of
computational efficiency at evaluation time, we shrunk each
image from 1000x1000 to 64x64.

To improve upon our baseline, we created and trained a
convolutional neural network (CNN) from scratch for both
of the tasks. We reasoned that a CNN could learn more
complex features within each image and also better han-
dle images at the full 1000x1000 dimensions. The pre-
preprocessed datasets are loaded using ‘ImageFolder‘ from
‘torchvision.datasets‘, which automatically assigns labels
based on the name of image’s folder. We use the ‘Dat-

Figure 4. The distribution of the 10 strawberry classes before bal-
ancing the dataset. Augmented images from mirroring were added
to the smaller classes to match the number of datapoints in the
largest class.

aLoader‘ method to create iterable data loaders, which Py-
torch uses for batching and shuffling. After converting the
images to PyTorch tensors, we use the ‘transforms‘ library
to normalize the pixel values using the mean and standard
deviation of each channel for all the images in the ImageNet
dataset.

Our base convolutional neural network (CNN) architec-
ture used for image classification consists of two sets of
convolutional layers each followed by the ReLU activation
function and a 2x2 max-pooling layer. We used padding
values of 2 first layer and 1 for the second layer to allow the
convolution filter to be centered on all input pixels including
those at the border. The convolutional layers were followed
by a flatten layer to convert into a one-dimensional tensor,
and finally a fully connected layer with K units to corre-
spond

We use Stochastic Gradient Descent (SGD) to optimize
the model. The learning rate is set to 1 × 10−3 and the
momentum to 0.95. Compared to standard gradient de-
scent, SGD is more memory efficient for larger datasets
such as our set of thousands of strawberries. Additionally,
the stochasticity introduced by SGD helps the model bet-
ter generalize to unseen samples. Finally, because SGD re-
sults in noisier updates, the updates more easily escape local
minima and saddle points, plus the model converges faster
at the beginning of the training process with the number of
updates being made.

We also employ Nesterov momentum beyond the stan-
dard gradient descent algorithm, as shown in equations 1
and 2. In general, momentum accelerates training and
dampens excessive oscillation in regions of high curvature;
i.e., momentum smoothes out the training trajectory. Com-
pared to standard momentum, Nesterov Momentum incor-
porates a look-ahead mechanism by computing the gradient



at the position where the momentum term takes the param-
eters. This better dampens oscillations and can also act as
an implicit form of regularization to reduce overfitting in
noisier data.

Vt = βVt−1 + α∇wL(w −∞, X, y) (1)
W = W − Vt (2)

We use a standard CNN model training loop by per-
forming the forward pass, calculating the cross-entropy loss
between predictions and the true labels, performing back-
propgation to calculate the gradients in the backward pass,
and then updating the model parameters using the computed
gradients. After each epoch, the model’s accuracy is eval-
uated on the validation set by calculating the percentage of
correctly classified images. Once model training is com-
plete, we check its performance on the test set as well.

4.2. YOLOv7 Fine Tuning

To perform the image segmentation step to isolate in-
dividual strawberries from a raw image of multiple straw-
berries against a black backward, we decided to use the
YOLOv7 image detection model. YOLOv7 is pretrained
on labels from the COCO dataset, which had 80 classes;
however, because none of the data points were labeled as
strawberries, this makes the default model weights unsuit-
able for our task of strawberry segmentation. Attempting
to run inference using the provided ‘YOLOv7.pt‘ weights
resulted in output images with no labels or bounding boxes
annotated at all.

Thus, we had to fine tune YOLOv7 using our own straw-
berry image data to adapt the model to our specific task.
Specifically, we performed an instance of transfer learning
since we are applying the existing YOLO model to a new
task, with the reasoning that it is already capable of general
object detection even if it does not specifically know how to
classify strawberries yet.

To perform the fine tuning/transfer learning process, we
used the existing Feldmann dataset. These strawberry group
images were unlabeled without bounding boxes, so we
leveraged our existing the countour detection algorithm dis-
cussed in the preprocessing section and shown in figure 3 to
generate the bounding boxes. We simply had to convert the
extracted pixel coordinates into the YOLO annotation for-
mat, which consists of the x origin, y origin, x width, and y
height. All boxes were assigned the same class label since
we are only trying to detect strawberries.

The actual fine tuning process itself was done using
YOLOv7’s provided ‘train.py’ code. We adapted our
dataset to match their specific data formatting and hierar-
chical requirements. Additionally, we had to define our own
.YAML configuration file to define the data structure as well
as set the training hyperparameters such as learning rate and

momentum, in addition to augmentation parameters to help
make the training more robust.

4.3. Full Pipeline: from Segmentation to Classifica-
tion

After training and testing our classifiers and the fine-
tuned YOLOv7 model, our final step was to integrate these
models into a single pipeline that would handle detection,
segmentation, and the multi-task classification. This pro-
cess primarily meant extracting the bounding-box labeled
images found by YOLOv7, preprocessing the images to
match the format needed for our classifiers, and then run-
ning the classifiers to output classes for use in our final im-
age labels.

We were able to run image segmentation inference using
YOLOv7’s provided ‘detect.py‘ script. Our first attempts at
integrating YOLO with our classifiers involved modifying
this ‘detect.py‘ script and its two-stage classifier code which
is intended to further filter on YOLO’s labels with a sec-
ondary classifier. We reasoned we could replace rather than
filter the output labels to show our classifier’s result. Al-
though we were able to successfully load and call our mod-
els within this framework as well as assign the model labels
to bounding boxes, we were concerned by the accuracy of
this approach because of the numerous conversions between
YOLO’s annotation format (origin coordinates, width, and
height) and the pixel bounding box itself.

Thus, the ultimate method we settled on was using
YOLO’s extracted annotations in conjunction with the raw
images to cut out the individual strawberries from the raw
file before passing into our preprocessing pipeline and call-
ing each model as standard. This also gave us the flexibility
of formatting and adjusting bounding box text label posi-
tions as needed.

5. Experiments and Results
For our baseline KNN model on the shape dataset, we

were able to achieve a training set accuracy of approxi-
mately 0.82 and a test set accuracy of 0.71 on Feldmann’s
10-class labels. We used k = 5 as the neighbor hyperparam-
eter. We also calculated precision and recall for each of the
10 classes and found noticeably worse metrics for certain
classes over others. For example, class 5 had 0.62 and 0.64
for precision and recall respectively. In contrast, class 1 had
0.86 for precision and 0.76 for recall. Meanwhile, the base-
line KNN for the ripeness dataset was only able to achieve
a training accuracy of 0.67 and a test accuracy of 0.49.

To maximize the performance of our convolutional neu-
ral networks, we performed hyperparameter tuning for pa-
rameters including learning rate, number of convolutional
channels, etc., using the Optuna library. This served as our
primary experimental iteration process in an attempt to im-
prove the models. Optuna is a hyperparameter optimization



Figure 5. Loss and accuracy plots across OpTuna hyperparameter
tuning trials as visualized using the Weights Biases platform.

Figure 6. Multi-class confusion matrix showing performance of
our CNN on the shape test dataset.

framework1 that uses the Tree-structured Parzen Estimator
(TPE) sampler to better infer the next set of parameters to
test. Overall, this results in a more efficient hyperparameter
search than with more naive methods such as grid search
or random search. Figure 5 shows loss and accuracy plots
over time/epoch for each of the OpTuna trials, with each
trial testing a new set of hyperparameters. After finding the
best parameters, we retrained the model using the new con-
figuration and saved the weights for evaluation as well as
input into our final pipeline.

Upon completing hyperparameter tuning and training the
models, we were able to achieve a shape classification ac-
curacy of 0.9537 and a ripeness classification accuracy of
0.85, significantly improving upon the baselines established
by our KNN classifiers. Figure 6 and figure 7 show the con-
fusion matrices for shape and ripeness classification respec-
tively.

The YOLOv7 fine-tuning process proved straightfor-
ward, as only 5 epochs of fine tuning allowed us to achieve
near-perfect precision and accuracy on the validation set.
Upon loading the stored ‘best-model.pt‘ weights and run-

1https://optuna.readthedocs.io/en/stable/

Figure 7. Multi-class confusion matrix showing performance of
our CNN on the ripeness test dataset.

ning our test dataset, we saw no errors in segmentation or
drawing the bounding boxes.

Once we saved our best model weight dictionaries, we
integrated them into our pipeline and ran inference on both
the existing Feldmann multi-strawberry images as well as
images we took ourselves. Figure 8 shows our own image
of five strawberries, segmented by the fine-tuned YOLOv7
model and classified based on shape and ripeness using our
CNN classifiers. Qualitatively, we found that the pipeline
worked well on our store-bought fruit. Upon examining the
reference class labels, our strawberries appeared to be of
similar shape classes and ripeness stages.

6. Summary and Conclusion

This project implemented an end-to-end pipeline clas-
sifying strawberries by shape and ripeness using a Convo-
lutional Neural Network (CNN). We utilized YOLOv7 for
object detection to isolate individual strawberries in images
and then applied custom CNN models to classify the iso-
lated strawberries based on their shape and ripeness. Our
approach significantly outperformed baseline KNN models,
achieving a shape classification accuracy of 0.9537 and a
ripeness classification accuracy of 0.85.

The success of the models demonstrates the significant
potential of deep learning for agricultural quality control,
providing a reliable tool for automating the classification
process. This highlights the potential of deep learning
in agricultural applications, offering a tool for automating
strawberry shape classification. This automation can greatly
improve the efficiency and accuracy of sorting and grading
strawberries, benefiting both producers and consumers.

Our future work would focus on enhancing the model to
manage more complex scenarios, such as multiple straw-
berries in a single image and varying degrees of noise from

https://optuna.readthedocs.io/en/stable/


Figure 8. Example final output of the strawberry segmentation and
classification pipeline, performed using our own strawberry im-
age.

leaves or other fruits. Additionally, investigating the inte-
gration of other deep learning methods and larger datasets
could further improve the model’s performance and appli-
cation scope. This kind of research will lead to more intel-
ligent and automated solutions in the field.

References
[1] H. Chen, J. Zhang, K. Xu, and Y. Liu. Deep learning for

real-time object detection and classification in surveillance. In
Proceedings of the Journal of Surveillance, 2021. 2

[2] A. Farhadi et al. Yolov7: Towards efficient and accurate object
detection. In Proceedings of the Advanced Vision and Pattern
Recognition Conference, 2021. 2

[3] M. J. Feldmann. Classification and Quantification of Straw-
berry Fruit Shape. Zenodo, Sept. 2019. 2

[4] X. Hu, R. Wang, J. Du, Y. Hu, L. Jiao, and T. Xu. Class-
attention-based lesion proposal convolutional neural network
for strawberry diseases identification. In Frontiers in Plant
Science, volume 14, page 1091600. Frontiers Media SA,
2023. 2

[5] T. Ishikawa, A. Hayashi, S. Nagamatsu, Y. Kyutoku, I. Dan,
T. Wada, K. Oku, Y. Saeki, T. Uto, T. Tanabata, S. Isobe, and
N. Kochi. Classification of strawberry fruit shape by machine
learning. In The International Archives of the Photogramme-
try, Remote Sensing and Spatial Information Sciences, volume
XLII-2, pages 463–470, Riva del Garda, Italy, June 2018. IS-
PRS TC II Mid-term Symposium ”Towards Photogrammetry
2020”. This contribution has been peer-reviewed. © Authors
2018. CC BY 4.0 License. 2

[6] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick,
J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zit-
nick. Microsoft coco: Common objects in context. In Eu-
ropean Conference on Computer Vision (ECCV), pages 740–
755, 2014. 2

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only
look once: Unified, real-time object detection. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 2


