Titan-ification using Vision LLMs on Custom Attack on Titan Dataset

Kavin Anand
Stanford University
Department of Computer Science

akavin@stanford.edu

Abstract

The transformation of human characters into titans in
the anime ”Attack on Titan” presents an intriguing problem
in computer vision. A central premise of this show was the
mystery surrounding certain characters and their abilities
to transform into a massive humanoid titan. It is an inter-
esting problem, given an input human image, generating the
titan-ified version. QOur project aims to generate titanified
images from human character faces using a fine-tuned vi-
sion language model (LLM). By leveraging a custom dataset
and advanced augmentation techniques, we hope to repli-
cate and predict these transformations, potentially provid-
ing insights into character identities earlier in the narra-
tive. We leveraged GANs, cGANs, and experimental ViTs
and used SSIM as our quantitative metric. A simple GAN
architecture achieved the highest SSIM score of 0.2266 but
produced much lower quality images compared to the pre-
trained cGAN pix2pix model we were able to leverage on
our custom dataset. Future works include expanding our
dataset and trying more robust pretrained models, as well
as new architectures for the GAN to make it deeper.

1. Introduction

Attack on Titan is one of the most popular shows in the
world. Its premise relies on extensive mystery. The view-
ers are left in the dark who the villain is and the secrets of
the world. At the center of it all is the ability for certain
characters to transform into Titans — massive, humanoid,
maneating beasts that are at the heart of the show’s horror.
Our inspiration was to create a model that, given a human
face, can generate an output expected titan image. This is
designed to be a very fun tool for avid fans to experiment
titan forms of their favorite characters and perhaps begin
uncovering the mystery of the show before the show gets
there.

Gaurav Rane
Stanford University
Department of Computer Science

granel@stanford.edu

1.1. Data type

The input is an image. Images were cropped and nor-
malized to size either 256x256x3 or 512x512x3 where the
3 is the three color RGB channels. The output is going to
be an image of the same size as the input. We experimented
with two input sizes to see if the model was able to better
capture features from the larger image that included more
background information or if that context was irrelevant and
the smaller image was better in focusing on the direct face-
to-titan transformation. The smaller image is also easier to
train.

2. Related Works

Our main inspiration for this project comes from a
medium post that created their own custom dataset for at-
tack on titan and utilized it for a classification task [21].
However, our approach is geared towards generation over
classification, so we must look elsewhere for a generative
based model.

2.1. ViT Approaches to Image Generation

Ever since the transformer architecture was introduced
the world of natural language [19], the Al world has begun
overhauling their use of CNN’s with transformers. In com-
puter vision specifically, S]] the transformer architecture has
proven as a comparable approach to the common convolu-
tion method. When pretrained on the ImageNet challenge
dataset [16], it showed a similar performance on classifica-
tion tasks as the convolutional approach without requiring
as many compute resources. Our task is image-to-image de-
tection however, which means that we need to look towards
a generative model. Stable diffusion models offer an av-
enue into this type of image construction, but their reliance
on text input as a basis for generation does not exactly meet
our task at hand [14]. Thus, we need to look towards fine-
tuning an already pre-trained model for this image-to-image
generation task. With ViT’s though, it’s transfer learning
has been shown to improve model efficiency on tasks like
object detection when the model was pretrained on unsu-

pervised data [13]. Thus, there is a potential for us to use
base ViT models and expand their capabilities for titan gen-
eration through further fine-tuning.

2.2. Pix2pix

Since not many image-to-image transformer models ex-
ist, cGANSs still serve as our most stable and well tested
heuristic when it comes to image generation. The pix2pix
model was developed with the specific use case of mapping
input images to output images [10]. Pix2pix builds on the
U-Net generator [13]], and using the generator/discriminator
architecture is able to use a loss function to learn unique
relations between features of the input and output image.
Already, people have been using the pix2pix model for dif-
ferent generative tasks. Within medicine, it’s been used to
denoise myocardial perfusion images and also just to
generate medical images since medical image datasets are
sparse [2]]. Additionally, it’s been used for generating street
level views from google maps representations of structures
[8], taking away the background of an image to isolate for
an object, and also generating a full hand drawn painting
from a simple stick figure representation of an individual.
Pix2pix can handle diverse inputs and mappings, so we be-
lieve it will be a valid starting point in our human image to
titan image translation task.

3. Data

Extensive work was done in collecting images for our
dataset. Due to the novelty of our project, there were no
existing datasets that we could find online to leverage. We
manually had to go through the scenes in the show and col-
lect frames from characters that are known to transform to
titans. To train our model, we need an input and label im-
age which corresponds to a picture of a character in human
form and a picture of the same character in titan form. This
process was incredibly intensive as we needed to identify
scenes where just the character or titan form was in scene,
with minimal distractions in the background or the pres-
ence of other characters, and label the images so that we
could accurately pair the right human with the right titan
for model training.

In this time intensive process, we extracted screenshots
of the show, labeled the images, and created a 1:1 mapping
of human faces to titan forms. At the end of our data collec-
tion, we had 676 total images, which are 338 image pairs of
human characters to titans. Data augmentation is described
below, but after it was done images were channel-wise nor-
malized to size 256x256 for majority of our experiments
and we had 4056 images, or 2028 image pairs.

3.1. Data augmentation

We greatly expanded on our data preprocessing and aug-
mentation steps however to magnify the size of our dataset.

Vision models typically require vast quantities of data to ac-
curately train and we needed to find ways to better augment
the size of our dataset to train more robust models.

We augmented our dataset by performing many random
transformations through the torchvision transforms func-
tion. We first employed a color jitter, randomly changing
the brightness, contrast and saturation by a variance of 0.4
and hue by 0.1 with an 80% chance of application. Chang-
ing lighting and color variations aids the model to gen-
eralize better to different color conditions. We then also
introduced random horizontal flips with 50% probability
and random grayscale with 20% probability to introduce
more variability in orientation and helping the model handle
grayscale and learn the underlying image structure without
color information better. Finally normalization was done
as well, ensuring image pixel values have a mean of 0 and
standard deviation of 1 to stabilize and speed up the train-
ing process before converting images to PyTorch tensors so
that they could easily be fed into a DatalLoader for training
in our networks.

Human Image

Human Image

b

100 150 200

Titan Image

—{"
o
\ 44 ;

{ad

50 100 150 200 250

Figure 1. Example of two training pairs of images. Left column
is human and titan raw image of size 512x512. Right column is a
different human and titan pair from the augmented dataset of size
256x256.

4. Methods

Image to image generation is a difficult task. We knew
that our dataset was fairly limited for the task at hand and
that reasonable results are only likely to come from larger,
pre-trained models that we can then finetune the weights of
using our custom dataset of a few thousand images. These
larger pre trained GPTs are created from datasets of 1M to
300M images, a scale we simply cannot compete on.[6]
However, we develop a Generative Adversarial Network
(GAN) as well to serve as a baseline.

4.1. GAN

Generative Adversarial Networks (GANS) are a class of
machine learning frameworks where two neural networks,
a generator and a discriminator, are trained simultaneously
through adversarial processes. The generator creates fake
data from random noise, while the discriminator evaluates
whether a given data instance is real (from the training data)
or fake (generated by the generator). The objective of the
generator is to produce data that the discriminator cannot
distinguish from real data, while the discriminator aims to
correctly identify real and fake data. In ideal situations,
both the generator and discriminator are equally as ”’strong”
meaning that one doesn’t learn much faster than the other.
Consider situations in which one is stronger than the other.
If the generator is stronger that means it can get away with
generating any image that may not resemble our ideal la-
bel as our discriminator is too weak to distinguish real from
fake. In the opposite case, the generator is penalized from
ever learning because it can never “win” against the dis-
criminator who always discerns its correct output. Both
cases result in poor output where the resulting image isn’t
tied closely to the class labels.

Mathematically, the GAN relationship can be formulated
as a minimax game:

minmax V (D, G) =
G D

Eanpiua(2) 108 D()] M
+ Eep.(»)llog(1 — D(G(2)))]

where G is the generator, D is the discriminator, x is a
real data sample, and z is a random noise vector.

4.1.1 Simple GAN Architecture

The first model relies on a simple Discriminator and Gen-
erator architecture. The Discriminator contains a Flatten()
function that squashes input into a linear vector before pass-
ing it into a multiple Linear layers followed by LeakyReLU
activation functions. We decided to use this over normal
ReLU to smoothen the gradient update steps and hopefully
achieve better training results.

The Generator then goes from multiple smaller dimen-
sion Linear layers followed by more standard ReLU ac-
tivation functions before it finally outputs the original
256x256x3 vector in the final step followed by a Tanh() ac-
tivation.

4.1.2 Loss Functions

The discriminator loss is calculated as the sum of the binary
cross-entropy losses for real and fake images. We utilize the
Pytorch BCE loss function that is numerically stable in our

calculation here. We didn’t choose to with Least Squares
Loss function, or an LSGAN approach, because we noted
in research it had excessive penalties for outliers, leading to
reduced sample diversity. [3] Considering the nature of our
dataset, and the lack of rigorous standardization, we felt a
conventional BCE loss would be more suitable.

‘CD = _Exr\fpdm(z) [log D(x)]_]EZsz(z) [log(l—D(G(z)))]

(@)

The generator loss is calculated as the binary cross-

entropy loss of the discriminator being fooled by the fake
images:

Lg=—E.p.(»)log D(G(2))] 3)

4.1.3 Training procedure

The training process involves alternating between updating
the discriminator and the generator. In each iteration, we:

1. Sample a batch of real images from the training set.

2. Sample a batch of noise vectors from the uniform dis-
tribution.

3. Generate fake images using the generator.

4. Compute the discriminator loss and update the dis-
criminator.

5. Compute the generator loss and update the generator.

Algorithm 1 Training GAN

1: for number of training iterations do

2: Sample minibatch of m noise samples
{zM) ... 2™} from noise prior p.(z)

3: Sample minibatch of m examples {z(1), ... (™)}
from data generating distribution pga, ()

4: Update the discriminator by ascending its stochastic
gradient:

RS i i
Vo, ;Uog D(x") +1log(1 = D(G(=)))]

5: Update the generator by descending its stochastic

gradient:

Vo, > log(1 = DGGY))
i=1

6: end for

4.2. Pix2pix

We utilized the Pix2Pix model, a generative adversar-
ial network designed for image-to-image translation tasks
[1O]. The model comprises both a U-Net generator and a
PatchGAN discriminator, which we fine-tuned for a titan-
ification application. This model was chosen for its suit-
ability for direct image-to-image generation, allowing us to
fine-tune it with our titan images and verify its performance.

The U-Net generator was coined by [13]], and its archi-
tecture consists of eight down-sampling blocks followed
by eight upsampling blocks. Downsampling includes eight
convolutional blocks followed by a LeakyReLU activation
function, with batch normalization applied to all but the first
and last blocks. The eight upsampling blocks incorporate
ReLU activation and batch normalization on all layers, with
dropout applied to the first three layers to avoid overfitting.

input

output
im:)
e |1 *|*|*| segmentation

& map

= conv 3x3, ReLU
copy and crop
 max pool 2x2
4 up-conv 2x2
= conv 1x1

Figure 2. As taken from the paper directly, this figure illustrates
the U-Net architecture (example for 32x32 pixels in the lowest
resolution). Each blue box corresponds to a multi-channel feature
map. The number of channels is denoted on top of the box. The
x-y-size is provided at the lower left edge of the box. White boxes
represent copied feature maps. The arrows denote the different
operations.

The PatchGAN discriminator verifies each 70x70 patch
and determines its realness. It uses four convolutional
blocks to downsample the spatial dimensions while increas-
ing the feature channels, followed by a final convolution
layer that outputs a probability indicating the realness of
the image.

4.2.1 Pix2pix Loss Functions

For training, we used a combination of GAN loss and pixel-
wise L1 loss. The GAN loss, defined by BCEWithLogit-
sLoss, measures how well the generator fools the discrim-
inator and how accurately the discriminator identifies real
versus fake images. To ensure the generated images closely
matched the real titan images, we used a simple L1 pixel-
wise loss, chosen over L2 to avoid the blurriness associated
with the latter.

The total loss for the generator is a combination of the
GAN loss and L1 loss. The GAN loss is explained in sec-
tion 4.1.2 under equation 2. On the other hand though, the
L1 loss, which ensures pixel-wise similarity between the
generated and real images, is given by:

L =Eqyllly — G@)]l1] “)

The total loss for the generator combines the loss above
with the loss from equation 2.

LGene’rator = ‘CGAN + A[-"Ll (5)

where A is a weighting factor that balances the two
losses. As specified by the pix2pix paper [10], the value
of lambda was found to operate best when set to 100.

4.2.2 Pix2pix Training

The training process was carried out over 25 epochs and
the images used for training and evaluation were resized to
dimensions of 256x256 pixels. During training, the human
images and corresponding titan images were loaded into the
model in batches of 1, with the generator attempting to cre-
ate titan images from human images, and the discriminator
evaluating their authenticity.

In each epoch, we get the loss of the real human titan
pair, generate the fake titans, and then calculate the fake loss
using the same BCE loss function. Then, the discriminator
loss is the average of those two and we backrpop to update
discriminator parameters. With the generator, we have the
GAN/BCE loss from its generated images and fooling the
discriminator, but then we combine that with the L1 loss
of the generated titan versus the real image, making sure to
backprop and update the U-Net parameters after.

We also kept a validation set so we could measure
the generator’s performance amongst unseen/untrained im-
ages, and we additionally used a structural similarity index
(SSIM) to evaluate the quality of generated images. For
each best validation loss and SSIM score, we saved the gen-
erator/discriminator pairs.

4.3. ViT

The transformer architecture were introduced as a novel
concept for natural language processing tasks, but a sim-
ilar architecture can be applied to computer vision tasks
[S. These ViT’s are shown to perform with their convo-
lutional counterparts, while requiring much less compute
resources. Our approach attempts leverage several ViT’s
that have been pretrained on large vision datasets like Im-
ageNet and ResNet, and then finetune them for our titan-
ification prediction task. Specifically, we will use two pre-
trained models, then we apply transfer learning to fine-tune
the models for our generation task.

4.3.1 ViT Model Architecture

We use the same core model, vit_base_patch16_224, but the
models had different training sets and were loaded slightly
differently. The timm model was trained on ImageNet-
1k, consisting of 1.28 million images across 1,000 classes.
The Hugging face version of the model was trained on
ImageNet-21k, consisting of 14 million images across
21,000 classes. Being the base version of ViT, as expressed
in the paper, the patches for the ViT are 16x16 pixels, and
the model architecture consists of 12 transformer encoder
layers, 768 hidden dimensions, and 12 attention heads [5].
Given that the model was trained on image classification,
we modified the final layer to include a linear layer map-
ping to the output image size of 3x224x224, with a TanH
activation function.

4.3.2 ViT Loss Functions and Training

For both models, we trained the timm loaded model for 20
epochs and the hugging face loaded model for 10 epochs.
We set out twenty percent of our images for the validation
set, and we calculated our validation loss after each epoch.
For the loss, we used a mixture of MSE loss and perceptual
loss. We thought that too much emphasis on MSE would
create too much bluriness, so we introduced the perceptual
loss [11]] as well to make sure that the overall shape and
figures of the output images is conserved in our model as
well.

1 n
MSE = o ;(xz —y)? (6)
1 C, H W
Perceptual Loss = ZI: CHW, ; hz_:l wZ;l
(¢l(z)c,h,1u - ¢l(y)c,h,w)2
(7

4.4. Alternative Approaches

Multiple alternative approaches are described in detail
below but we finally chose GAN as our baseline, cGAN as
our robust model architecture, and ViT as an experimen-
tal approach due to the extensive literature and dominance
these models have on image generation. GANSs are known
to generate highly realistic images by training two networks
via the min-max game and can capture high frequency de-
tails and produce sharp images. cGANSs are similar but
leverage even more information to aid in teh generation pro-
cess that allows for more controlled output. Both these ar-
chitectures also follow from the style of our image/true la-
bel pairs that our dataset consists of. Finally we wanted
to explore ViTs as they leverage the transformer architec-
ture which has made unfathomable leaps in success the past

couple years, primarily in NLP but also in computer vision.
Long range dependencies are captured here and we hoped to
capture Neural Style Transfer (NST) to mitigate our smaller
dataset problem and take advantage of the larger swath of
images the pre-trained CNNs are trained on.

44.1 VAE

In addition to the methods above, we considered other gen-
erative models that could’ve been used for our task. The
first, Variational Autoencoders (VAEs), are a type of gener-
ative model that learn the underlying distribution of data by
optimizing a lower bound on the log-likelihood of the ob-
served data.[[12]] This means that fundamentally VAEs are
more controlled than GANSs, they provide a probabilistic
manner of describing an observation in latent space leading
to controlled image generation. However, one major limi-
tation is that since the optimize reconstruction loss, VAEs
do not prioritize high frequency details and therefore tend
to be blurrier and realistic than GANs. [4]

44.2 DDPM

Another advanced strategy that we briefly considered was
Denoising Diffusion Probabilistic Models (DDPMs), a class
of generative models that start from an input image, itera-
tively add noise to it and then learn to denoise from that
noisy image to generate new image samples. [7] These
models are shown to have remarkable performance in gen-
erating high quality images and can produce highly detialed
images, even for a smaller dataset as it doesn’t have to ex-
plicitly learn to create every facet of the image from scratch.
It starts from a template.

Forward Diffusion:

Q(Jct \ Jﬁt—l) = N(ﬂ?t; v1-= ﬁtxt—lvﬁtl)

where x; is the data at timestep ¢, 3, is a variance schedule,
and NV denotes a normal distribution. [18]]
Reverse Diffusion:

p@(xt—l | xt) :N(ﬂft—1§ﬂ(9($t7t)a Eg(;tt,t)l)

where g and oy are learned parameters of the model. [9]
The reverse process is trained to model the reverse of the
forward diffusion, thereby allowing the generation of clean
data samples from noise. However we decided not to go
with this approach due to the computationally expensive
and slow training time required by iterative denoising pro-
cesses. We didn’t have the compute resources nor the capa-
bility to test multiple large models with this process and
were lacking easy-to-use libraries that were familiar and
modular as the ones we used for the other models. This
made it less practical for us to implement and explore.

5. Results and Discussion

Implementation details, such as hyperparameter and op-
timizer choice, are included in the below subsection. We
obtained a mix of quantitative and qualitative results. The
reason being is that image generation itself is a difficult task,
and it’s further difficult to compare with pure metrics how
your generated images compare to test images. We used
Structural Similarity Index Measure (SSIM) as our quan-
titative metric to optimize. SSIM is a perceptual metric
that quantifies image quality degradation caused by pro-
cessing such as normalizing or image generation. It works
better than traditional measures such as Mean Squared Er-
ror which only captures pixel-wise differences as SSIM as-
sesses changes in structural information, considering lumi-
nance, contrast and structure aligning it better with human
visual perception.[20] This provides us a more holistic view
of image quality. We decided these pros were worth the
drawbacks of increased computational complexity of SSIM
because we felt we were only going to obtain SSIM results
for the hold-out test set which is much smaller and should
be relatively fast regardless.

(2Nm:“y + Cl)(2‘7my + 02)

SSIM(z,) —)
(P9 = G2y 2 7 Cn) (o2 + 02 1 o)
fiz, iy are the mean intensities of 2 and y, 0,07 are the

variances of the two images, o,y is the covariance and C
and C5 are constants to stabilize the division.
The SSIM scores of the primary models are included below.

Model SSIM Score
Simple GAN 0.05107536
Simple GAN Aug 0.12660249
Simple GAN Aug Large | 0.22667356
pix2pix val 0.11689669
pix2pix ssim 0.10948225

Table 1. SSIM Scores for Various Models

The Simple GAN is the baseline model that we built.
It performed the worst out of all the models. The Simple
GAN Aug is the model that was trained on 6x the train-
ing information, essentially on the augmented dataset. The
Simple GAN Aug Large performed the best out of the Sim-
ple GANs that we trained, large meaning that it was trained
for significantly longer. The nuances of these categoriza-
tions are included in the Implementation Details section. It
wasn’t very surprising for us to see these results. It made
sense that the augmented dataset would perform better as
there were many more images and the images were more
robustly manipulated. GANSs typically take 50k-100k im-
ages to properly train however, so we expect to continue
to see sharp rises in performance even with a simple GAN

architecture.[17] However we were clearly limited as cu-
rating such a large dataset would be infeasible given the
constraints. Next, training for longer time horizons offered
much better results as well, even on the same dataset. The
loss continued to drop and we see better results for the
GAN. This leads us to believe that if we had access to more
compute we could obtain even stronger results but this is the
limits of the Colab Pro compute units allocated to us. The
two pre-trained cGANs, pix2pix val and pix2pix ssim are
also included in the table. It was surprising that these larger
models didn’t perform as well, especially considering that
they were pretrained on millions of images. We didn’t mea-
sure SSIM scores for the ViT models. These severely un-
derperformed and the transfer learning experiment didn’t go
nearly as well as originally hypothesized or intended. The
ViTs weren’t able to appropriately transfer their robustness
in classification to our task of image generation, and con-
stantly produced fully grayed out images.

However, qualitative analysis is also incredibly impor-
tant for evaluating our models as fundamentally image
generation over a show and its characters will invoke a
very human response. To do this, we generated images on
characters from the hold-out test and tried to see how close
to the label the model was able to output results. There are
also many ways that weaker models can hide behind SSIM
scores — models can generate blurry images that might have
similar luminance and structural patterns but fail to capture
any of the details that you’d expect in a high quality output.

5.0.1 Implementation Details

The models were implemented using PyTorch in Google
Colabs, leveraging python scripts that we developed our-
selves or developed in classwork. Adam optimizers were
used for both the discriminator and generator, and we used
grid search to find optimal hyperparameter values for learn-
ing rate, betal and beta2. Training was done on an accel-
erated compute A100 and L4 GPU on Colab Pro to enable
training with more RAM and speed up training times. The
Simple GAN architecture is described in methods. Aug-
mented means using the augmented dataset as described in
dataset. Large means training for 25 epochs which is also
the standard for the two pix2pix models. The smaller simple
GAN is trained for 10 and the simple pix2pix is for 5.

5.1. Simple GAN

Figure 3 depicts qualitative output of the three Simple
GANSs. The input human image, real titan image and the
generator output image are included row by row for the
Simple GAN, Simple GAN Aug, and Simple GAN Aug
Large respectively. As we can see, qualitative results tell
a shockingly different story. The first model has the worst

output which is expected from the SSIM score. However,
the latter two models should’ve had better output consid-
ering their SSIM, the Simple GAN Aug Large especially
so as it reached scores of 22%. This failure in generating
proper titan images I think can be attributed almost entirely
to dataset size. The loss values were going down on both
the Discriminator and Generator but there simply wasn’t
enough images to train on. Furthermore, the architecture
could’ve been expanded to include a more robust design that
included Convolutional Neural Networks and DropOut. We
implemented these fixes in the cGAN, Pix2Pix.

Figure 3. Row by row: Simple GAN input human image, real la-

beled titan image, Generator output, Simple GAN Aug, Simple
GAN Aug Large

5.2. ViT

The purpose of the ViT models was to see whether we
could use transfer learning to get a model trained on im-
age classification to perform on image-to-image generation.
Training for the base ViT model loaded by Timm was done
in 20 epochs, and training for the base ViT model loaded by
Hugging Face was done in 10 epochs. With MSE error and
perceptual loss as the guiding factors of the model, we saw
practically no change in validation loss over the epochs for
Timm, and for Hugging Face we saw no change in valida-
tion loss at all. Thus, when we visualized the images our
model would generate, it wasn’t surprising that we received
blank gray images as outputs for both models as seen in
Figure 4.

Since the generated image was essentially just a flat color
across 224x224 pixels, we decided not to include it in the
SSIM table above. It seemed like transfer learning wouldn’t
be too possible without many more images, but we still had
one more cGAN to test out.

Human Image Human Image

Generated Titan Image Generated Titan Image

Figure 4. Left two: Input human image and output from ViT pre-
trained on ImageNet-1k, Right two: Input human image and out-
put from ViT pretrained on ImageNet-21k.

5.3. Pix2pix

The ViT model’s showed us that transfer learning wasn’t
the best idea when it came to image-to-image generation,
so we tried our final model, the pix2pix. To make sure the
model would yield interpretable results, we did a small test
batch with a simple 5 epoch iteration. We only loaded the
original dataset, and we saw that after a simple 5 epochs of
training, the model was showing us generated images that
actually resembled the likeness of their inputs, as seen in
Figure 5.

Figure 5. Both rows consist of human input, real titan label, and
pix2pix 5 epoch trained no augmented data model output.

The model clearly held some potential, so we augmented
the dataset as specified in the dataset section and loaded it.
The training dataset was now a total of 2331 images, with
the rest being used for the validation set. When we split
validation from training, we made sure to only pull the val-

idation set from the non-augmented image pairs. With the
data prepared, we proceeded with the full 25 epoch train-
ing. We had four statistics reported throughout each epoch:
discriminator training loss, ssim score, generator training
loss, generator validation loss. All these values were aver-
aged across each epoch, and there progress during training
is shown below in Figures 6 and 7.

SSIM and Discriminator Progress Over Epochs

0225
— i

0200

0175

0150

© 0125

0.100

0075

0050

0025

Figure 6. SSIM (Purple) Score and Discriminator (Red) Loss over
Epochs

Generator Progress Over Epochs

— Genera
— Genera

score

Figure 7. Generator Training (Blue) and Generator Validator
(Green) loss over Epochs.

There seems to be a lot of instability in the earlier epochs
with the ssim score and the generator validation loss. How-
ever, they seem to stabilize later on and we can see that they
are moving in the direction we want. We saved two gener-
ator models during training; one model we saved was the
model that got the best generator validation score and the
other was the one with the best SSIM score. When we visu-
alize the images that are outputted by both, we see them as
such in Figure 8, below.

Earlier on the table, we saw that the SSIM score was
slightly better for the best validation model, which is sur-
prising because we would expect the model that got a higher
SSIM score during training to achieve a better score during
test time. However, when we look at the images qualita-
tively, the best SSIM model does a much better job at iden-
tifying features like eyes and the titan images generated by
the best val model tend to be much blurrier.

6. Conclusion & Future Works

We challenged the difficult problem of generating ti-

tans from human images. We found that definitely GANs
were the best approach given existing literature on the sub-
ject, ease of use and support in terms of existing pack-
ages, and computational limits. However, our dataset was
a major limiting factor. To build a more robust GAN, re-
search states the lower bound to be 2-3 magnitudes higher
than the dataset that we were working with. This is sup-
ported by our results as well — the models trained on the
augmented dataset performed unequivocally better and the
models trained for more epochs performed better on both
the training and validation set. This supports the theory that
data was a large bottleneck. The best performing model on
paper was the Simple GAN Aug Large, which is our sim-
plest architecture but trained on the augmented dataset for
the longest time of 25 epochs measured by achieving the
best SSIM score of 0.2266. However, after qualitative anal-
ysis, it was clear it wasn’t capturing the real structural sim-
ilarities or shapes indicative of titans. This was much better
represented by the cGAN that was pretrained on millions
of images before finetuned on our custom dataset, pix2pix.
This model, while although achieving lower SSIM scores of
0.109, produced much better qualitative output where rele-
vant features like eyes could be identified.
In the future, if we have access to more compute, we’d like
to explore the DDPM models. These are supposed to be
able to rival the output of GANs and are able to train on
much smaller quantities of data as the model isn’t tasked
with a novel generation task but stripping away noise to un-
cover unique images that match the label. Unfortunately
given time and compute restraints this model couldn’t have
been explored. We also lacked subject matter expert in these
architectures as they weren’t covered in homeworks. An-
other way to optimize this project would be to hire a team
for more accurate and extensive labeling. With a dataset
that rivals how modern GANs are trained, and a more ro-
bust GAN architecture, or just leveraging the existing pre-
trained pix2pix model, we’d expect to see much better re-
sults, quantitatively and qualitatively.

7. Contributions & Acknowledgements

Kavin and Gaurav contributed extensively to the project
ideation, data collection, experimentation and writeup
steps. Granularly, both were involved in the brainstorming
process and ideation for possible models that’ll help with
the task. Attack on Titan is a show that both of us are in-
credibly fond of and thought this project would be an in-
credible opportunity to see the potential of computer vision
in a domain we’re knowledgeable of. Next was data collec-
tion. Both of us spent many hours together scraping image
pairs from different seasons of the show. Next we both split

Human Image

Human Image

Real Titan Image

Generated Titan Image

Real Titan Image Generated Titan Image

(8 W

up the experimentation work so that we’re running relevant
models and wrote about our relevant models in the methods
section of the writeup. Finally we both contributed to the
paper and poster presentation as well.

Individual highlights: Kavin was more involved with

data preprocessing, augmentation and making it easily di-
gestable by a Dataloader for future training. Kavin focused
on the GAN baseline models as well. Kavin also worked
on these sections in the writeup, the introduction and the
dataset, and parts of the results section.
Gaurav focused extensively on the larger model experimen-
tation and work on the transfer style models. This includes
both the ViT and the cGAN such as the pix2pix model. Gau-
rav also worked on these sections in the writeup, the litera-
ture review, and parts of the results section.

We’d like to acknowledge Stanford CS231N professors
and teaching staff. Via quality lectures and assignments we
were able to finetune our skills to work on a large individual
project. We are not using this project as part of another class
or research team.

References

[1] A. Aljohani and N. Alharbe. Generating synthetic images for
healthcare with novel deep pix2pix gan. Electronics, 11(21),
2022.

[2] A. Aljohani and N. Alharbe. Generating synthetic images
for healthcare with novel deep pix2pix gan. Electronics,
11(21):3470, 2022.

[3] C. Dewi, R.-C. Chen, Y.-T. Liu, and H. Yu. Various gen-
erative adversarial networks model for synthetic prohibitory
sign image generation. Applied Sciences, 11:2913, 03 2021.

[4] C. Doersch. Tutorial on variational autoencoders, 2021.

[5] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale, 2021.

-
;l.a l

Human Image

Real Titan Image

Generated Titan Image

Generated Titan Image

Human Image Real Titan Image:

Figure 8. Left 6: Pix2pix model with best validation results trained for 25 epochs. Right 6: Pix2pix model with best SSIM scores trained
for 25 epochs. Compares output images across exact same human/titan pairs

[6] H. Gani, M. Naseer, and M. Yaqub. How to train vision
transformer on small-scale datasets?, 2022.

[71 A. M. Gitau. A friendly introduction to denoising diffusion
probabilistic models. July 2023. Accessed: 2024-06-02.

[8] J. Henry, T. Natalie, and D. Madsen. Pix2pix gan for image-
to-image translation. Research Gate Publication, pages 1-5,
2021.

[9] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion proba-
bilistic models, 2020.

[10] P.Isola,J.-Y.Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks, 2018.

[11] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution, 2016.

[12] D. P. Kingma and M. Welling. Auto-encoding variational
bayes, 2022.

[13] Y. Li, S. Xie, X. Chen, P. Dollar, K. He, and R. Girshick.
Benchmarking detection transfer learning with vision trans-
formers, 2021.

[14] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Om-
mer. High-resolution image synthesis with latent diffusion
models, 2022.

[15] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation, 2015.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recog-
nition challenge, 2015.

[17] I. Salian. Nvidia research achieves ai training breakthrough
using limited datasets, December 2020. Accessed: 2024-06-
02.

[18] V. Singh. An in-depth guide to denoising diffusion prob-
abilistic models ddpm — theory to implementation, March
2023. Accessed: 2024-06-02.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need, 2023.

[20] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image
quality assessment: from error visibility to structural similar-

ity. IEEE Transactions on Image Processing, 13(4):600-612,
2004.

[21] T. Whitehurst. Attack on titan image classifier w/custom
dataset and keras. Medium, 2018. Accessed: 2024-06-05.

10

