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Abstract

In this paper, we introduce a novel approach for task-
driven reasoning from and for fine-grained visual repre-
sentations, combining self-supervised learning (SSL) vision
models and multi-modal large language models (MLLMs).
With pre-trained SSL model DINO-v2, we extract the visual
features of a given object image and pair them with task-
guided descriptions of regions for interaction proposed by
GPT-4v. We then cluster the DINO features into separate re-
gions and leverage the MLLM to match each region with the
region description. With such an auto-generated dataset, we
can match it with a new input query image and task descrip-
tion to output an affordance saliency map represented by a
feature similarity map. This zero-shot framework advances
the generalization capability and context-awareness of task
execution in complex visual environments.

1. Introduction

Visual attention mechanisms play a crucial role in how
humans perceive and interact with their environment. Hu-
man visual attention can be broadly categorized into two
complementary processes: bottom-up and top-down pro-
cessing.

Bottom-Up attention is crucial for detecting salient fea-
tures in the visual field without any preconceived notions.
It is driven by the properties of the stimulus itself, mak-
ing it an essential component for developing robust appear-
ance and semantic-based features in vision models[8]]. Self-
supervised (SSL) vision models [25} 26} [12] excel in this
area by leveraging large-scale unlabeled data to learn gen-
eralized visual features.

Top-Down attention involves prior knowledge and
goal-driven behaviors to interpret and interact with visual
stimuli[28] 31]. This process is critical for understanding
and executing tasks based on higher-level reasoning and
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symbolic understanding. Multi-modal large language mod-
els (LLMs) such as GPT-40[23] are particularly effective in
this domain, as they can reason about goal-driven behaviors
and apply abstract knowledge to specific tasks.

The integration of bottom-up and top-down is paramount
for developing sophisticated Al systems capable of fine-
grained visual reasoning. Our research aims to bridge
these bottom-up and top-down processes by combining the
strengths of SSL vision models with multi-modal LLMs.
The goal is to achieve task-driven reasoning that not only
leverages detailed visual representations but also applies
this knowledge to accomplish specific tasks effectively.

Our zero-shot framework takes a query image (e.g. an
image of a cup) and a short textual task description (e.g.
“the region of the cup to drink water”) as input and outputs
an image of an affordance map that highlights the region of
interaction for the given task (e.g. the rim of the query im-
age should be highlighted). Given a set of images scanned
from 3D assets, visual features are extracted from images
using self-supervised learning (SSL) vision model DINOv2
[24] to obtain visual features, paired with the task descrip-
tions given by GPT-4o [23]. This auto-generated paired
dataset is then used to match with the input query text and
compute the similarity map with the corresponding visual
features and query image as the output.

We aim to deploy our method for task-conditioned
affordance prediction, semantic grasping in simulation,
visuomotor learning in simulation, and one-shot cross-
embodiment transfer with Model Predictive Control (MPC),
showing the versatility and adaptability of our approach as
a building block for future robotic tasks.

2. Related Work

Visual Affordance Grounding: Understanding object
affordance from a single image is a crucial step towards
embodied visual intelligence. Researchers have developed
various approaches to enable machines to comprehend af-
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Figure 1: Combining the Bottom-up and Top-down Atten-
tion Mechanism

fordances. Nagarajan et al. [20] first proposed ground-
ing object affordance from Internet videos, and Fang et
al. [3]] constructed an affordance dataset from product re-
view videos. Luo et al. [16] created the first large-scale
affordance dataset, AGD20K, which has become a bench-
mark for affordance research by introducing a cross-view
knowledge transfer framework. Recent methods [20)} |16}
150 17 12} [18]]leverage both weakly supervised and super-
vised approaches, using affordance labels to ground inter-
actions from videos and images. For example, LOCATE,
evaluated on AGD20K, highlights the advancement in af-
fordance grounding [12].

Integrating Vision Model and LLLM: Recent advances
in integrating vision models with large language models
(LLMs) have enabled significant progress in multimodal
tasks. Notable examples include CLIP [27] for aligning
visual and textual embeddings, R3M [21] for enhancing
robotic manipulation through self-supervised learning, and
VIP [33]] for learning vision-based policies in imitation
learning tasks. Multi-modal LLMs such as GPT-4v[23]]
and Llava[13]] can reason about tasks using prior knowledge
and natural language descriptions. The current state-of-the-
art affordance grounding methods [25] utilize the exten-
sive world knowledge encapsulated in pre-trained vision-
language models, allowing the models to generalize beyond
their training datasets.

Benchmark Dataset: The emergence of relevant
datasets has driven the development of affordance ground-
ing. For example, Sawatzky et al. [29] selected video
frames from CAD120 [[10] to construct a weakly supervised
affordance detection dataset using only cropped-out object
regions but in inferior image quality. Other affordance-
related datasets [4} [19, 22| |2, 37]] face problems of small
scale and low affordance/object category diversity and do
not consider human actions to reason about affordance re-
gions. PAD dataset [14] considers the inference of human
purpose from support images of human-object interactions
and transfers to a group of query images but does not pro-

vide part-level affordance labels. We utilize AGD20K [12]
as our evaluation bechmark, which leverages exocentric-to-
egocentric viewpoint transformations and collect a much
larger scale of images, with richer affordance/object cate-
gories and part-level annotations.

Robot Manipulation DeplOyment: Manipulating ob-
jects in unstructured environments is a crucial yet challeng-
ing task for robotics due to the difficulty in data collection.
Researchers have devised numerous methods for handling
various objects across different scenes, including tabletop
objects [34, 135, 30] and mobile manipulation [32]. Re-
cent research has extended affordance grounding to include
scene understanding [36], 3D models [9], egocentric videos
[32]], and hand pose generation [3]. While our primary focus
of this paper isn’t manipulation, it is a downstream task for
future robotic tasks. Learning affordances presents a viable
solution for improving manipulation capabilities [[17, 1} 6]].

3. Method
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Figure 2: (a) The visual feature of object and textual de-
scription of the task. (b) Multimodal LLM that matches the
suggested task region and visual features

The key components of our method are visual feature ex-
traction, task description processing, and task-specific rea-
soning.



3.1. Visual Feature Extraction

We utilize DINOv2, an SSL vision model, to extract vi-
sual features from sequences of images given a scanned 3D
file of objects selected from Behavior10k datasets. We refer
the reader for a fuller explanation in [24]. Briefly, DINO
v2 contains an image encoder and a self-supervised train-
ing mechanism. The image encoder is typically a Vision
Transformer (ViT) pretrained using self-distillation. It en-
codes the image [ into image features F;. These features
are robust and versatile, making them suitable for various
downstream tasks. The self-supervised training mechanism
leverages the student-teacher architecture where the student
network learns to match the output of the teacher network
without labeled data. The DINO v2 model produces feature
representations F’ as:

F = DINOv2(I)

We fuse image frame features into the point cloud to get col-
ored clusters. We employ a method to fuse image frame fea-
tures into the point cloud. For each frame, the point cloud P
is projected onto the camera view using the intrinsic matrix
K and the extrinsic matrix R, yielding 2D points Pop:

Pop=K-R-P

We then compute the depth difference Ad between the pro-
jected depth Py, and the actual depth D(P,p) for the
further calculation of the weights w and weighted features

F:
_ (u— IAdI>
w=exp| ———
"

Fw:F(PQD)'U}

M,q1:4 1s created to indicate which points have valid depth
readings and acceptable depth differences:

Myaria = (D(Pap) > 0) A (|Ad| < )

Finally, we fuse these weighted features F),, into the global
point cloud features Fypq; by combining them with pre-
viously fused features and updating the global weights
ngobal:

Fglobal . ngobal + Fw . M'Ualid
ngobal + Mvalid

Fglobal =

where W04 represents the accumulated weights for each
point in the global feature set.

With the fused features, we prepare the feature set for
clustering. Principal Component Analysis (PCA) is ap-
plied to reduce the dimensionality of the fused features.
We then concatenate spatial coordinates and perform mean-
shift clustering on the processed features Fpc 4 to segment
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Figure 3: Examples of Query Image with Colored Region-
based Clusters

the point cloud into k clusters:

where xgt) is the position of point ¢ at iteration ¢, K is

the kernel function, and h is the bandwidth parameter.
In this way, we obtain the colored feature cluster image
I juster for the query.

3.2. Task Description Processing

Task-related region descriptions are provided in natural
language about the interaction area of an object while the
specific task is performed (e.g.” interior of the mug — re-
gion to be faced upwards to ensure proper cleaning”). These
descriptions are processed using a pre-trained LLM GPT-
40[23].

To ensure the region description is task-driven, we
first implement GPT-4v to convert the object category
obj (e.g. “mug’)into suggested activity lists A =
(Cbo, A1y eeey iy onny an):

A= LLMactivity(Obj)

. For each activity candidate a; (e.g. ”pour the tea”) we fur-
ther prompt the GPT-4v to get the corresponding interaction
region list R; = (70,741, ..., 7in ) regarding the task a; with
detailed description:

R, = LLMTegion(Obj7 ai)
We concatenate all region lists R; into the final list R for
region matching.
3.3. Region Matching

To identify task-relevant features, we combine the visual
features Fyopq; With task-guided region representations R
through a multi-modal alignment process using GPT-4o.
The relevant parts of the visual features Fy;,p4; are input



as a query image with colored clusters (shown in Figure
and are selected based on the task context provided by
R. We then prompt GPT-40 to give out the answer of a
color from the query image which matches the best with
the task-related region description. With the color, we can
refer to the corresponding region-based DINO feature Fr.
Formally, the task-relevant features Fr are obtained as:

Fr = Match(obj, R, I, I.juster)

where [ is the original image of the object and I .luster is
the image with colored feature clusters of the same angle.

After obtaining F, we pair each F; € Fp it with the cor-
responding region description 7; and its text embedding e;.
The text embedding is derived from CLIP, which encodes
text by mapping it into a shared embedding space with
images using a Transformer-based architecture. Specifi-
cally, CLIP converts the input text r; into an embedding
e; through transformer layers that capture semantic infor-
mation:

€t = OLIPtewt(Tt)

We then construct an auto-generated dataset consisting of
35 object categories and 894 pairs of DINO features, region
text descriptions, and their corresponding text embeddings:

(F ty Tty et)
3.4. Model Training

We use nonparametric methods of K-nearest-neighbors
(KNN) to obtain a model for affordance prediction due to
time constraints and to ensure that the output remains in the
same feature space as DINO. Given a new task description,
we identify the k nearest neighbor tasks in the dataset based
on the cosine similarity between the text embedding of the
input text and the texts in the dataset. By averaging the cor-
responding DINO features of these k nearest tasks, we then
calculate the pixel-wise cosine similarity between the ag-
gregated feature representation of the new task input Fj,,
and the average DINO feature F, resulting in the affordance
saliency map Mg

Enput : F

Maff = —-—— —————
[ Einput || ]

The similarity map highlights regions in the input image
that are most relevant or significant for the given task, based
on the learned features. Thus, regions with higher similarity
scores correspond to areas that are more likely to afford the
specified action or task.

4. Dataset

We utilize BEHAVIOR-1K [11] dataset for automated
training data generation, and AGD20K [16] datasets for
benchmark evaluation.

4.1. BEHAVIOR-1K

The BEHAVIOR-1K [11] dataset is a comprehensive
benchmark designed to evaluate models on affordance rea-
soning and understanding of object behaviors in a variety of
contexts. It includes 1,000 high-quality videos, each anno-
tated with detailed affordance labels and corresponding ac-
tions. The dataset covers a wide range of everyday objects
and activities, providing a rich resource for training and test-
ing models on real-world affordance prediction tasks. For
the first round of testing, we select 35 categories with dif-
ferent targeting task domains and utilize the 3D scan file
for data generation. For each object, we select one camera
angle from the 14 angles we defined for image rendering.

4.2. AGD20K

AGD20K[16] is the only large-scale affordance ground-
ing dataset with accurate action and object labels. The
dataset is specifically designed to benchmark models in un-
derstanding and predicting object affordances. It consists
of 20,000 images annotated with dense affordance labels,
where each image is paired with an action and object label
(see Figure f). AGD20K provides two primary splits for
evaluation: the Seen split, where the test set objects have
similar or same counterparts in the training set, and the Un-
seen split, designed to test models on objects and actions
that are semantically different from those seen during train-
ing. For evaluation and comparison with other SOTA mod-
els, we select the test set from the Unseen Split, which in-
cludes 25 different tasks and 14 categories of objects, with
560 instances in all.

For task-based region description, we parse the text from
the name of the task folder (e.g. “cut with”) and object
folder (e.g. “knife”) and then re-format it into a longer
phrase (e.g. “the region of the knife to cut with”) as the
input text. Each instance has a corresponding ground-truth
continuous saliency distribution in greyscale, as shown in

Figure [{(a).

5. Results

We compare our method with the SOTA models [20,
16l 15 126} 25, [7, 12l [18] on the AGD20K [16] dataset.
We are interested in evaluating the generalization ability of
our model and comparing the performance of our zero-shot
method to other learning-based methods.

5.1. Data Processing

Our prediction result gives a 3-channel jet heatmap rep-
resenting the saliency of affordance map. We process our
prediction results to align with the ground-truth data of the
testset, which is the grey-scale continuous saliency distribu-
tion map. Given the prediction map M, ¢, we first convert
it to grey-scale and normalize it to a range between 0 and
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Figure 4: The properties of the AGD20K dataset. (a) Some examples from the dataset. (b) The distribution of categories in
AGD20K. (c) The word cloud distribution of affordances in AGD20K. (d) Confusion matrix between the affordance category

and the object category in AGD20K, where the horizontal axis denotes the object category and the vertical axis denotes the
affordance category.

255 using min-max normalization: M,y = BilateralFilter( My, 11, 80, 80)

M — min(Myg)
max(Magr) — min(Mog)

Moorm = 255 % 5.2. Baselines

We evaluate our approach by comparing it with state-of-
the-art baselines. Existing affordance grounding methods
generally fall into two categories: weakly supervised meth-
ods and fully supervised methods. We present the perfor-
mance for both categories. As a comparison, our zero-shot

Next, we apply a threshold to enhance the saliency values
above the 90th percentile, while suppressing those below it
by multiplying them by a factor of 0.05:

Mnorm[iaj]
0.05 X Myoml, J]

if Mnorm[iaj] Z T

Mlhreshold [%.7] = if M, [7/ J] <T
norm ¢

We then apply a naive Gaussian blur with a kernel
size k = 15 to smooth the map and a bilateral filter for
edge-preserving smoothing, resulting in the final processed
saliency map Mcyqi:

My = GaussianBlur(Mipreshola; (15, 15),0)

method doesn’t fall into these two categories.

Weakly Supervised Methods: These methods do not
rely on explicit labels of the affordance map. Instead, they
are trained on human demonstrations of the same object.
The approaches include InteractionHotspots, Cross-View-
AG, Cross-View-AG+, AffCorrs, and LOCATE. Among
these, LOCATE is the most recent model and has shown the
best results on AGD20K. We refer to the evaluation result



Table 1: Performance Comparison of Different Affordance
Mapping Methods.

Methods KLD| SIM1T NSS*T
InteractionHotspots [20] 1.994 0.237  0.577
Cross-View-AG [16] 1.787  0.285 0.829
Cross-View-AG+ [15]] 1.765 0.279  0.882
AffCorrs [[7] 1.618 0.348 1.021
LOCATE [12] 0372 1.157
LOCATE-Sup [[12] 1.907 0.236 0.641
LOCATE-Sup-OWL [12,[18] = 1.927 0.234 0.624
3DOI [26] 3.565 0.227  0.657
Affordance LLM][25]] 1.463 1.070
Ours[23] 2.098 %

from [25,[16] regarding the models Cross-View-AG, Cross-
View-AG+, and LOCATE on the unseen split.

Fully Supervised Methods: Affordance maps can also
be learned from explicit labels. We call these supervised
methods. This category includes 3DOI and Affordan-
ceLLM. LOCATE is also adapted to a fully supervised ver-
sion for a fair comparison.

5.3. Metrics

We evaluate primarily on AGD20K [16] and follow the
metrics to evaluate our model, which is KLD, SIM and
NSS. The Kullback-Leibler (KL) divergence measures the
difference between two probability distributions, assessing
how one probability distribution diverges from a second, ex-
pected probability distribution. It is defined as:

Dxi(P || Q) = ZP(Z') 1oggg (1)

where P and @ are the predicted and ground truth saliency
distributions, respectively. KL divergence assumes that the
input maps are valid probability distributions and penalizes
large deviations in the prediction from the ground truth.
High KL divergence indicates significant differences be-
tween the predicted and ground truth distributions, implying
poor model performance in approximating human visual at-
tention.

The similarity metric (SIM), also referred to as his-
togram intersection, measures the similarity between two
distributions viewed as histograms. It is computed as the
sum of the minimum values at each pixel after normalizing
the input maps. The SIM score is defined as:

SIM(P,Qp) = me(a, Qp,) )

where P is the saliency map, (Jp is the continuous fixa-
tion map, and both are normalized so that their sums equal

1. A SIM score of 1 indicates perfect overlap between the
distributions, while a score of 0 indicates no overlap.

The Normalized Scanpath Saliency (NSS) was intro-
duced to the saliency community as a simple measure of
correspondence between saliency maps and ground truth.
It is calculated as the average normalized saliency at fix-
ated locations.The absolute saliency values are part of the
normalization process, making NSS sensitive to false posi-
tives, relative differences in saliency across the image, and
general monotonic transformations. A higher NSS score in-
dicates better alignment with human fixations:

N

1 S(i) — ps .
NSS = - P A0 3)

o
i=1 s

where N is the total number of fixated pixels, S(i) repre-
sents the saliency value at pixel 7, ug and og are the mean
and standard deviation of the saliency map S, and F'(7) is
the binary map of fixation locations.

For KLD, the lower the better. And for SIM and NSS,
the higher, the better.

5.4. Quantitative Results

The quantitative evaluation results is shown in Table [I}
Based on the table results, our zero-shot method demon-
strates a robust performance across various evaluation met-
rics, highlighting its generalizability and efficacy without
the need for prior training on specific datasets. Despite this,
our approach achieves competitive results in NSS and SIM.

Notably, our method achieves the highest Normalized
Scanpath Saliency (NSS) score of 1.329, demonstrating su-
perior alignment with human gaze patterns. NSS balances
the impact of true positives and false positives, which en-
sures that the score reflects the model’s overall performance
in highlighting true salient regions. If the model has high
saliency values at most fixation points (high TP), the NSS
score will be high. Conversely, if there are many high
saliency values away from the fixation points (high FP),
these values won’t affect the NSS score since they are not
included in the calculation.

The high NSS score underscores our method’s effec-
tiveness in covering the ground-truth region with a high
saliency score. Our zero-shot method predicts the saliency
map by finding the nearest neighbor from the DINO feature-
region description-embedding dataset pairs. The DINO fea-
ture is calculated based on query images with colored clus-
ters. Our query image clustering is fine-grained without
case-by-case region segmentation and only covers a small
subset of object categories, which leads to the false positive
prediction in the results.

As comparison, KLD measures the dissimilarity be-
tween the predicted saliency map and the ground truth, with
lower values indicating a closer match. While higher than
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Figure 5: Qualitative results on the test set. Our method shows a relatively more fine-grained and accurate affordance

prediction compared with other learning-based methods.

other methods, our method’s KLD score of 2.098 remains
within a reasonable range for a zero-shot method. KLD is
highly sensitive to false negatives (missing actual salient re-
gions) and false positives (predicting non-salient regions as
salient), and leads to a relatively high KLD score for our
method.

Our method also achieves a decent SIM score of 0.295,
which is higher than most learning-based SOTA methods
like Cross-View-AG (0.237) and LOCATE-Sup (0.236).
SIM is more sensitive to false negatives than false posi-
tives, penalizing models that fail to predict actual salient
regions. This relatively higher SIM score indicates that our
method effectively captures the salient regions, providing a
good alignment with the NSS performance.

5.5. Qualitative Results

The examples of resulting saliency visual representations
with the other SOTA models is shown in Figure [5} Our
method outputs a more fine-grained region prediction than
other models, where the boundary is more aligned with the
original object contours. According to [16], LOCATE-Sup
fails to output a reasonable affordance map due to lim-
ited data for retraining. LOCATE tends to predict a region
covering the whole object. 3DOI always predicts only a
small portion of the given object. Cross-View-AG predicts
a region that mismatches the expected affordance. Affor-
danceLLLM shows the best performance compared to other
learning-based SOTA methods but shows a less fine-grained
prediction compared to our method.

Observe the case of “holding a wineglass”: our method
produces a saliency map that precisely aligns with the con-
tour of the wineglass stem but overpredicts the reflection
of the stem on the table. The visual representation aligns
with our analysis in the Subsection [5.4} Fully supervised
method AffordanceLLM, as comparison, is better at learn-
ing the object-specific affordance region predictions. This
is also related to the current feature-text paied dataset which

Prediction Original Image Ground Truth

Figure 6: Example Result on Unseen Predictions of Our
Method Outperforming the Bechmark Ground Truth.
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down on items to hold them in
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hold

the region of the skis to jump
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carving cut

/44
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jump

only consists of a small subset of the object categories. De-
spite this, our method shows great generalizability on un-
seen cases. Observe the results shown in Figure [6] given
different task on the same object instance, the benchmark
ground truth gives out the same saliency distribution, while
our method manages to match each task to different textual
embeddings from our feature-text dataset pairs. Our result
shows more reasonable affordance prediction regarding dif-
ferent task of “carry,” “hold, ” and ”jump” in terms of the
instance “ski.”

6. Conclusion

Our research bridges the gap between bottom-up and
top-down visual attention processes by integrating self-
supervised vision models with multi-modal large language
models. This integration enables detailed visual represen-
tations and task-driven reasoning, making our approach
highly adaptable to various affordance mapping tasks.

We have presented a novel zero-shot method for affor-
dance mapping and evaluated its performance against state-
of-the-art models on the AGD20K dataset. Our results
highlight the effectiveness and generalizability of our ap-
proach, particularly in scenarios where no prior training



data is available. Despite the inherent challenges of zero-
shot learning, our method demonstrates competitive perfor-
mance across key metrics, showcasing its ability to general-
ize well to unseen data.

Regarding the current limitation on time and dataset size,
we plan to scale up our feature-text pairs to get more com-
prehensive feature clustering for various object categories,
minimizing the false positives in predictions. Our next step
involves training a text-conditioned DINO encoder to re-
place the current non-parametric method of KNN, aiming
at better matching between the new task and auto-generated
pairs. We plan to deploy our method for both simulated and
real-world robot visuomotor learning and implementation
and evaluate on a subset of robot-related tasks.
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