
Synthetic Dataset Generation Toolbox and Enhanced 6D Pose Estimation and
Object Detection on YCB Objects

Hsin-Hua Lu * Gabriel SantaCruz † Pin-Hua Huang ‡

Abstract

In recent years, pose estimation has gain its popular-
ity in enabling robots to efficiently manipulate objects and
interact with their surroundings. Xiang et al. introduced
PoseCNN, a VGG16 network, as a solution for estimating
both 6D translational and rotational poses, alongside se-
mantic labels. Building upon this foundation, our research
generates a comprehensive synthetic dataset comprising 2G
of meticulously crafted scenarios featuring 25 YCB object
setups. This synthetic dataset encompasses a diverse range
of camera angles, curated to simulate the real-world set-
tings and complex occlusion scenarios, thereby facilitating
robust object pose estimation. Leveraging the capabilities
of the pretrained PoseCNN backbone, our objective is to
further enhance the accuracy and efficacy of 6D pose esti-
mation on our curated dataset. Through this work, we aim
to contribute to the ongoing evolution of pose estimation
methodologies for more sophisticated robotic applications
in real-world environments.

1. Introduction
Estimating 6D pose, including rotation and position, of

known objects has always been an important task in robot
manipulation. Robots need to understand the spatial rela-
tionship among the objects in order to interact with the en-
vironment and execute further control strategies. Moreover,
the ability to perform classification tasks on the identified
objects expands the cognitive capabilities, enabling the exe-
cution of intellectual jobs such as organizing pick-and-place
operations or object localization.

Xiang et al. [11] introduced PoseCNN, a Convolutional
Neural Network (CNN) designed for 6D pose estimation.
PoseCNN estimates the 3D translation from the object cen-
ter and camera distance, along with 3D rotation by regress-
ing quaternion representations. They trained on the 92
YCB-video dataset and achieved high scores in classifica-
tion on OccludedLINEMOD.

*Email:alex49@stanford.edu
†Email: gsantac@stanford.edu
‡Email:pin9465@stanford.edu

Building on this foundation, we extend PoseCNN to
utilize additional data sources such as video inputs, point
clouds, and camera trajectory information for enhancing the
6D pose estimation of YCB objects. Moreover, we adjust
the output of the model to be probabilistic, based on bi-
variate Gaussian distributions, and add an additional output
of a 2-dimensional direction vector for the model to pre-
dict an optimal direction for camera movement to enhance
object visibility. This latter approach is more focused on
robotics applications, given the noise and complex environ-
ments robots might face. We believe it will significantly
boost the performance of the model compared to arbitrary
outputs of the current time frame, ultimately providing a
suitable angle for robots to accurately perceive the environ-
ment and plan subsequent movements. However, to achieve
this, a dataset with multiple angles (spherical around the
object setup) is necessary to train the model.

To support this, we propose a synthetic dataset genera-
tion toolbox for YCB objects based on Gazebo and ROS.
The data is fully labeled with objects’ poses, mask infor-
mation, RGB images, and depth images. This synthetic
dataset may serve as a valuable resource for this PoseCNN
improvement as well as future research in point tracking
models.

NOTE: YCB Objects and Model set stands for the ”Yale-
CMU-Berkeley Object and Model Set.” It’s a collection of
common household objects used for benchmarking object
recognition and robotic manipulation tasks [4][2][3].

Proposed Enhancements on PoseCNN:

• Camera Pose Input: Integrate the current camera ro-
tation into PoseCNN to better account for the object’s
relative orientation, mimicking human visual percep-
tion for improved 6D pose estimation.

• Depth Data Integration: Use depth data as an addi-
tional input to enhance the robustness and accuracy of
the pose estimation.

• Direction Vector Output: Output a direction vector
for camera movement to improve object visibility and
pose estimation accuracy, particularly in occluded sce-
narios.

1

Figure 1: PoseCNN architecture from paper[11]

• Probabilistic Pose Estimation: Transition to a prob-
abilistic model using Gaussian distributions to express
uncertainty, allowing for confidence evaluation regard-
ing camera angles and object visibility.

These enhancements aim to integrate into a Kalman
filter-based robotic system, assessing the system’s perfor-
mance in dynamically adjusting the camera position based
on the direction vector outputs, across consecutive frames.
This advanced model will be further discussed and detailed
in the Technical Approach section of this paper.

2. Related Work
2.1. PoseCNN Review

Our model use PoseCNN-PyTorch at its base - which is
a Convolutional Neural Network developed by Nvidia[8].
It is designed for 6D object pose estimation using a direct
regression method described in the paper [11]. PoseCNN
predicts the 6D pose of objects with semantic segmentation
and translational/rotational information [11]. PoseCNN uti-
lizes a VGG16 backbone, trained on coco datasets and col-
lected YCB video data, followed by three branches: seman-
tic labeling (1), object translation (2), and object rotation
(3). Specifically, for each pixel p = (x, y)T and each object
in image it give following output:

(x, y) → cls (1)

(x, y) →
(
nx =

cx − x

∥c− p∥
, ny =

cy − y

∥c− p∥
, Tz

)
(2)

(object) → Quaternion(qw, qx, qy, qz) (3)

The VGG16 outputs CNN features that classify YCB
objects for each pixel. The first branch then performs se-
mantic labeling where deconvolutional layers are used to

Figure 2: Hough voting for object center localization: Each
pixel casts votes for image locations along the ray predicted
from the network[11]

increase the spatial resolution of the feature maps. This
branch is trained using softmax cross-entropy loss, with in-
ference based on softmax probabilities.

Next, PoseCNN leverages camera intrinsics to deduce
translation rather than directly regressing it for object trans-
lation. Direct regression is not generalizable, as objects
can appear in various locations within the image, making it
challenging to learn translation solely based on object size.
Additionally, direct regression cannot handle multiple in-
stances of the same object category. Therefore, PoseCNN
predicts the object center (c) and depth (T). Using the cam-
era’s focal length and principal point, object translation is
calculated (4), where (px, py) is the principle point and
(fx, fy) is the focal length of the camera.

T =

Tx

Ty

Tz

 =

(cx−px)Tz

fx
(cy−py)Tz

fy

Tz

 (4)

The object center is found using Hough voting influ-
enced by l Implicit Shape Model (ISM) [7], where each
pixel regresses a direction towards the object center. Non-
maximum suppression is then applied to the voting scores
followed by a threshold.

Lastly, 3D rotation regression uses Region of Interest
(RoI) Max Pooling layers with fully connected (FC) lay-
ers to generate 3D rotation quaternions. The traditional
pose loss (Equation 5) measures the average squared dis-
tance between points on the correct model pose and their
corresponding points on the estimated model pose. This
approach penalizes alternative rotations for symmetric ob-
jects unnecessarily. PoseCNN introduces ShapeMatchLoss
(Equation 6) to handle symmetric objects more effectively
by measuring the offset between each point on the estimated
model and the closest point on the ground truth model.
This complements the traditional pose loss by encouraging
equivalent rotations for symmetric shapes.

PLOSS(q̃, q) =
1

2m

∑
x∈M

∥R(q̃)x−R(q)x∥2 (5)

2

SLOSS(q̃, q) =
1

2m

∑
x1∈M

min
x2∈M

∥R(q̃)x1−R(q)x2∥2 (6)

PoseCNN uses the Average Distance (ADD) metric to
evaluate the accuracy of 6D pose estimation. This metric
calculates the mean pairwise distance between 3D model
points transformed by the ground truth pose and the esti-
mated pose. Specifically, the ADD metric is defined as:

ADD =
1

m

∑
x∈M

∣∣∣(Rx+T)− (R̃x+ T̃)
∣∣∣ , (7)

where M denotes the set of 3D model points, and m is
the number of points. For symmetric objects, where point
matching can be ambiguous, PoseCNN employs the ADD-
S metric, which uses the closest point distance:

ADD − S =
1

m

∑
x1∈M

min
x2∈M

∣∣∣(Rx1 +T)− (R̃x2 + T̃)
∣∣∣ .

(8)

Given the robustness of these metrics in evaluating pose
accuracy, we adopt both ADD and ADD-S as our evalua-
tion metrics to ensure consistent and reliable performance
assessment of our system.

Overall, PoseCNN features a novel CNN structure with
three outputs, a robust physics-encoded model for transla-
tion estimation, and ShapeMatch-Loss for handling sym-
metric objects. PoseCNN demonstrates strong performance
in cluttered scenes using only RGB images. However,
PoseCNN has limitations in effectively estimating symmet-
ric object poses and often gets trapped in local minima with
ShapeMatchLoss. Higher resolution and FoV cameras may
help to improve performance, however, the model struggles
with heavily occluded objects which requires a direction
vector output for complex, noisy environments.

3. Data
3.1. Dataset Preperation

In order to enhance the accuracy and robustness of our
model, few types of datasets are selected. Including

• Training dataset: Simulated YCB object point clouds
in Gazebo environment with different arrangements of
objects and camera angles

• Training and validation dataset: YCB video datasets
provided in Xiang’s paper [11]

• Test dataset: OccludedLINEMOD [1]

3.1.1 YCB video dataset

The YCB video dataset comprises 113,198 images captured
across 91 distinct environmental setups. Each frame show-
cases various YCB objects, such as scissors, screwdrivers,
and more, positioned against diverse background images,
often with certain parts occluded. In every environmen-
tal configuration, approximately 760 images were captured
from similar angles and distances. Furthermore, the vali-
dation sets consist of around 2000 images per environmen-
tal settings from setting 48 to 59 obtained from the video
frame. This compilation of video datasets enriches the ex-
pansive repository, offering potential advantages for future
training in robotic computer vision. Nevertheless, a draw-
back of the video frame dataset is the absence of consis-
tent angles and camera parameters, which could be accessed
through the system environment settings to provide addi-
tional metadata.

3.1.2 COCO dataset

CoCo dataset stands for Common Objects in Context. It
is a widely used benchmark dataset for object detection,
segmentation and captioning tasks. The categories in the
dataset consists of everyday scenes, including people, ve-
hicles, and YCB objects. The 2014CoCo training dataset
consists of approximately 80,000 images with correspond-
ing bonding boxes, segmentations, keypoints and captions.
In the PoseCNN-Pytorch structure, we utilized 2014 CoCo
train image (13 GB) for background as the backdrop against
which objects or subjects are placed or detected in computer
vision tasks.

3.1.3 OccludedLINEMOD

OccludedLINEMOD is an extension of the LINEMOD
(LINEns of Model) dataset, specifically designed for evalu-
ating the performance of object detection and pose estima-
tion algorithms in the presence of occlusions. LINEMOD is
a widely used benchmark dataset in the field of object detec-
tion and pose estimation, containing images of objects from
various categories captured under controlled conditions.

3.1.4 YCB objects model

The 3D object models used in the synthetic dataset genera-
tion toolbox is mainly from two sources including [6] and
[5] covering over 40 YCB objects. Config, sdf, textures,
materials and meshes of the object are prepared (Some gen-
erated by us) for later usage in the toolbox.

3

4. Synthetic Dataset Generation Toolbox
4.1. System Overview

Built upon [9] which runs on old API and ros env-
iornment, our system leverages latest ROS 2 Humble and
Gazebo Fortress to generate the synthetic dataset. The sys-
tem configures object setups and samples camera poses us-
ing calculated angles and distances (phi, theta, dist).
This approach ensures varied and full coverage of the envi-
ronment, which is essential for training the direction vectors
of the improved PoseCNN.

Camera and object states are managed through Gazebo’s
GetEntityState and SetEntityState services
(from plugin libgazebo ros state.so), with CvBridge fa-
cilitating image data conversion and handling between ROS
2 and OpenCV. The workflow includes capturing RGB,
depth, and binary mask images, which are then transformed
into formats suitable for algorithm training.

The final outputs include RGB images, depth images, bi-
nary masks, and metadata capturing object poses and cam-
era poses, all stored in PNG and MAT formats.

This system is particularly valuable for research as it ef-
fectively utilizes the latest ROS 2 API and accommodates
the changes in the ros gazebo interface, which has been
challenging to find in recent implementations. The dataset
generation also considers relative spatial information, mak-
ing it ideal for training models that require spatial context,
such as finding direction vectors for optimal camera angles
or reinforcement learning models that need to predict the
scene after robot movement. The toolbox covers the en-
tire environment setup and provides 100 different configura-
tions with varying occlusion scenarios, along with a simple
API to retrieve images and data for different camera move-
ments (e.g., moving left a step).

4.2. System Setup

• ROS 2 Humble: Offers real-time communication ca-
pabilities within robotic systems and Gazebo integra-
tion.

• Gazebo Fortress: A robust robotics simulator that of-
fers detailed environmental dynamics and physics.

• Open3D: Employed for its efficient 3D data process-
ing capabilities, which is crucial for point cloud ma-
nipulation and analysis.

• OpenCV: Used for image acquisition, conversion, and
processing tasks essential in vision systems.

• SciPy: Applied for its extensive scientific computing
tools, aiding in mathematical transformations and al-
gorithm development.

Figure 3: Simulation Setup

4.3. System Pipeline

Start

Sample pointcloud information for SDF YCB Objects

Generate Object Setup

Set Camera Pose

Check if Camera Moved

Save RGB and Depth Images from Kinect

Get Object Poses

Save Camera and Object Poses to Meta File

Generate Mask Image with Point Cloud and Relative Pose

Save Mask Image

Generate New Camera Pose

Yes

No

Ended

Not Ended

Figure 4: Synthetic Dataset Generation Pipeline

The flowchart illustrates the pipeline of the data genera-
tion system. More details on each step will be explained in
the following sections.

• Object selection and placement is outlined in 4.4

• Semantic label segmentation via mask generation is
described in 4.5

• Computing the camera pose and covering entire envi-
ronment is introduced in 4.6

4

4.4. Object Setup Auto-Generation and Collision
handling

When setting the object enviornment, the system uses
a fully automatic pipeline that is designed to gener-
ate occluded scenarios with different YCB objects. It
begins by randomly selecting objects from the pool
along with their poses. To avoid collisions, the sys-
tem employs a checker function that resamples an ob-
ject’s pose if a collision is detected. The objects are then
spawned using the ros gazebo interface functions
SpawnEntity and DeleteEntity from the plugin
libgazebo ros factory.so. Additionally, a small
fall is designed to create potential top-down occlusion
(where objects lay on top of other objects).

This toolbox supports up to 15 object types and includes
multiple parameters to adjust and create different types of
occluded scenarios, as listed below:

Object Name
Banana banana
Apple apple
Bleach Cleanser bleach cleanser
Bowl bowl
Cracker Box cracker box
Gelatin Box gelatin box
Master Chef Can master chef can
Mustard Bottle mustard bottle
Pitcher Base pitcher base
Potted Meat Can potted meat can
Pudding Box pudding box
Sugar Box sugar box
Tomato Soup Can tomato soup can
Tuna Fish Can tuna fish can

Table 1: Supported YCB Objects

Parameter Description
dcollision Collision check threshold (distance to al-

low between objects, influencing occlusion
level)

pmin, pmax Min and max thresholds for object posi-
tion(influencing object density)

nmin, nmax Min and max number of objects in the
scene(influencing object density)

hfall Fall height (influencing top-down occlu-
sion)

Table 2: Adjustable Parameters for Occluded Scenarios

4.5. Binary Mask Generation

Point clouds, derived from 3D object meshes (dae) using
Open3D, are projected onto the image plane given the rel-
ative camera intrinsic matrix, camera pose and object pose.
The detailed steps are as follows:

1. Projection and Transformation: Point clouds are first
projected into the camera’s coordinate system using
transformation matrices that consider the camera and
object poses. This alignment ensures that the point
cloud data correspond accurately to the camera’s view,
matching the same viewpoint in color information
(RGB) and depth image.

2. Optical Adjustment: The points are then adjusted for
the camera’s optics. This involves transforming the
coordinates to align with the camera’s intrinsic prop-
erties, such as focal length and distortion, facilitated
by the camera’s projection matrix. This step converts
the 3D point coordinates into 2D pixel coordinates on
the image sensor.

3. Clipping and Mask Creation: After projection, points
that fall outside the camera’s view are clipped, and
the remaining points are used to create a binary mask.
Each point corresponds to a pixel in the image, which
is set to a high value to indicate the presence of the
object, thus forming the binary mask.

4. Flood filling[10]: The flood filling algorithm is called
to fill empty space in point cloud projection. This in-
creases the processing speed as less points can be sam-
pled in the first stage of sampling pointcloud infor-
mation. In addition, it improves the quality of output
mask image by preventing holes and noise.

5. Layering: Lastly, the masks for different objects are
layered on top of each other with varying intensities
to differentiate multiple objects within the same scene.
This layering helps in identifying individual objects in
occluded or densely populated scenes.

4.6. Camera Angle Sampling

The data generation toolbox provides two sampling
methods for camera position: the Grid-Based CamPos sam-
pling (Space-filling/ Full Factorial) and the Random Cam-
Pos sampling. The Grid-Based system strategically posi-
tions the camera at fixed intervals across a predefined grid,
which ensures comprehensive coverage of the viewing field
and results in adequate coverage over the design space.
This method adjusts the camera’s position and orientation
to cover all viable angles, and is ideal for training direction
vector outputs due to its predictable camera transitions. In
contrast, the Random system employs a stochastic approach
to camera positioning by generating camera angles and dis-
tances randomly within specified bounds. This approach
introduces diverse viewing angles and distances, which aids

5

in model generalization and robustness testing by including
challenging and unconventional views.

The camera position is primarily determined by three
variables: distance (dist), view direction (θ), and pan an-
gle (ϕ). The distance represents how far the camera is from
the center of the object setup, the view direction indicates
the angle at which the camera is filming the setup in world
coordinates, and the pan angle is the angle relative to the
horizontal plane. The final camera pose is calculated using
Equation 9, 10, where htable is the height of the table YCB
objects stand on.XY

Z

 =

 d cos(ϕ) cos(θ)
d cos(ϕ) sin(θ)

|d sin(ϕ)|+ htable

 (9)

qx
qy
qz
qw

 = Quaternion from Euler angles:

 0
ϕ

θ + 180◦

(10)

5. Experiments
5.1. Synthetic Dataset Generation Tuning

To generate best dataset for enhancement on PoseCNN,
tuning and experiments are done to ensure the quality of
final output.

At first, using random sampling will cause a lot of prob-
lems including interpenetration, object distortion due to
collision, and some thinner objects could be easily inter-
penetrated when falling (see Figure 5).

Figure 5: Interpenetration and object distortion

Interpenetration and distortion are fixed by tuning suit-
able threshold for object position, and maximum number of
object to prevent to many objects spawn together. A colli-
sion check is introduced to prevent spawning objects within
other object. Also thinner object penetration problem is
solved by lowering falling and setting time lag in between
each spawn. In addition, some object with bad quality 3d

models and collision boundary set are removed from the
list. The final list of object accepted is listed in 1. And the
final parameters is as following Table 3:

Parameter Tuned Value
dcollision 0.12
pmin, pmax -0.15, 0.15
nmin, nmax 2, 6
hfall 1.3

Table 3: Tuned Parameters for PoseCNN Enhancements

For the final binary mask generation, the initial images
are very noisy and each segment has holes, especially when
the camera is too close to the objects, as shown in Figure
6. This problem is resolved by using flood filling, increas-
ing the sampling number from the point cloud to generate
the mask, and adjusting the grid-based parameters in cam-
era pose sampling as shown in Table 4, where init indicates
the initial values, max represents the maximum values, and
increment specifies the step size for adjusting the camera
pose parameters in grid sampling. The final result shown in
Figure 7.

Figure 6: Binary Mask Image Generation with holes and
noise

Figure 7: Fixed Binary Mask Image Generation

5.2. Synthetic Dataset Generation Final Result

As the result, we generated a comprehensive synthetic
dataset comprising 2G of meticulously crafted scenarios

6

Parameter Tuned Value
ϕinit 35
θinit 0
dinit 0.4
ϕmax 75
θmax 360
dmax 1.2
ϕincrement 5
θincrement 30
dincrement 0.2

Table 4: Tuned Parameters for PoseCNN Enhancements

featuring 25 YCB object setups in under 12 hours. This
synthetic dataset encompasses a diverse range of camera
angles, curated to simulate the real-world settings and com-
plex occlusion scenarios, thereby facilitating robust object
pose estimation. Given more time and processing power,
more can be generated for further usage if needed. The user
also could generate more dataset and adjust the parameter to
adapt the toolbox to the need of the application, generating
setup for different occlusion scenario.

In addition, the toolbox also provided wide range of utils
functions to facilitate the training for different robotic appli-
cation. This includes functions to find the image in the grid
based on movement, to find the distance between camera
and the specific target, to generate customized pointcloud
sampling for mask image generation from different model
type (stl/dae), and etc.

The examples of the generated dataset are shown in Fig-
ure 8,9,10.

Figure 8: RGB images generated by Synthetic Dataset Gen-
eration Toolbox

5.3. Challenges and Constraints

Throughout the process, we encountered several con-
straints and identified areas for improvement in future.

Figure 9: Depth images generated by Synthetic Dataset
Generation Toolbox

Figure 10: Semantic labeled (Binary Mask) images gener-
ated by Synthetic Dataset Generation Toolbox

These challenges primarily revolved around adapting exist-
ing network setup[11], including:

• Expired Training Dataset and Pretrained Weights
Link: The expired links to the training dataset and
pretrained weights had hinder our ability to access
the necessary data and pre-trained models required for
training. Furthermore, the environment and code set-
ting would violate the current packages and more time
was spent on debugging.

• Incorrect Training Step: It’s possible that the training
step we followed was not correct or optimal. Train-
ing deep learning models requires careful attention to
details such as hyperparameters, data preprocessing,
model architecture, loss functions, and optimization
algorithms. In particular, the dataset cleaning and a
better data selection should be performed.

7

• Time Constraints: Training deep learning models can
be computationally intensive and time-consuming, es-
pecially for large datasets and complex models. It
might be beneficial to train the model with a slimmer
dataset or tuning epochs and hyperparameters to get a
better iteration of the data.

• Environment Setup Challenges: Setting up the de-
velopment environment for training deep learning
models can be challenging, particularly when dealing
with GPU drivers, CUDA, and Python libraries. Com-
patibility issues, installation errors, and configuration
problems arose, leading to delays and difficulties in
getting started with training.

6. Conclusion

In this work, we’ve utilized Gazebo for synthetic data
generation, focusing on generating data with more meta
data to improve model accuracy. A wide range of utils
functions are provied in the toolbox for further training in
robotic application. As a result, we generated a compre-
hensive synthetic dataset comprising 2G of meticulously
crafted scenarios featuring 25 YCB object setups in under
12 hours.

For further improvement, the issue of holes in the mask
image generation still occasionally occurs. In addition
to parameter adjustments, implementing a more effective
hole-filling algorithm or a checker to monitor the distance
between the camera and objects should be considered. This
checker should dynamically adjust its grid setup or alterna-
tively skip the sample (or mark it as invalid).

Additionally, the YCB video dataset [11] uses a com-
plex background environment like messy table or bedroom
to train a more generalized model. Our system should incor-
porate similar complexity to enhance model generalization
and create a more realistic occluded scene.

Lastly, due to the poor quality of the collision boundary
setup and 3D models, only 14 YCB models are currently
supported. Expanding this support to include more models
in the future is necessary.

In terms of PoseCNN enhancement, due to the several
constraints and time limits, some proposed enhancement in-
cluding probablistic model and direction vector are not im-
plemented. These can be done in the future as a promising
direction.

References
[1] E. Brachmann. 6D Object Pose Estimation using 3D Object

Coordinates [Data], 2020.
[2] A. Calli and e. a. Singh. Yale-cmu-berkeley dataset for

robotic manipulation research. The International Journal of
Robotics Research, 36(3):261–268, 2017.

[3] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and
A. M. Dollar. The ycb object and model set: Towards com-
mon benchmarks for manipulation research. In 2015 Inter-
national Conference on Advanced Robotics (ICAR), pages
510–517, 2015.

[4] B. Calli, A. Walsman, A. Singh, S. Srinivasa, P. Abbeel,
and A. M. Dollar. Benchmarking in manipulation research:
Using the yale-cmu-berkeley object and model set. IEEE
Robotics Automation Magazine, 22(3):36–52, 2015.

[5] CentralLabFacilities. gazebo ycb. https://github.
com/CentralLabFacilities/gazebo_ycb.git,
2020.

[6] C. Ke. ycb gazebo sdf. https://github.com/
chengkecodes/ycb_gazebo_sdf.git, 2020.

[7] B. Leibe, A. Leonardis, and B. Schiele. Combined object cat-
egorization and segmentation with an implicit shape model.
In ECCV Workshop on Statistical Learning in Computer Vi-
sion, 2004.

[8] NVlabs. Posecnn-pytorch. https://github.com/
NVlabs/PoseCNN-PyTorch.git, 2019.

[9] E. R. Saad Ahmad, Kulunu Samarawickrama and R. Pieters.
Automatic dataset generation from cad for vision based
grasping. In 20th International Conference on Advanced
Robotics (ICAR), December 2021.

[10] A. S. Tanenbaum and D. J. Wetherall. Computer Networks.
Pearson Education, 5th edition, March 23 2010.

[11] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox. Posecnn:
A convolutional neural network for 6d object pose estimation
in cluttered scenes. 2018.

8

https://github.com/CentralLabFacilities/gazebo_ycb.git
https://github.com/CentralLabFacilities/gazebo_ycb.git
https://github.com/chengkecodes/ycb_gazebo_sdf.git
https://github.com/chengkecodes/ycb_gazebo_sdf.git
https://github.com/NVlabs/PoseCNN-PyTorch.git
https://github.com/NVlabs/PoseCNN-PyTorch.git

