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Abstract

In this paper, we propose a method for 3D-scene genera-
tion to create diverse, visually appealing, and infinite walk-
throughs of specific films. Our approach builds on the Sce-
neScape pipeline and leverages Dreambooth to train Stable
Diffusion models for few-shot, scene-driven generation of
novel views with consistent characters, settings, and styles.
We also utilize ControlNet to effectively condition these
models for inpainting tasks, thereby ensuring both struc-
turally and contextually coherent generated scenes. We con-
ducted experiments on four stylistically distinct films, and
our method outperforms the baseline on both quantitative
aesthetic metrics and qualitative human evaluations, based
on content and style resemblance with the target film.

1. Introduction
The field of 3D scene generation has seen significant ad-

vancements, particularly in its applications across graphics,
virtual reality (VR), and animation. The ability to generate
realistic 3D scenes from textual descriptions is a challeng-
ing and computationally intensive task and there is a lot of
research being conducted in this field currently.

In this paper we explore the generation of consistent 3D
scenes based on text prompts. In particular, we aim to im-
plement and extend the method proposed in the SceneScape
[1] paper which proposes a pipeline for text-driven, depth-
consistent 3D scene generation.

The method described in the paper has demonstrated im-
pressive results in generating semi-realistic, non-stylized
3D scenes. These scenes are created by using an inpainting
model to generate 2D images from a text prompt, project-
ing them at different camera angles, then using inpainting
to complete a consistent scene. However, for applications in
entertainment and other creative industries, there is a need
for generating more diverse and unique 3D scenes that ad-
here to various styles. To introduce this diversity, we fine-
tune multiple diffusion models on stylized animated films.

To achieve this, we plan to leverage insights from the
Google DreamBooth [6] paper to help finetune our inpaint-

ing diffusion model. The DreamBooth approach focuses on
personalized text-to-image generation, enabling fine-tuning
of diffusion models on specific styles and subjects with a
limited number of images. This method will help us adapt
our diffusion models to generate 3D scenes in a variety of
unique styles effectively.

1.1. Contributions

Our contributions in this paper are:

• Experimentation with various text-to-image diffusion
models and adapters for the task of few-shot scene gen-
eration

• A process of fine-tuning Stable Diffusion with Dream-
booth that allows the model to synthesize back-
grounds, characters, and styles of a scene into new
compositions. This is a novel area of employing
Dreambooth for scene-driven generation instead of
subject-driven generation.

• Integration of ControlNet [9] to adapt Stable Diffusion
for the inpainting task such that contextual and struc-
tural consistency is preserved.

2. Related Work

3. Diffusion and Inpainting
Instrumental to our work are diffusion models for image

generation [5], which are a class of generative models that
output images through a gradual denoising process. In the
forward process, over a series of time steps, Gaussian noise
is added to the data. This gradually moves the distribution
towards pure noise. Structure in the data is removed. In the
reverse process, the model denoises the data step by step, a
process that the model learns. The training objective is to
minimize the difference between the two processes so that
the model can accurately denoise at each step.

There has also been extensive work done in training dif-
fusion models specifically for inpainting tasks [4]. Inpaint-
ing is a conditional generation task whereby the model gen-
erates parts of an image that are missing after conditioning
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on the existing parts. The training process involves ran-
domly masking parts of the input data which a diffusion
model learns to generate seamlessly. This is ensured by a
recontruction loss that is applied which penalizes genera-
tions that don’t blend in well with the surrounding context
and also a perceptual loss

3.1. Controlling Mechanisms: ControlNet and IP-
Adapter

There exists a number of different control mechanism
for guiding the diffusion generation process more precisely.
This is needed for us to be able to effectively generate a
consistent scene. ControlNet [9] and IP-Adapter [7] are two
methods that fare relatively well.

ControlNet introduces this improved level of control by
conditioning on specific input images like edge maps or seg-
mentation maps. The architecture of the model is modified
so that, during training, the model conditions both on the
noise vector of diffusion but also on an additional control
input. The control input is concatenated with the noise at
different stages of the diffusion. This allows for more con-
textually consistent frame-by-frame generation of images
that maintains the structure and content of prior frames, es-
sential to successfully generating a coherent walkthrough.

IP-Adapter is another method of controlling diffusion
that conditions the generated image on an image prompt.
The model architecture is modified to incorporate the style,
structure and / or content of the conditioning image. Ad-
ditional layers are added so that features from the image
prompt are maped onto the diffusion models’s latent space.
These mapping allow the model to condition the noise vec-
tor on the text and image prompt. Leveraging this provides
us greater control guiding the frame generation process by
feeding in prior frames.

3.2. DreamBooth

DreamBooth [6] is an approach that aims to finetune dif-
fusion models on specific styles and subjects with a limited
number of images. The training procedure involves intro-
ducing a unique identifier to the text prompts that are used
to finetune the model. Then, the model is trained on a small
set of images (usually less than ten) that capture a new style
or subject. The unique identifier is used during the train-
ing process so that the model learns to associate it with the
particular style or subject. The model employs a reconstruc-
tion loss for the regions that are masked and also a semantic
loss that keeps the content in line with the prompt. Through
this training, the model preserves most of it’s priors learned
from pretraining and also adapts to the new style or subject
on which it’s finetuned. We attempt to leverage this capa-
bility of the DreamBooth process to stylize our scenes.

3.3. SceneScape

Foundational to our work is the pipeline described in
SceneScape [1] which leverages a pre-trained inpainting
diffusion model alongside a pre-trained monocular depth
estimation model to incrementally generate a walkthrough
of a static scene represented as a triangular mesh from text
prompts. Initially a text description is used to generate a 2D
image. A pre-trained monocular depth estimation model is
used to generate a depth map of this generated image. Using
that, the image is then projected onto a 3D space. The cur-
rent frame content is projected onto the next camera posi-
tion, which produces a mask for the visible content, a depth
mask and a masked frame. An inpainting model then fills
in the occluded parts based on the masks produced from the
projection. This generates subsequent frames in a consis-
tent manner and these frames are all finally put together to
generate the walkthrough.

While SceneScape performs extremely well, it primar-
ily focuses on non-stylized scene generation. In this paper,
we aim to extend this to more diverse and stylized output
through our approach.

4. Methods
Given that the original SceneScape text-to-scene

pipeline performed well on a variety of diverse scene walk-
throughs, from underwater caves to grand libraries, we hy-
pothesized that generating scenes conditioned on the style
and content of specific films would be possible by just
changing the 2D part of the pipeline, without modifying the
3D part.

In particular, we replace the original inpainting model,
which is the default inpainting version finetuned from Sta-
ble Diffusion v2-base. We experimented with three differ-
ent modifications:

1. At inference, use the IP-Adapter image prompt adapter
to include an additional image condition for the film
scenes on the default text-to-image inpainting model.
This requires no training.

2. Finetune the default inpainting model using the
Dreambooth method on the training images of a film.
This was an implementation we wanted to try, as there
is no published analysis on the effectiveness of this
method.

3. Finetune a non-inpainting diffusion model using the
Dreambooth method on the training images of a film.
Then, apply ControlNet conditioned on the inpainting
mask to use this model as an inpainting model dur-
ing inference. Unlike (2), this has the benefit of learn-
ing entire images without masking, which is also the
method described in the original Dreambooth paper.
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To prevent catastrophic forgetting and because multi-
token Dreambooth is not a developed area, for the last two
models that require finetuning, we train a separate diffusion
model on each of the four films.

Note that all three of our methods still use a text-to-
image diffusion model, instead of a purely image-to-image
method, so that we can leverage the strong semantic prior
learned by Stable Diffusion, which makes few-shot image
generation much easier. As the original SceneScape work
demonstrated promising, generalizable 3D generation with-
out expensive training on large 2D or 3D domain-specific
datasets, we intend to present a modification upon their
work that does not introduce inaccessible data or compute
requirements.

5. Data
Given that the Dreambooth method we will use for fine-

tuning latent stable diffusion models only requires a few
input images depicting the same class, we manually col-
lected three images each from four different films. These
films, listed in Table 1, were carefully selected to repre-
sent a diverse range of visual styles. For example, the an-
imation in Studio Ghibli’s Spirited Away is distinctly dif-
ferent from the CGI for Hogwarts in Harry Potter. The
three images of each film are shots of the same setting from
different camera angles so that Dreambooth can find sim-
ilarities among the training images. We believe that these
few-shot data parameters are lenient and do not add much
difficulty for using our pipeline in comparison to the orig-
inal SceneScape’s purely text-based pipeline, since these
images were found by a quick Google search for the re-
spective film. See our complete set of training images at
https://tinyurl.com/stylescape-231n.

Film (Scene) Studio Year
Spirited Away (Train) Studio Ghibli 2002

Harry Potter 1 (The Great Hall) Warner Bros. 2001
When Marnie Was There (Anna’s room) Studio Ghibli 2014

Frozen (Arendelle Castle) Disney 2014

Table 1: Film scenes in our dataset with their corresponding
production studios and years

6. Experiments
For inference on all of the diffusion models, we use the

parameters in table 2. For training and inference, we use the
Hugging Face diffusers library [2].

6.1. Experimentation with IP-Adapter

We first attempted our inference-time method of condi-
tioning default Stable Diffusion Inpainting on the image

Parameter Name Value

Number of Inference Steps 50
Classifier-free Guidance 7.5
Size 600px
Negative Inpainting Prompt text, writings, signs, text,

white border, photograph
border, artifacts, blur,
smooth texture, foggy, fog,
bad quality, distortions,
unrealistic, distorted image,
watermark, signature, fish-
eye look, windows, people,
crowd, outdoor, landscape,
view, chandelier

Table 2: Diffusion Parameters for Inference

scenes using IP-Adapter. We used the same prompt as
the default SceneScape baseline (for Frozen, this is “POV,
walkthrough, Arendelle castle from Frozen, masterpiece,
indoor scene, best quality”) and conditioned on the same
scene image at every time step. We tested different values
of the IP-adapter scale to vary the amount of image vs. text
conditioning that is applied, and even tried only applying
IP-Adapter to the down-part block 2 and up-part block 0
layers of the model, which control layout and style. How-
ever, all of these resulted in distorted inpainting results (as
shown in Figure 1), which is likely due to IP-Adapter treat-
ing the scene as a subject, and trying to incorporate it all into
the masked regions, which are warped regions from depth
estimation and thus also geometrically complex.

Figure 1: Sample frames from the video generated by IP-
Adapter conditioned on a Frozen scene with scale 0.6

6.2. Experimentation with Dreambooth on Inpaint-
ing Model

Now, we move on to the more involved fine-tuning
methods. By using masked versions of the training im-

3

https://tinyurl.com/stylescape-231n


Figure 2: Training images, scenes from Frozen

(a) Samples generated by Stable Diffusion Inpainting v2 model
finetuned with Dreambooth on images shown in Figure 2

(b) Samples generated by Stable Diffusion v1.5 base model
finetuned with Dreambooth on images shown in Figure 2

ages to finetune the Stable Diffusion Inpainting model, we
hoped to retain inpainting performance while synthesiz-
ing content and style from the film scenes. For finetun-
ing, we use the parameters and prompt in Table 3. Our
model checkpoint after finetuning on the Frozen data is
available at https://huggingface.co/emily49/
frozen-stable-diffusion-inpaint.

Parameter Name Value

Resolution 512px1

Learning rate 5e−6

Batch size 1
Number of steps 500
Instance prompt “A photo of sks [Film name]”2

Inference prompt “POV, walkthrough, [Scene name]
from sks [Film name], masterpiece,
indoor scene, best quality”

Table 3: Parameters for Dreambooth fine-tuning and infer-
ence

While this model excelled at inpainting, with little to no
visual discrepancies or gaps, we found two qualitative is-
sues with the resulting generated images and scenes.

The first is that the fine-tuned inpainting model did not
learn many of the details and overall style of the scene. For
example, see Figure 2 and 3a, in which the former is the
Dreambooth training images and the latter is three samples
from inference on our trained checkpoint with an empty
mask3. We can see that the generated images are not simi-

1Training images are randomly cropped to 512× 512.
2sks is the unique token identifier we choose to use for Dreambooth
3This means the entire image is generated; this is also how we gener-

lar to the training images, and rely far more on the semantic
prior of “castle” than on the new token “sks frozen”. This
is likely because much of the references are masked during
training, in order to ensure the model does not forget the
inpainting capabilities.

The second issue we discovered is that in the generated
3D walkthrough, the model experiences quality degradation
from error accumulation rapidly, as can be seen in Figure 4.
We suspect that this is likely because Dreambooth is tradi-
tionally used only for subject-driven generation, not scene-
driven generation. In fact, we have found no prior research
that uses Dreambooth to generate variations of scenes in-
stead of subjects. Specifically for inpainting, the model is
trying to incorporate all facets of class “sks frozen” into the
small masked areas, which is theoretically and experimen-
tally the incorrect behavior.

Figure 4: Frame 0 and Frame 12 of a video generated from
finetuned Stable Diffusion Inpaint

ated the first frame in the video pipeline.
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6.3. Dreambooth Stable Diffusion + ControlNet

Finally, we move onto the last and most successful
method we developed. Since Dreambooth experimentally
works ineffectively on the inpainting model, we finetuned a
non-inpainting base Stable Diffusion model using the same
parameters in Table 3. These yielded excellent results on
the image generation task, as seen in Figure 3b. The char-
acters, architecture, color scheme, and style were all ef-
fectively learned and synthesized to generate new views of
the film setting. We have successfully used Dreambooth
for scene-driven image generation instead of subject-driven
generation.

In order to then perform the inpainting task using this
non-inpainting model, we apply the ControlNet Inpainting
model[8], which is already pretrained on the image inpaint-
ing task, on top of the diffusion model. We can then pass
the conditional mask to the ControlNet model for inpaint-
ing. However, ControlNet is known to behave poorly with
edges, which was prominent in our 3D pipeline, which can
have no empty gaps. We fixed this by passing in a mask that
was slightly dilated by a 5x5 filter.

Note that pretrained ControlNet only works with the ar-
chitecture of Stable Diffusion v1.5, which varies from Sta-
ble Diffusion v2 and forward. Because of this, our final
method finetunes the older v1.5 Stable Diffusion base mod-
els, but it still exceeds the alternate methods and the Sce-
neScape baseline, as we will report in the next section. The
finetuned model checkpoints for all four films can be found
at https://huggingface.co/emily49.

7. Results

We generated 30-frame4 long videos on an NVIDIA L4
GPU with the same fast-moving camera translation and ro-
tation as SceneScape to maintain a robust baseline for com-
parison. 5 shows sampled frames through time from our
generated videos; we recommend looking at the videos at
https://tinyurl.com/stylescape-231n.

Since stylized scene walkthrough generation is a quali-
tative and visual task, we use human evaluation as our pri-
mary metric. For each of the four films, we generated a
video with the existing baseline SceneScape pipeline using
the same prompt that we gave to our model, excluding the
sks token. With the baseline video (abbreviated SS) and
our video, we employed the Two-alternative Forced Choice
protocol, asking 34 survey respondents the following two
questions about each film:

1. Choose the video that more closely resembles the
specific film and setting in content and style. We ask

4While the original SceneScape paper generated 50-frame videos, we
were constrained by memory and compute, and 30 frames is substantial
enough to evaluate aesthetic, stylistic, and geometric quality.

that you please do a quick Google photos search of “In-
terior of [Setting] from [Film]” to see what each film
setting looks like before answering. For example, for
the first question, google ”Interior of Arendelle Castle
from Frozen”.

2. Choose the video that has better visual quality, e.g.,
sharper, less artifacts such as holes, stretches, or
distorted geometry. For this question, you do not
need to consider the specific film or setting, just the
geometric consistency and quality.

We included the second question because it was the ques-
tion that respondents were asked in the SceneScape paper
to compare against existing methods. While the primary
objective of our model is to generate scenes that have the
look and feel of certain films, we still want to retain most of
the geometric consistency and quality such that the scene is
convincingly 3D.

The results are shown in Table 4. We see that for all four
films, our method considerably outperforms the baseline in
terms of likeness to the corresponding film setting. For
visual and geometric quality, both methods perform simi-
larly. There are two films where the baseline outperforms
our method. This is likely because the diffusion + Con-
trolNet model was not trained end-to-end on the inpainting
task and thus is more likely to create discrepancies (not to
mention SD v1.5 is a lower version pretrained on less data).
The two films where our model performs better on visual
quality are actually more stylized films (Spirited Away and
When Marnie Was There) since our diffusion model is bet-
ter at generating stylized and depth-consistent images than
the default inpainting model.

For a quantitative metric, we also computed a CLIP Aes-
thetics score [3], an aesthetic predictor on top of CLIP em-
beddings that was also used for SceneScape. We calculated
this metric for a video by taking the average of the CLIP
scores on the first, middle, and last frames. We see similar
CLIP scores for the baseline model and our model on the
same film, with our model marginally improving upon the
score in aggregate.

Frozen SA HP Marnie Avg.

Film-SS 22.2% 11.1% 5.60% 13.9% 13.2%
Film-Ours 77.8% 88.9% 94.4% 86.1% 86.8%

Quality-SS 63.9% 27.8% 61.1% 47.2% 50.0%
Quality-Ours 36.1% 72.2% 38.9% 52.8% 50.0%

CLIP-SS 5.97 6.26 6.20 6.13 6.14
CLIP-Ours 5.69 6.16 6.91 6.22 6.25

Table 4: Metrics from Human Evaluation and CLIP Aes-
thetic Score on baseline SceneScape method and our
method across all films
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(a) “POV, walkthrough, Arendelle Castle from sks frozen, masterpiece, indoor scene, best quality”

(b) “POV, walkthrough, train from sks spiritedaway, masterpiece, indoor scene, best quality”

(c) “POV, walkthrough, the Great Hall from sks harrypotter, masterpiece, indoor scene, best quality”

(d) “POV, walkthrough, Anna’s room from sks marnie, masterpiece, indoor scene, best quality”

Figure 5: Sample frames from video walkthroughs of each film using our method and the corresponding inference prompts

8. Conclusion

In this paper, we aimed to develop a method of generat-
ing 3D-consistent scene walkthroughs of specific films that
retain style and content in a few-shot manner. We success-
fully finetuned a diffusion model on multiple views of the
same film setting such that it synthesizes diverse, context-
rich, and visually appealing images from the same setting.
This is a novel use of the Dreambooth training method for
scene-driven generation. We then integrated finetuned dif-
fusion into the 3D pipeline pioneered by SceneScape using
ControlNet for mask conditioning. The scene walkthroughs
that we generated substantially outperformed SceneScape
in their likeness to their corresponding films. However,
both the baseline and our method struggle with geometric
consistency and quality for stylized scenes, which suggest
a domain-specific method or an alternative depth estima-
tion model would be required for animated scenes. This is
an area of future research for generative 3D models before

they can be used to fully reconstruct convincing imaginary
worlds.
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