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Abstract

Medical VQA is a task that requires both computer vision
and natural language processing and is critical in clinical
decision-making. In this project, we investigated the im-
pact of augmenting additional medical textual knowledge
and various designs of fusion modules in the medical VQA
system. We conducted our experiments on the VQA-RAD
dataset with both binary and multi-class settings. We ob-
served that transformer-based fusion modules perform bet-
ter than linear fusion and that text enhancement is helpful
in binary classification tasks and when the training data is
limited. We discussed how imbalanced training labels in-
fluence our systems and when text enhancement improves
performance. Our best model achieves 81.7% accuracy on
closed-ended questions and 66.7% accuracy on all ques-
tions.

1. Introduction
Motivation Leveraging multimodal medical data, includ-
ing visual and text information, to improve critical medi-
cal tasks presents an interesting yet challenging opportu-
nity. Medical Visual Question Answering (VQA) is one of
the critical medical tasks. VQA [3] is a multidisciplinary
problem that combines computer vision and natural lan-
guage processing. Medical VQA helps to assist in clini-
cal decision-making by answering an image-related ques-
tion according to the image content [11]. A medical VQA
system can potentially answer the physician’s questions and
help improve the efficiency of medical professionals [20].

Problem This project aims to gain valuable insights into
effectively leveraging multimodal medical data for health-
care. Specifically, we focus on the medical VQA problem
and investigate the two topics:

1. Augmenting with additional textual knowledge: We
aim to investigate whether enhancing the text encoder
of the model with additional textual inputs, such as
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real-world medical entrance exam questions, can en-
hance the accuracy of the medical VQA system.

2. Impact of Multimodal Fusion Modules: We explore
different fusion modules for combining the image fea-
tures and text features to improve the performance of
the medical VQA system.

Input and Output We formulate medical VQA as a clas-
sification task. The input to our algorithm is an image and
a question. We then use a model consisting of a CLIP [26]
base model, a multimodal fusion module and a classifier, to
output a predicted answer from a pre-defined set of answer
candidates.

Training Training consists of two stages: additional text
fine-tuning and MedVQA fine-tuning.

1. Stage 1: Additional Medical Text Fine-tuning: We
use MedMCQA [24] to fine-tune the text encoder of
CLIP. This stage applies to methods with text enhance-
ment and is not needed for methods without text en-
hancement. The model takes one question and 4 op-
tions as inputs and predicts scores for each option.

2. Stage 2: MedVQA fine-tuning: We use VQA-RAD
[16] to fine-tune the CLIP. This stage applies to all
methods, including the baseline method defined in the
Section 3. The model takes an image and a question as
inputs and predicts scores for each answer candidate.
We categorize questions as close-ended if their answer
is ”yes” or ”no”; otherwise, they are open-ended. For
open-ended questions, answer candidates are defined
by the training set, and our model predicts a score for
each candidate.

Experiments We conducted a series of experiments to
evaluate the impact of additional medical text fine-tuning
on model performance and to compare the performance of
different multimodal fusion modules. We built models on
top of various CLIP base models (CLIP [26], PubMed-
CLIP [8], PMC-CLIP [19]) and experimented under two
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distinct settings: binary classification on close-ended ques-
tions only and multi-class classification on all (open-ended
and closed-ended) questions.

Overview of the Results The highest accuracy on binary
classification tasks, 81.7%, is achieved by the text-enhanced
CLIP with transformer decoder fusion. The highest over-
all accuracy on multi-classification tasks is 66.7%. It’s
achieved by CLIP with transformer encoder fusion. Text en-
hancement demonstrates the largest improvement of 3.6%
accuracy on binary classification tasks. Transformer-based
fusion module shows the highest increase of 4% accuracy
on binary classification tasks and over 20% overall accu-
racy on multi-class classification tasks.

2. Related Work
Medical CLIP Vision-and-language tasks, such as visual
question answering and image-text retrieval, require the
systems to understand both the visual and text contents.
Vision-text contrastive learning like CLIP [26] is trained
to match image and text pairs while pulling others apart.
The joint training on large-scale image-text pairs generates
effective multimodal features that can support both vision-
only and vision-language downstream tasks. However, ap-
plying CLIP to the medical domain is not a trivial task be-
cause publicly available medical data is orders of magni-
tude lower than general domain data, and medical images
contain subtle and fine-grained key point features, such as
the difference between ”pneumonia” and ”consolidation”.
PubMedCLIP [8] fine-tune CLIP on ROCO [25], a medical
image-text dataset containing 80k examples. MedCLIP [30]
overcomes data limitation problems by decoupling images
and texts for contrastive learning to make full usage of all
image-only, text-only, and image-text medical data. Recent
work proposed larger medical image-text datasets to further
improve the effectiveness of contrastive pre-training. PMC-
CLIP [19] proposed and contrastively pre-trained a CLIP-
based model on the PMC-OA dataset, which contains 1.6M
examples. Furthermore, BiomedCLIP [32] proposed and
pre-trained their models on their PMC-15M dataset, con-
taining 15 million examples. Models pre-trained on large-
scale and diverse datasets learn better representations for
downstream tasks. We are going to experiment with both
CLIP that is pre-trained on general image-text pairs and
medical CLIP that is fine-tuned or pre-trained on medical
image-text pairs in this project.

Medical VQA Image-text retrieval, classification, and vi-
sion question answering are common downstream tasks
used to evaluate the performance of a pre-trained vision-
language model. In this project, we focus on medical VQA.
The answers in medical VQA could be either close-end,

such as Yes/No, or open-end. Medical VQA can be for-
mulated as a classification or a generative problem.

Most existing methods [8, 19, 32, 5, 13] formulates med-
ical VQA as a classification problem. Given a question
and an image, the model is required to select an answer
from a predefined set of answer candidates. The advan-
tage of such approaches is that the complexity of the task
is reduced by treating medical VQA as a classification task.
However, these approaches struggle to accurately predict
open-ended questions, since these answers are more varied
and have low frequency than close-ended answers. Gen-
eral VQA frameworks include an image encoder, a text en-
coder, a multimodal fusion module, and a classifier. Due
to the small scale of medical VQA dataset, a common ap-
proach is to first contrastively pre-train CLIP-based models
on large-scale medical image caption datasets, then fine-
tune on downstream medical VQA datasets. PubMedCLIP
[8] incorporates the vision encoder of PubMedCLIP into
two VQA frameworks – MEVF (Mixture of Enhanced Vi-
sual Features)[22] and QCR (question-conditioned reason-
ing) [31], and fine-tune on medical VQA datasets. PMC-
CLIP [19] uses a self-attention transformer as a fusion mod-
ule which takes image features and text features as inputs
and predicts the masked tokens jointly with contrastive pre-
training. It is applied to medical VQA tasks by computing
similarity between output embeddings from the fusion mod-
ule and text encodings of each answer candidate. Biomed-
CLIP [32] uses METER (Multimodal End-to-end Trans-
former) [6] framework, which is a transformer-based co-
attention multimodal fusion module that produces cross-
modal representations over the image and text features,
which are then fed into a classifier.

On the other hand, with the development of transform-
ers and large language models, there has been more work
[2, 15, 17, 33, 12, 28] that recently approaches medical
VQA as a generative task. These approaches allow image-
question features to interact with step-by-step answer pre-
dictions, and therefore may enhance long answer genera-
tion. However, they often generate many non-existent an-
swers, resulting in low accuracy, which is why they are not
yet the mainstream in medical VQA. Q2ATransformer [21]
is a classification-based method that integrates advantages
of generation-based methods. It uses an answer-querying
decoder that performs cross attention between learnable an-
swers embedding and image-text features, where the model
can interact with answer information like generation-based
approaches. MUMC [17] uses a multimodal encoder to in-
corporate image and text features, which is then fed into an
answer decoder to generate answers. It selects the final an-
swer by comparing the similarity of the generated answer
with a set of answer candidates. Recently, there are more
works that leverage large language models [23, 27] in med-
ical VQA. PMC-VQA [33] aligns visual information from a
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pre-trained vision encoder with a large language model by a
transformer-based multimodal decoder. PeFoMed [12] uti-
lizes the pre-trained weights of a general domain LLM and
ViT [10], and fine-tune them by only updating the vision
projection layer and the low-rank adaptation layer (LoRA)
[14]. It achieves the state-of-the-art performance on the
VQA-RAD [16] dataset with overall accuracy 81.6%.

3. Method
Figure 1 illustrates our approach. We dissected our

model designs into three dimensions: base CLIP model,
multimodal fusion module, with or without text enhance-
ment. Training contained two stages: additional text fine-
tuning and MedVQA fine-tuning.

3.1. Additional Text Fine-tuning

We fine-tune the text encoder of CLIP on the MedM-
CQA dataset. Since each sample contains 1 question and 4
options, we concatenated the question with each option to
produce 4 input texts. We added a single linear layer clas-
sifier on top of the text encoder to predict scores for the 4
options.

We use cross-entropy loss for multi-class classification:

L = −
N∑
i=1

log

(
esyi∑
j e

sj

)
(1)

where N is the number of samples, sj is the predicted score
of the class j, and yi is the correct class for example i.

3.2. MedVQA Fine-tuning

We experimented with two settings: (1) binary classi-
fication tasks, where the model handles only close-ended
questions, and (2) multi-class classification tasks, where the
model handles both close-ended and open-ended questions.

Given an image I ∈ RH×W×C , a question encoding
Q ∈ RL×M , where L is the sequence length and M is the
text embedding dimension:

1. Binary classification models output a scalar score s ∈
R and use the binary cross-entropy loss:

L = − 1

N

N∑
i=1

[yi log(si) + (1− yi) log(1− si)] (2)

where yi is the correct class for example i.

2. Multi-class classification models output a score vec-
tor s ∈ RC , where C is the number of labels, and use
multi-class cross-entropy loss:

L = −
N∑
i=1

log

(
esi∑
j e

sj

)
(3)

Our system consists of three components: (1) CLIP base
model, (2) multimodal fusion module, and (3) classifier.

CLIP Base Model CLIP [26] consists of (1) an vision en-
coder that encodes images into embeddings v ∈ RD where
D is the projected dimension and (2) an text encoder that
encodes captions into embeddings t ∈ RD, the same di-
mension as image features.

Given a batch of N text and image pairs, CLIP is pre-
trained to maximize the cosine similarity of the embeddings
of N real pairs, while minimizing the cosine similairty of
the N2−N incorrect pairings. The scaled cosine similarity
aij between image i and text j is

aij = (ṽi · t̃j)et (4)

where ṽi and t̃j are normalized visual and text encodings,
and t is a learnable temperature. The probability of predict-
ing text j given image i is computed by normalizing across
j by softmax,

pv→t
ij =

eaij∑
j e

aij
(5)

and the reversed text-to-image probability is computed by
normalizing across i. The pre-training loss is the symmetric
cross entropy loss, which includes an image-to-text term,

Lv→t = − 1

N

N∑
i=1

− log
eaii∑
j e

aij
(6)

Similarly, we can compute Lt→v and then reach to

L =
Lv→t + Lt→v

2
(7)

as the final image-text contrastive (ITC) loss.
We experimented with two CLIP base models (1) CLIP

[26] and (2) PubMedCLIP [8].

• CLIP [1] The visual encoder is a Vision Transformer
(ViT) [10], and the text encoder is a Transformer [29].
The model is pre-trained on 400 million image-text
pairs in the general domain.

• PubMedCLIP [7] PubMedCLIP is derived from CLIP
by fine-tuning it on the ROCO [25] dataset, which con-
sists of 80,000 medical image-caption pairs.

To investigate whether adding additional text knowledge
improves the performance, we compared the performance
of using default text encoder from base models and the text
encoder that is additionally fine-tuned with medical ques-
tion answering mentioned in Section 3.1.
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Figure 1. Summary of our method. Our method includes two stage training: additional text fine-tuning on MedMCQA and medical VQA
fine-tuning on VQA-RAD. In the second stage, the multimodal fusion module generates a multimodal representation from text and image
encodings, which are then fed into a classifier to predict scores.

Multimodal Fusion Module A fusion module incorpo-
rates image and text features into combined image-text fea-
tures, which are then fed into a classifier. We experiment
with CLIP and PubMedCLIP using three types of fusion
modules: (1) linear, (2) transformer encoder, and (3) trans-
former decoder.

• Linear A linear fusion module simply concatenates
the two 512-dim image and text features from the pro-
jection layers.

• Transformer Encoder We concatenate the image fea-
tures v ∈ RLv×M and text features t ∈ RLt×M to-
gether as f ∈ R(Lv+Lt)×M , where M is the hidden
state feature dimension. Then, feed the concatenated
features f into a two-layer transformer encoder [29].
Each transformer encoder layer contains a multi-head
self-attention module to compute the relation between
each pair of features.

From the transformer outputs, we select the feature at
the [EOS] token [9] to obtain the 512-dim image-text
feature, which is then fed into the classifier.

• Transformer Decoder Instead of concatenating im-
age features and text features together, here we use a
two-layer transformer decoder [29] to learn the cross-
attention between them. Each transformer decoder
layer consists of a multi-head self-attention module
followed by a multi-head cross-attention module. The
text features are first fed into the self-attention mod-
ule to compute the relation between each pair of text
features. Then the cross-attention module takes (1) the

self-attention outputs as the query and (2) the image
features as the key and the value, to compute the rela-
tion between text features and image features.

Similarly, we take the feature at the [EOS] token to
feed into the classifier.

We implemented the transformer encoder and decoder
based on transformer code from CS231N course assignment
3[4]. For the encoder, we removed the cross-attention layer.
For the decoder, we use the cross-attention layer without
masking.

PMC-CLIP In addition to combining pre-trained CLIP
and PubMedCLIP models with fusion modules, we also
adapted PMC-CLIP [18], which features a fusion module
jointly pre-trained with visual and text encoders on large-
scale image-text pairs.

The PMC-CLIP model includes a ResNet-based visual
encoder, a BERT-based text encoder, and a self-attention
Transformer-based fusion module. The fusion module takes
concatenated text features t ∈ RLt×M and image features
v ∈ RM as inputs and applies self-attention, where M is
the projected dimension and Lt is the maximum sequence
length. The text features are linearly transformed from the
last hidden states.

The pre-training loss comprises an image-text con-
trastive loss, defined by Equation 7, and a masked language
modeling (MLM) loss. The input text tokens are randomly
masked with a probability of 15%, and the outputs of the fu-
sion module are fed into an MLM projection layer to predict
the masked tokens.
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We take the last hidden states from the fusion module
and apply average pooling over the time sequence to obtain
the 768-dim image-text feature, which are then fed into the
classifier.

Classifier We used a two-layer fully connected network
as a classifier, which takes image-text features as inputs and
outputs either (1) a scalar for binary classification tasks or
(2) a C-dim score vector for multi-class classification tasks,
where C is the number of labels.

3.3. Baseline

We considered the model that uses CLIP pre-trained on
general domain with linear fusion as our baseline.

4. Dataset
VQA-RAD For the medical VQA task, we utilize the
VQA-RAD dataset [16] as shown in Figure 2. This dataset
contains 315 images and 3,515 corresponding questions,
with each image linked to multiple questions. Questions
are categorized as close-ended if the answer is “yes” or
“no”, and otherwise as open-ended. The training set in-
cludes 458 answer candidates, where basic string process-
ing maps semantically identical answers to the same label.
We conduct experiments under two settings: using only
close-ended questions and using all questions. The dataset
is split into training, validation, and testing sets, contain-
ing 2,681, 383, and 408 question-answer pairs respectively.
For close-ended questions, the training, validation, and test-
ing sets contain 1498, 215, and 266 question-answer pairs
respectively. Images are reshaped to 224×224 and normal-
ized.

Figure 2. Examples of the VQA-RAD dataset.

MedMCQA We use the MedMCQA dataset [24], to fine-
tune the text encoder of CLIP and enhance its medical
knowledge. MedMCQA is a medical Multiple-Choice
Question Answering (MCQA) dataset. Each sample in-
cludes a question text, 4 options, and the correct option (i.e.
1, 2, 3, 4). The original dataset contains 182822, 4183, and

6150 samples in the training, validation, and testing set re-
spectively. The base CLIP models are pre-trained with a
maximum token length of 77, thus, we filtered out any sam-
ples where concatenated input texts exceed the maximum
token length. After filtering, there are 177605, 4088, and
6119 samples in the training, validation, and testing set re-
spectively. Below is an example:

Question: Characterstic X Ray finding in ASD
is:
Option A: Enlarged left ventricle
Option B: Enlarged left atria
Option C: Pulmonary pletheora
Option D: PAH
Answer: Option C

5. Experiments and Results

5.1. Additional Text Fine-tuning

Experiment Setting For fine-tuning on the MedMCQA
dataset, we used AdamW as the optimizer with a learning
rate of 5×10−6, batch size 16, and trained for 3 epochs. We
experimented with three base model initializations: CLIP,
PubMedCLIP and PMC-CLIP.

Metric The primary metric is accuracy. Because the test
set labels are not public, we report the accuracy on the vali-
dation set. We consider this case to be fine because the goal
of this fine-tuning stage is to let the model learn additional
medical knowledge but the final goal of this project is the
performance of medical VQA discussed in Section 5.2.

Result The results are reported in Table 1. Our results
are comparable to those of fine-tuned BERT-base, which
achieved 35% accuracy, as reported by [24].

Base Model MedMCQA (%)

CLIP 36.6
PubMedCLIP 37.0
PMC-CLIP 37.5

Table 1. Accuracy scores on MedMCQA validation set.

5.2. MedVQA Fine-tuning

Experiment Setting For fine-tuning on the VQA-RAD
dataset, we used AdamW as the optimizer with a learning
rate of 2 × 10−6, which linearly decays, batch size 16, and
trained for 20 epochs for binary tasks and 30 epochs for
multi-class tasks. We store the model with the highest val-
idation accuracy during training and reports scores on the
test set.
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Metric For experiments using only close-ended ques-
tions, we report the close-ended testing accuracy. For ex-
periments using all questions, we report the overall, close-
ended, and open-ended testing accuracy.

5.2.1 Binary Classification on Close-ended Questions

The results of the fine-tuning on close-ended questions of
the VQA-RAD dataset are reported in Table 2. The base-
line method, CLIP with linear fusion achieves 76.5% ac-
curacy. The text-enhanced CLIP with transformer decoder
fusion achieves the highest accuracy, 81.7%. When using
CLIP as the base model, text enhancement consistently in-
creases the accuracy of this task regardless of the fusion
module used. Text enhancement also improves accuracy
on PubMedCLIP combined with linear fusion. However,
text enhancement doesn’t show improvement on PubMed-
CLIP combined with transformer-based fusion modules or
on PMC-CLIP.

Across all settings, transformer-based fusion modules
consistently outperform the linear fusion modules. The
largest improvements are a 4% accuracy increase from
76.5% (using CLIP with linear fusion) to 80.5% (using
CLIP with transformer decoder), and also a 4% accuracy
increase from 77.7% (using text-enhanced CLIP with lin-
ear fusion) to 81.7% (using text-enhanced with transformer
decoder).

5.2.2 Multi-class Classification on All Questions

The results of fine-tuning on all questions of the VQA-
RAD dataset are reported in Table 3. All transformer-
based fusion methods outperform the baseline, CLIP with
linear fusion. The highest overall accuracy, 66.7%, is
achieved by CLIP with transformer encoder fusion. Clas-
sification on open-ended questions is particularly challeng-
ing due to the low frequency of many answers in the train-
ing dataset. While linear fusion fails completely on open-
ended questions, transformer-based fusion methods achieve
non-zero scores, with the highest open-ended accuracy of
48.4% achieved by the transformer encoder combined with
PubMedCLIP. Comparing transformer-based fusion mod-
ules with and without pre-training, PMC-CLIP, which has
a fusion module jointly pre-trained, performs worse than
the from-scratch transformer-based fusion modules com-
bined with CLIP-based models. This suggests that fine-
tuning transformer-based fusion modules is sufficient to
learn the relationship between image and text features. The
suboptimal performance of PMC-CLIP may be due to the
difference in capability between the visual encoders of
CLIP/PubMedCLIP (ViT) and PMC-CLIP (ResNet). Ad-
ditionally, text enhancement does not improve performance
on this multi-class task, as shown in the binary task.

6. Discussion
6.1. Predictions over Different Types of Questions

In this section, we will analyze the predictions of four
multi-class models on closed- and open-ended questions
across various question types. The VQA-RAD dataset in-
cludes ten question types as shown in Figure 5. Figure 3
presents the predictions for both closed/open-ended ques-
tions and different question types. (a) For closed-ended
questions, the CLIP + Linear model performs the worst on
the ”modality” question type, with an accuracy of 53.8%.
For open-ended questions, PMC-CLIP and CLIP + Trans-
former Encoder/Decoder can predict correct answers for
some questions, while CLIP tends to predict ”yes” or ”no,”
resulting in zero accuracy. (b) PMC-CLIP is weaker on the
”abnormal” question type compared to CLIP + Transformer
Encoder/Decoder. As shown in Figure 3(c) (d), common
error occurs on ”modality” and ”abnormal” closed-ended
questions, where all four models fail with probabilities of
64.3% and 55.6%, respectively.

An interesting observation in Figure 3 (d) is that when
presented with a chest x-ray image and asked ”what kind of
image is this?”, the CLIP + Transformer Encoder/Decoder
provided the reasonable answer ”chest x-ray,” while the
ground truth was ”x-ray.” This indicates that multiple rea-
sonable labels can exist for a single question.

6.2. Reduce Overfitting by More Data

For fine-tuning on VQA-RAD, we initially used a data
source containing 821, 119, and 251 close-ended question-
answer pairs in the training, validation, and testing set. Ta-
ble 4 shows that for the binary classification on close-ended
questions, test accuracies are significantly lower than vali-
dation accuracies, with a gap ranging from 8.5% to 17.3%.
The models have overfitted to the training and validation set.
The likely reason is that the data size is relatively small.

To reduce the overfitting, we discovered a larger VQA-
RAD data source containing 1498, 215, and 266 question-
answer pairs in the training, validation, and testing set.
Training and validation sets have 82.5% more data than the
initial dataset. By fine-tuning with more data, table 5 shows
that the gaps are smaller for the same task and setting. The
table indicates that the models are less overfitted and gener-
alize better.

6.3. Problem of Skewed Training Labels

In the multi-class classification task, although the CLIP
+ Linear Fusion model can get 75.5% on close-ended ques-
tions, surprisingly we saw a 0% accuracy on open-ended
questions. We analyzed the problem, and we think the
skewed training labels make the training more challenging.
The training set has 3064 samples and 458 labels. ”Yes”
appears 829 times. ”No” appears 884 times. However,
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Method VQA-RAD (%)
Model Fusion Text++ Closed

CLIP

Linear ✗ 76.5
✓ 77.7

TransEnc ✗ 77.3
✓ 80.9

TransDec ✗ 80.5
✓ 81.7

PubMed
CLIP

Linear ✗ 75.3
✓ 76.9

TransEnc ✗ 78.8
✓ 78.8

TransDec ✗ 80.5
✓ 78.1

PMC
-CLIP Pre-Trans ✗ 80.5

✓ 76.5
Table 2. Accuracy scores on VQA-RAD closed-ended-questions test-
ing set. TransEnc = Transformer Encoder, TransDec = Trans-
former Decoder, Pre-Trans = Pre-trained Transformer, Text++ = Text-
Enhancement.

Method VQA-RAD (%)
Model Fusion Text++ Overall Closed Open

CLIP

Linear ✗ 45.8 75.5 0.0
✓ 44.9 72.9 0.0

TransEnc ✗ 66.7 78.5 47.8
✓ 64.5 78.9 41.4

TransDec ✗ 61.3 75.7 37.6
✓ 62.8 77.7 40.1

PubMed
CLIP

Linear ✗ 44.6 72.5 0.0
✓ 44.4 72.1 0.0

TransEnc ✗ 65.4 72.3 48.4
✓ 65.2 77.7 45.9

TransDec ✗ 65.7 80.1 42.7
✓ 63.7 78.9 40.1

PMC
-CLIP Pre-Trans ✗ 58.1 78.1 26.1

✓ 55.6 76.9 21.7
Table 3. Accuracy scores on VQA-RAD all-questions testing set.
TransEnc = Transformer Encoder, TransDec = Transformer Decoder,
Pre-Trans = Pre-trained Transformer, Text++ = Text-Enhancement.

Figure 3. Examples from the VQA-RAD dataset. The question types of four questions are respectively (a) modality, (b) position, (c)
abnormality, and (d) modality.

Method VQA-RAD Binary (%)
Model Fusion Text++ Test Acc Val Acc

CLIP Linear ✗ 63.4 80.7
CLIP Linear ✓ 68.9 79.0

PubMedCLIP Linear ✗ 61.8 74.0
PubMedCLIP Linear ✓ 69.7 78.2

Table 4. Initial source: test accuracies vs validation accuracies.
Text++ = Text-Enhancement

164 labels appear only once, and 120 labels appear only
twice. The fine-tuned model tends to predict close-ended

Method VQA-RAD Binary (%)
Model Fusion Text++ Test Acc Val Acc

CLIP Linear ✗ 76.5 76.6
CLIP Linear ✓ 77.7 82.6

PubMedCLIP Linear ✗ 75.3 78.3
PubMedCLIP Linear ✓ 76.9 76.7

Table 5. New source with more data: test accuracies vs validation
accuracies. Text++ = Text-Enhancement

(yes/no) answers rather than open-ended answers. Figure 4
(a) shows the distribution of answers against question types.
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Out of 157 open-ended questions, the CLIP + Linear Fusion
model only predicts 4 open-ended answers. The model pre-
dicts close-ended answers for all close-ended questions.

As a comparison, the CLIP + Transformer Encoder
model achieves 47.8% accuracy on open-ended questions.
The confusion matrix in figure 4 (b) shows that this model
predicts open-ended answers for most of the open-ended
questions (143 out of 157). It indicates the transformer en-
coder fusion module, by learning the relation between the
image and the question, helps the model understand deeper
about the open-ended questions and that mitigates the im-
pact of skewed labels to some extent.

To further overcome the problem of skewed training la-
bels, a future work (see Section 7) is to explore using
weighted loss and assign larger weights to low-frequency
labels.

Figure 4. Answer distribution against close/open-ended questions
of (a) CLIP with linear fusion and (b) CLIP with Transformer en-
coder.

6.4. When Does Text-Enhancement Help

In this section, we will discuss the two possible fac-
tors that determine whether text enhancement improves
performance. We will focus exclusively on closed-ended
questions, as experiments on all questions are affected by
imbalanced-label issues, as discussed in Section 6.3.

Embedded Knowledge from Medical Image Caption
Datasets Table 2 shows that text enhancement improves
the performance of general-domain CLIP with any fusion
modules. However, text enhancement does not imporve per-
formance of PMC-CLIP and PubMedCLIP combined with
Transformer-based fusion. We infer that this is because
PubMedCLIP and PMC-CLIP are fine-tuned or pre-trained
on medical image caption datasets. Therefore, further fine-
tuning on the MedMCQA dataset may not only fail to learn
extra medical knowledge but may also result in the loss of
general medical knowledge.

Data Size We observed a 5.6% to 7.9% performance gain
when fine-tuning on the smaller VQA-RAD data source, as

shown in Table 4. However, the performance gain decreases
to about 1% when fine-tuning on a larger data source, as
shown in Table 5. We infer that additional medical text fine-
tuning is more beneficial when the medical VQA dataset
is small, as the text module cannot learn sufficiently gen-
eral medical knowledge from a very small medical VQA
dataset.

7. Conclusion and Future Work
This project investigated the impact of augmenting ad-

ditional medical textual knowledge and various designs of
fusion modules on the medical VQA system. We exper-
imented with systems incorporating or excluding text en-
hancement, using either linear or transformer-based fusion
modules, and employing CLIP-based models pre-trained on
general or medical image-caption pairs. We observed that
transformer-based fusion modules outperform linear fusion,
especially on open-ended questions where the system re-
quires more informative fused image-text features. Text
enhancement is beneficial in binary classification tasks in-
volving only closed-ended questions and when the training
dataset size is small. For binary classification tasks, we
achieved the highest accuracy of 81.7% with CLIP + Trans-
former decoder + text enhancement. For multi-class clas-
sification tasks, CLIP + Transformer encoder achieved the
highest overall accuracy of 66.7%.

As discussed in Section 6.3, we inferred that the low
performance on open-ended questions is due to the imbal-
anced and long-tailed label distribution. There are a to-
tal of 458 labels, with many labels appearing only once or
twice. We also observed that there may be multiple reason-
able answer labels for some questions. To address label im-
balance problems, we can design a weighted loss function
that gives more weight to low-frequency labels or develop
a sampling strategy based on label frequency. Another di-
rection is to shift to generative-based methods using large
language models, which may be better at generating varied
and long answers for open-ended questions. We leave these
directions for future work.

8. Appendix
Figure 5 VQA-RAD Question Type Distribution

9. Contribution and Acknowledgment
• This project is not shared with projects from other

classes.

• Chih-Ying Liu implemented the fine-tuning script on
the VQA-RAD data, linear fusion module, and adapt-
ing PMC-CLIP.

• Fan Diao implemented the fine-tuning script on the
MedMCQA data, transformer encoder/decoder fusion
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Figure 5. Question type distribution of the VQA-RAD dataset.
[16]

modules, preprocessing of the new soure VQA-RAD
data, and fine-tune text modules.

• Both Chih-Ying Liu and Fan Diao fine-tune models on
the VQA-RAD data, and write the paper together.

• We adapt PMC-CLIP code from the offical repo [18],
transformer implementation from CS 231N course as-
signment 3[4], CLIP pre-trained weights from [1] and
PubMedCLIP pre-trained weights from [7].
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