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Abstract

The cycling path network in Singapore is expanding, but
little research has focused on scene understanding in the
context of such paths. Improved semantic understanding of
cycling paths in Singapore can improve safety and pave the
way for autonomous usage. We present a newly collected
and annotated dataset, the Singapore Cycling Path Dataset,
which could aid in efforts to improve our semantic under-
standing of the cycling network in Singapore. We describe
the data collection and processing methodology for our
dataset, which total 983 images and 2718 distinct polygon
annotations. Subsequently, we apply a baseline Fully Con-
volutional Network (FCN) model, along with other models
based on a more modern transformer architecture, to illus-
trate the ability of semantic segmentation algorithms to se-
mantically parse a complex urban cycling network. Our
best transformer-based model achieves an mIoU of 85.7% ,
with an IoU of 97.8% on the park connector class.

1. Introduction
Singapore is expanding its cycling path network, with

1300 kilometers of paths to be built by 2030 [2]. These
paths are built to encourage outdoor physical activities, to
reduce the reliance on vehicles by providing an alternative
transportation option, and to improve safety for commuters.
By design, these paths are meant to be shared by pedestri-
ans, cyclists, and more, and their use is expected to increase
as more paths are built. Due to urban constraints, these
paths are not all identical in design and function. Some
are built as dedicated, inter-town connections (known as
park connectors). Others are built in parallel with pedes-
trian paths throughout public housing estates in Singapore
(known as cycling paths). See Figure 1 for an example of
how some of these paths look. Ultimately, these paths are
part of the complex urban fabric, and users of these paths
need to negotiate with vehicular and pedestrian traffic. To
enhance safety, these paths often come with various mark-
ings to denote their purpose and type of traffic which is pri-
oritised on it.

While there exists a significant body of computer vision
research as well as numerous datasets focusing on road use
[6, 4], the study of bicycle paths and other such multi-use
pathways has been sparse. In the case of Singapore, re-
searchers have thus far focused on quantifying their utiliza-
tion [25], as well as crowd control [1]. Stronger semantic
understanding of the cycling network can unlock opportuni-
ties for greater commuter safety, and potential autonomous
usages. For instance, the appropriate application of seman-
tic segmentation of the cycling network to the logistics field
could make sidewalk delivery robots feasible and economi-
cally viable [11, 16].

Figure 1. A typical park connector (left) and cycling path (right, in
red). A regular pedestrian path runs alongside the cycling path.

In this paper, we propose the Singapore Cycling Paths
dataset and experiment with a range of semantic segmenta-
tion algorithms as a step towards improving scene under-
standing in Singapore’s cycling network. To our knowl-
edge, this is the first ever dataset focusing on semantic seg-
mentation of the bicycle network in Singapore. The input
to our algorithm is a set of newly collected and annotated
images of the cycling network in Singapore. We then use
semantic segmentation algorithms to output predicted seg-
mentation masks denoting where different aspects of the cy-
cling network exist on the image. We use a FCN as a perfor-
mance baseline, and experiment with the ViT, Swin Trans-
former, and SegFormer models as ways to improve upon
those baseline results. In subsequent sections, we detail the
attributes of the new dataset, the segmentation algorithms
we use, and ultimately show that we are able to achieve
good segmentation results on Singapore’s cycling network,
with the ViT model achieving a mIoU of 85.7%.
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Figure 2. Examples of ground truth annotations from the Singapore Cycling Path Dataset. Notice the merging of cycling (green) and
pedestrian paths (blue) into shared paths at road junctions (red), and the segregated nature of park connectors (purple).

2. Related Work
2.1. Semantic segmentation methods

Fully Convolutional Networks (FCNs) were a ground-
breaking development when they were first proposed be-
cause they enabled end-to-end training for semantic seg-
mentation networks through deconvolutions [14]. Over the
years, innovations such as atrous convolutions [5] and pyra-
mid scene parsing networks [27] were introduced, improv-
ing upon various aspects of the FCN.

In parallel, convolutional neural network architectures
have also advanced. Evolving beyond the VGG backbone
[20] used in the original FCN paper, architectures such as
ResNet [10] addressed issues with vanishing gradients. U-
Nets were the first to popularise the encoder-decoder struc-
ture that is commonplace in architectures today [19]. The
2-stage R-CNN family of models introduced the idea of re-
gion proposals, and became the state of the art in object
detection [8, 18]. Mask R-CNN subsequently adapted the
faster R-CNN for image segmentation [9], similarly attain-
ing excellent results.

More recently, due to the high-profile success of trans-
formers in natural language processing, interest has shifted
to the application of transformers in computer vision tasks
such as semantic segmentation. This has particularly been
the case after it was shown that vision transformers can at-
tain state of the art performance in image classification tasks
[7]. Subsequently, methods attempted to establish trans-
formers as a general purpose backbone and improve the ef-
ficiency and performance of vision transformers [13, 21, 3].
More recently, the SegFormer architecture was proposed as
a transformer-based architecture specifically designed for
semantic segmentation [24].

2.2. Semantic segmentation of cycling paths

There exists a number of well known datasets that are
used in urban scene understanding [6, 4, 15]. In particular,
the Cityscapes dataset has been an instrumental benchmark,
providing pixel-level annotations for 5000 images of urban
environments. These images were captured in diverse con-
ditions and in various cities [6]. Crucially, images from the
Cityscapes dataset were collected from a car-mounted cam-
era, which made it an invaluable resource for developing au-
tonomous vehicles. However, that simultaneously restricted

the scope of the collected images to streets that permit ve-
hicular traffic. As a result, the dataset is not immediately ap-
plicable to learning about cycling paths. This is a common
theme for a number of datasets focusing on urban scenes
[4, 15].

There exists research focusing explicitly on cycling paths
and other urban greenways in Singapore [26]. The objec-
tive is typically to understand usage patterns [25] in or-
der to optimise their utilisation. To that end, they focus
on using pre-trained models to classify the type of activ-
ity users are engaged in. For example, papers might clas-
sify the poses of individuals in the scene [25], correlating
them with environmental features such as greenery and wa-
ter bodies. Based on this, they then draw conclusions about
the impact that these environmental features have on how
the spaces are utilised by the public. These environmental
features are detected through semantic segmentation mod-
els trained on generic large semantic segmentation datasets
such as Ade20k [28].

3. Dataset and Features

To the best of our knowledge, there does not yet exist a
dataset that contains annotations suitable for scene under-
standing in the bicycle path context in Singapore. To pro-
vide a foundation for improvements in scene understanding
of the bicycle path network, we collected and annotated a
dataset that comprises a diverse set of bicycle path images
from the central region of Singapore.

3.1. Data Specifications

We attempted to capture images in a variety of conditions
in order to reflec the reality on the streets and enable the
model to generalise better. The images in our dataset were
collected in rainy, sunny, and cloudy conditions, within day-
light hours, in the Bishan-Ang Mo Kio area of Singapore.
The area is primarily residential in character. Public hous-
ing, schools, parks, and canals feature heavily in the back-
ground of the images collected. Data recording was done
on a bicycle-mounted camera at 1920 x 1080 resolution, at
30 Hz. Approximately 130,000 frames were collected, and
of those frames, 1000 were randomly selected. After the
removal of blurry and otherwise unusable frames, 983 im-
ages remained to form the dataset, which was then split into
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training and test sets in a 80/20 split. Within the training
set, a validation set was similarly created in a 20/80 split.
This results in the following numbers of images in each of
the splits as detailed in Table 1.

Split Images
Train 628
Validation 158
Test 197

Table 1. Number of samples in the train, validation, and test splits.

3.2. Classes and Annotations

Our annotations comprise of layered polygons, and were
performed with the CVAT tool. We annotated the images
with 5 classes deemed to be the most relevant to a semantic
understanding of the cycling network in Singapore. They
are bicycle paths (green), pedestrian paths (blue), park con-
nectors (purple), shared paths (orange), and roads (red). Bi-
cycle paths and pedestrian paths often run parallel to each
other along roads in Singapore. Bicycle paths, as the name
suggests, are meant for dedicated use by cyclists and other
riders, whilst pedestrian paths are for pedestrians. These
two paths may merge into shared paths where dictated by
the constraints of the urban environment. Park connectors
are often wider, segregated, purpose-built paths that link
various parks and green spaces in Singapore. They are
shared by pedestrians, cyclists, and park users. Whilst it
is legal for regular bicycles to be used on any of the above
paths, there are tighter regulatory restrictions on power-
assisted bicycles and electronic scooters, and they are only
permitted on cycling paths and park connectors due to their
higher speed. In total, our dataset comprises 2718 distinct
polygon annotations, with the distribution detailed in Table
2.

Class Polygon count % of total
Bicycle paths 529 19.5%
Pedestrian paths 797 29.3%
Park connectors 313 11.5%
Shared paths 463 17.0%
Roads 616 22.7%

Table 2. Number of polygons for each of the annotated classes

4. Methods
We first attempt to establish a baseline using a Fully

Convolutional Network (FCN) on the dataset, before exper-
imenting with more recent semantic segmentation methods
which employ transformers. Each of the methods we use
are described in further detail in the following subsections.

4.1. Cross Entropy Loss

We first define the loss function that we use in all the
following models. We are attempting to classify pixels into
one of the 5 classes described above, in addition to the back-
ground class. For each of the 6 classes and for each image,
the cross entropy loss can be defined as:

CrossEntropy = − 1

N

∑
i

xilogx̂i

Where x̂i is the predicted class for a particular pixel i , and
xi is the actual class for that pixel. To obtain the final cross
entropy loss, we take the average of the loss across each
class and image.

4.2. Mean Intersection over Union

To compare performance across the models we are ex-
perimenting with, we use the mean intersection over union
score. This is a commonly-used metric for image segmenta-
tion algorithms. The intersection over union (IoU) measures
the overlap between the ground truth and the predicted seg-
mentation mask. Specifically, the IoU for a particular class
is defined as:

IoUclass =
|P ∩ T |
|P ∪ T |

where P represents the set of pixels predicted for a particular
class, and T is the set of pixels that form the ground truth.
The mean intersection over union is the average of the IoU
scores across all the classes.

4.3. Fully Convolutional Network

The FCN is a pioneering model for dense prediction
tasks like image segmentation. In FCNs, the input image
is passed through a series of convolutional layers (the back-
bone) to produce a feature map. This feature map is then
upsampled using transposed convolutions to match the orig-
inal input size. The final segmentation map is obtained
by applying a softmax activation function. As mentioned
above, the loss function used is the pixel-wise cross-entropy
loss.

Instead of the VGGNet backbone used by the authors of
the original paper, we use the more contemporary ResNet
as our backbone. Specifically, we use a ResNet-50 back-
bone which comprises a total of 50 convolutional, pooling
and fully connected layers. ResNet addresses the vanishing
gradient problem that exists in deeper architectures by pro-
viding residual connections between layers, enabling gra-
dients to flow directly through the network. The backbone
we used was pre-trained on the COCO dataset[12], and the
weights were obtained from pytorch hub [17].
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4.4. Vision Transformer

The vision transformer (ViT) paper was the first to show
that the transformer architecture, which is traditionally used
in natural language processing, can attain state-of-the-art
performance on image data [7]. In vision transformers,
the input image is divided into a sequence of patches,
which are linearly embedded. Positional embeddings are
added to retain positional information, and the resulting em-
beddings are fed into a transformer-based encoder as in-
put. The model leverages the self-attention mechanisms of
transformers to capture long-range dependencies between
patches, producing a feature representation that is then used
to predict the segmentation map. The optimization is simi-
larly done using pixel-wise cross-entropy loss.

In the original paper, a multi-layer perceptron (MLP)
head takes the encoded input and produces the output of the
model, which is of dimension N×C where N is the number
of input images and C is the number of classes. Because we
wish to perform segmentation, which involves pixel-wise
predictions, we replace this head with a segmentation head.
The segmentation head consists of two convolutional layers,
with instance normalisation and a GELU activation func-
tion sandwiched in between. This enables the segmentation
head to produce a N × C ×H ×W output, where H and
W is the height and width of the image.

We obtained pre-trained ViT weights trained on
ImageNet-21k from Hugging Face[23].

4.5. Swin Transformer

Unlike ViT, which processes images as a sequence of
fixed-size patches, the Swin Transformer introduces hierar-
chical feature maps. This means the model processes the
image at multiple scales, starting with small patches before
progressively merging them into larger patches deeper in
the network using patch merging layers. The patch merg-
ing layers concatenate neighbouring patches, and apply lin-
ear layers to downsample the resolution of the concatenated
patches. This hierarchical approach enables the model to
capture fine details in the initial layers and more abstract,
larger-scale features in the deeper layers, similar to CNNs.
These features are termed multi-scale feature maps due to
their focus on different scales of the images, and their use
improves the model’s ability to understand complex images.

In addition, the Swin Transformer also improves upon
the quadratic time complexity of ViT by computing self-
attention locally within windows rather than across the en-
tire image. The number of windows scale linearly with im-
age size, and the windows themselves comprise of a fixed
number of patches. Thus, the time complexity for the entire
image becomes linear to image size. To ensure that con-
text across windows can be captured, the Swin Transformer
incorporates the concept of shifting windows, illustrated in
figure 3. This allows connections between windows that

would otherwise not be possible if windows remained fixed
across layers, thus allowing for sharing of context across the
image.

Figure 3. The shifting of windows across layers enables context
across layers to be captured despite computing self-attention on
smaller, fixed size windows. Reproduced from [13].

We obtained Swin Transformer weights pre-trained on
ImageNet-1k from the timm package[22], replacing the seg-
mentation head with a simple 2D convolutional layer that
outputs the number of classes required for our dataset.

4.6. SegFormer

The SegFormer architecture also uses hierarchical trans-
formers as an encoder to construct multi-scale feature maps
consisting of coarse and fine features at different resolutions
[24]. Using the multi-scale feature maps produced by the
encoder, a decoder that comprises a series of simple MLP
layers is then used to combine these multi-scale features
and predict the semantic segmentation mask with dimen-
sion H

4 × W
4 ×Ncls, where H , W and Ncls are the height

and width of the input image, and the number of classes
to be predicted respective. In contrast to ViT, SegFormer
uses smaller patch sizes of 4 × 4 which are more adapted
to dense prediction tasks. These patches are overlapped us-
ing convolutional layers to preserve local continuity at the
edges of those patches when generating linear embeddings
of those patches. This aims to improve upon ViT, where
patches were not overlapped.

SegFormer also aims to improve inference efficiency vis-

Figure 4. Overview of the SegFormer architecture. Reproduced
from [24].
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Figure 5. Segmentation predictions across our various models for a select sample of images. From left to right: FCN, SegFormer, Swin,
ViT, and the ground truth.

a-vis ViT. Given an input where N is the length of the se-
quences, the original multi-head self attention mechanism
has a quadratic time complexity O(N2). SegFormer uses
a sequence reduction process that reduces the length of the
sequence to reduce the time complexity. Specifically, the
sequence is first reshaped from N × C to N

R × C · R ,
where R is the reduction ratio. The reshaped sequence is
then passed through a linear layer that takes a C × R di-
mension input and generates a C dimensional output. This
process thus yields a N

R ×C dimensional output, and thus a
reduced O(N

2

R ) time complexity.
The authors designed a series of 6 encoders which use

the same architecture but have different sizes, with the
smallest optimised for fast inference and the largest for
the best performance. We experiment with the various en-
coder sizes to determine which best suits our use case.
Pre-trained SegFormer weights trained on the CityScapes
dataset were obtained from Hugging Face[23]. Given that
the CityScapes dataset also contains urban scenes, and the
learned encoder representation should transfer well to our
dataset, we fine tune the SegFormer models by freezing
the weights on the encoder and optimising only the decode
head’s weights.

5. Experiments and Results

5.1. Training procedure

When training all of the above models, we first exper-
imented with the learning rate hyperparameter with ran-
domly chosen values between 10−3 to 10−5. This was done
with a smaller development dataset of 100 images, picked
from the training dataset. When a suitable learning rate was
found, we then trained on the full training set, validating
the loss after each epoch with the validation set. To pre-
vent overfitting, we stopped training when the validation

loss plateaued or began to increase. We then used the check-
point that was saved in the previous epoch.

Model Learning rate Batch size Train epochs
FCN 10−3 20 14
ViT 5× 10−4 10 11
Swin 5× 10−4 10 7
SegFormer 10−3 1 19

Table 3. Training details for each of the models

Training was done on a M2 series Macbook Pro with
16GB of RAM. We decided to use the Adam optimiser due
to its adaptive learning rates and general robustness across
different architectures. We generally picked the largest
batch size that could be efficiently held in memory for each
model type. In some of the transformer based models, batch
sizes needed to be reduced to 1, and we correspondingly
replaced the batch normalisation layers in the model archi-
tectures with instance normalisation layers, since batch nor-
malisation does not work well for small batch sizes, and led
to instability in training. The final choices made for each
of the methods we used can be found in Table 3. Predic-
tions from the models were standardised to 512×512 using
billinear interpolation for comparison of IoU scores.

5.2. SegFormer model size

The authors of the SegFormer model designed 6 Seg-
Former models from b0 to b5, with all of them using the
same architecture but with different encoder sizes. b0 has
the smallest encoder size while b5 has the largest. We ex-
perimented with the various encoder sizes, and found that
the larger SegFormer models had the tendency to rapidly
overfit to our relatively small training data set. After train-
ing with all the SegFormer model sizes, the b1 model
achieved the best performance on the validation set. Ad-
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ditionally, training only the decoder weights tended to yield
the best performance. For brevity, whereever we refer to
the SegFormer model in the subsequent section, we are re-
ferring to the SegFormer b1 model.

5.3. Results

The per-class IoU scores for each of our models can be
found in Table 4. Compared to the baseline FCN model, the
various transformer-based models we experimented with
performed better, with higher mIoU scores of between
83.8% and 85.7%, compared to 73.1% for the FCN model.

Across the models, park connectors have the best IoU
scores, reflecting the fact that they tend to be built in a man-
ner that is segregated from other paths. As previously dis-
cussed, this is an intentional aspect of their design. Due to
the relatively clear demarcation of park connectors and the
relatively few interaction points they have with other paths,
our models perform well on the park connector, with ViT
and SegFormer achieving IoU scores in excess of 97.0%.
Similarly, bicycle paths also perform well, with their dis-
tinctive maroon colour enabling them to be well recognised
by the various models (see Figure 1).

5.3.1 Analysis of improvements against baseline

Notably, the improvement in mIoU scores seen in trans-
former models seem to be at least partially due to an im-
provement in segmentation ability in the pedestrian path and
shared path classes. The two classes see an average im-
provement of 26.1% and 17.4%, compared to an improve-
ment of less than 10.0% for the other classes. This is likely
due to the ability of transformer models to detect longer
range context via the self-attention mechanism. The pedes-
trian path and shared paths are made out of the same con-
crete material, and often appear in similar contexts. Shared
paths are distinguished only by dotted red lines along their
borders (see Figure 6). Transformer models were likely able
recognise this, and segment pixels which are far away from
the dotted red borders correctly. On the other hand, the
FCN, which has a relatively limited ability to detect longer
range context, mistook two classes for each other more fre-
quently. This is especially so near the middle of each of the
paths, where they seem virtually identical if only the im-
mediate surrounding visual context is considered, since the
dotted red borders would not be present. Figure 5 illustrates
the impact of this by comparing predictions across the vari-
ous models. The FCN baseline tends to confuse the pedes-
trian and shared paths more than the transformer models.

5.3.2 SegFormer road class performance

The performance of the SegFormer model on the road class
is an outlier (see Table 4). Its road class IoU of 60.2%

Figure 6. Closeup images of a typical shared path (left) and pedes-
trian path. Note the similarities, with the distinguishing feature
being dotted red markings along the edges of the shared path.

lags the other transformer models significantly, and is only
marginally better than baseline. This is particularly no-
table because it outperforms the other transformer models
on most of the other classes. We analysed the predicted
masks to gain a better understanding of why this might be
the case.

Figure 7. Comparison of two samples where SegFormer performs
significantly worse on the road class (in red) than other transformer
models. From first row to the third row: SegFormer, ViT, the
ground truth

We hypothesise that the main reason for the performance
disparity is the limited and coarser training data for roads.
During the annotation process, roads were deemed as less
important than the other paths. This is because cyclists
and other users of cycling paths spend little time on the
road. As such, we annotated the class in a coarser man-
ner, such that other objects in the environment such as
trees, lampposts, and vehicles were included in their masks.
This likely advantaged the other transformer models, which
made rougher predictions at 224×224 resolution compared
to the 1024 × 1024 resolution that the SegFormer model
makes predictions at. Qualitatively, Figure 7 demonstrates
that the SegFormer model is more likely to segment small
patches of pixels as being from a particular class when com-
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Model Background Bicycle Path Park Connector Pedestrian Path Road Shared Path mIoU
FCN 95.1 80.2 90.9 49.3 60.2 62.8 73.1
ViT 95.9 88.2 97.8 76.4 74.7 81.1 85.7
Swin 96.7 87.9 95.9 72.1 73.9 75.6 83.7
SegFormer b1 93.2 88.5 97.1 78.6 61.7 83.5 83.8

Table 4. Intersection over union scores for each model

pared to the other transformer models. This results in better
edge detection that other methods in general, but also re-
sults in a tendency to perform poorer on roughly annotated
classes like roads. In our analysis, we found that the Seg-
Former model tends to over-predict the road class, misiden-
tifying park connectors and shared paths as roads. With
finer annotations, newer models such as SegFormer would
likely overcome this issue and be able to outperform the
other older methods that we have experimented with.

6. Conclusions and future work

In this paper, we introduced a new dataset for seman-
tic understanding of the cycling path network in Singapore.
Given the network effect of these new paths, usage is pro-
jected to increase. With a better semantic understanding of
such paths, mechanisms and tools could be developed for
improved safety and autonomous use. We have illustrated
that it is possible to gain a good semantic understanding
of the paths via current semantic segmentation algorithms,
with the ViT model achieving an mIoU of 85.7%. Improve-
ments can be made to the segmentation of roads, which have
an IoU of 70.1%. This can largely be attributed to the rela-
tively coarse annotations for the road class.

Future extensions could involve collecting data different
parts of Singapore, which may have different geographical
and design features for cycling paths. In addition, the set
of annotations currently made on the dataset could be ex-
panded. Specifically, other objects commonly seen in the
cycling context, such as people, riders, vehicles, lampposts
and greenery could be added. The annotations for the road
class can also be refined. Finally, since the segmentation
of cycling paths is by definition a real-time and mobile en-
deavour, more research on the use of mobile friendly mod-
els such as MobileNetV2 in comparison with the baselines
we have established in this paper is also a meaningful next
step.
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