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Abstract

Fish detection in underwater images is crucial for eco-
logical research to enhance the understanding of aquatic
habitats. However, this task presents significant challenges
due to low illumination of underwater images, complex
backgrounds, and the vast diversity of fish species. Existing
detection models often underperform when detecting tiny
fish, especially in murky water conditions. In this paper, we
investigate the impact of Transfer Learning in improving
the generalization of fish detection models for small-sized
fish and low-quality underwater images. Using the Ozfish
dataset, which comprises images of small fish and murky
water conditions, we used the YOLOv7 model architecture
to study fish detection with Transfer Learning. We evaluated
three model variations on Ozfish: a pretrained YOLOv7
model, the same model fine-tuned on Ozfish through Trans-
fer Learning, and a model trained from scratch on Oz-
fish. Additionally, we examined the impact that varying data
quantities can have on the effectiveness of Transfer Learn-
ing. Our results indicate that increasing the amount of data
used in Transfer Learning on a pretrained model improves
model performance on our dataset. However, our results
also show the difficulty of improving fish detection model
performance on tiny fish, as our best performing model with
Transfer Learning demonstrated very similar performance
to our pretrained model on Ozfish.

1. Introduction
Fish detection in underwater images has long been an

important task for ecological researchers, to better un-
derstand underwater habitats. However, this task can be
quite difficult due to low illumination of underwater im-
ages, complex backgrounds, and the wide diversity of fish
species. Currently, existing fish detection models do not
perform as well on tiny fish, that are difficult to distinguish
from the background due to their size. In addition, fish de-
tection models often struggle to detect fish in lower quality
underwater images due to murkiness in the water, which

makes it more difficult to detect smaller fish as well. In our
project, we focus on investigating the impact of Transfer
Learning on building a fish detection model that generalizes
better for small size fish and opaque images. Our dataset is
Ozfish which contains images of small size fish and pictures
taken in murky water.

The input of our model is an image taken underwater. We
then use a YOLOv7 model architecture (described below) to
detect fish. The output is the image with predicted bounding
boxes drawn over each detected fish.

Since the goal of our project is to investigate the im-
pact of Transfer Learning on this task, we evaluated Ozfish
on three types of models. First, we evaluated a pretrained
YOLOv7 fish detection model (which had been pretrained
on a large, open source fish dataset from the images on the
public domain [14]). Then, we enhanced this pretrained
model with Transfer Learning on Ozfish. Finally, we also
trained the same model architecture on Ozfish from scratch
(without any pretrained weights). We also ran further exper-
iments to explore how the amount of data affects Transfer
Learning.

2. Related Work
Al Muksit et al. [1] describe several variations of YOLO

architectures for fish detection. The main model is YOLO-
Fish which is a robust fish detection model which was pub-
lished in December 2022 and accepted at Ecological In-
formatics. YOLO-Fish is one of the most widely used
fish detection model used today. The YOLO-Fish model
was trained on the DeepFish and Ozfish dataset, and it
was found that it performed quite well on DeepFish (about
95% precision) but did not generalize as well to the Oz-
fish dataset (82% precision). The DeepFish dataset con-
tains pictures of larger fish with an average of 3-4 fish
per frame, while the Ozfish dataset contains small fish
with an average of 25 fish per frame. The paper de-
scribes two different versions of YOLO-Fish: YOLO-Fish-
1 and YOLO-Fish-2. The YOLO-Fish-1 architecture is di-
agramed below, where Scale 1 corresponds to large ob-
ject detection, Scale 2 corresponds to medium object de-
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tection, and Scale 3 corresponds to small object detection:

The model uses multiple upsampling layers to extract
features based on the scale, and uses SPP (Spatial Pyramid
Pooling) which consists of 4 layers of max pooling that are
concatenated together for feature enhancement.

Jalal et al. [2] used a combination of Gaussian Mix-
ture Models (GMM) and YOLO to detect and classify fish
in two underwater video datasets: LifeCLEF 2015 bench-
mark from the Fish4Knowledge repository and a dataset
collected by The University of Western Australia (UWA).
They achieved fish detection F-scores of 95.47% and 91.2%
on both datasets respectively. While GMM and optical flow
helped extract temporal features, the model relied heavily
on YOLO to detect static fish, like we have in our underwa-
ter fish images dataset.

Wang et al. [3] describe using YOLO-v3 for underwa-
ter object detection and classification on images from side
scan sonar which is increasingly being used for underwater
search. They trained the model on a set of 7000 underwater
SSS images and conducted a series of experiments using the
YOLO-v3 network. Evaluating using mAP with thresholds
0.5, 0.55, and 0.6, they found that the model was effectively
able to detect objects in underwater data collected in real
environment. We will similarly be using a threshold of 0.5
and AP as our metric as we are focused solely on detection.

Kandimalla et al. [4] evaluated YOLO-v3 to detect,
count and classify fish from underwater videos from the Oc-
queoc River DIDSON dataset. The they trained the YOLO-
v3 model with pre-trained weights from ImageNet. We will
also be using pre-trained weights to train our model. The
initial results of YOLO-v3 was AP of 0.00 to 0.66 for the
different classes calculated with an IoU of 0.5. However,
after training with augmented data, the AP increased to a
range of 0.31 to 0.86 over the different classes. We will
also be using augmented data to train our model.

Xu and Matner [5] discuss using Transfer Learning to
initialize their weights for training on their datasets, Voith
Hydro, Wells Dam, and Igiugig. However they use weights
that were trained to a detect a variety of different classes
ranging from cats to cars but do not detect fish. In this paper
we will be exploring Transfer Learning based on pre-trained
weights meant to detect fish.

Saleh et al. [6] describe using Co-scale conv-attentional
image Transformer (CoAT) encoders to outperform CNN-
based encoders in detecting fish in underwater images.

They utilized three different datasets: DeepFish, Seagrass,
and Youtube-VOS. The paper found that a transformer-
based encoder was better able to detect overlapping fish
where CNN-based encoders failed. However, we found that
the average precision of the YOLO-based methods is better.

Lin et al. [7] discusses modifications made to the DETR
model that allow it to perform better on underwater images.
A learnable query recall mechanism is incorporated in the
decoder to mitigate the effects of noise like diffraction of
light and suspended particles in water that can make im-
ages blurry. They also use AdaptFFN to keep track of fine-
grained details in small objects. A lightweight adapter mod-
ule is also added to each encoder and decoder. Depsite this,
we found that YOLO-based models perform better than this
approach on detecting fish.

Pagire et al. [8] compared Faster R-CNN ResNet50,
YOLO-v3 and SSD MobileNetV2 on underwater fish detec-
tion and classfication on the Fish4Knowledge dataset. They
found that YOLO-v3 had the best recall while SSD Mo-
bileNetV2 had the best precision.

Marrable et al. [9] used YOLO-v5 for fish detection on
Ozfish and DeepFish. They achieved a precision of 0.898
and recall of 0.699 on Ozfish which is the dataset we are
working with. However we will be using a more advanced
version of YOLO, YOLO-v7 in our implementation.

We also reviewed Li et al. [10] approach to underwa-
ter fish detection using Fast RCNN on ImageCLEF which
achieved mAP of 81.4%.

3. Methods
3.1. Project Goal

The goal of our project is to evaluate the impact of Trans-
fer Learning on creating a fish detection model specifically
for smaller sized fish.

3.2. Model description

We used YOLOv7 [12] as our main model for this
project. We used an existing codebase [11] that had most of
the setup for training YOLOv7, which we used and modi-
fied to load, process, and train on our own dataset. YOLOv7
is a state-of-the-art object detector that has generally sur-
passed all other object detectors in both speed and accuracy.
It is a single-stage object detector, that predicts bounding
boxes and class probabilities for each input image.

3.2.1 Backbone Network

For feature extraction, YOLOv7 passes input images
through a backbone. The input images are first passed
through a series of CBS layers (which is a sequence of
a convolutional layer, batch normalization, and a SiLU
activation function). After this, the output of those
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layers is then passed through alternating ELAN and MP-
Conv layers. The diagram of the backbone is shown below:

ELAN (Efficient Layer Aggregation Network) is a struc-
ture to create feature maps by combining the outputs of dif-
ferent layers, while controlling the shortest gradient path
so that accuracy doesn’t deteriorate when modeling scaling
is applied. Model scaling refers to learning the number of
channels and the number of layers in each computational
block. YOLOv7 utilizes model scaling in it’s backbone,
neck, and head.

3.2.2 Neck

The purpose of the Neck is to process the features extracted
from the backbone. The Neck uses a CSPSPP module (a
Cross Stage Partial Network with a Spatial Pyramid Pooling
(SPP) block) and PAN (Path Aggregation Network), as well
as ELAN-H blocks. The output is three different levels of
processed input features. The complete diagram of the neck
is shown below.

Figure 1. Diagram of YOLOv7 Neck

The CSPSPP module uses SPP (Spatial Pyramid Pool-

ing), a pooling layer that is inserted between CBS blocks
that allows for the model to handle a variable-sized input.
SPP consists of multiple max pooling layers with different
size bins (5, 9, and 13), and the output of those layers is
concatenated together to a fixed size output. Note that the
CSPSPP module sends the input features down two paths:
one is fed through the SPP layer, and the other is fed through
a simple 1 by 1 convolutional layer and concatenated at the
end. This is done to prevent duplicate gradient information,
reduce complexity, and preserve details.

Figure 2. Diagram of CSPSPP module in YOLOv7 Neck

PAN improves the model’s ability to localize informa-
tion by optimizing the path of bottom-up information flow,
to ensure that the model can use detailed features at multi-
ple scales. Higher-level details are taken from deeper levels
of the backbone and concatenated with lower-level details
from later on in the network. This is done through upsam-
pling (shown in Figure 1), where the resolution of higher-
level features is increased, and then concatenated with the
feature maps from earlier in the network.

3.2.3 Head

The Head receives three scales of input features from the
Neck, which it uses to predict small, medium, and large size
objects. YOLOv7 uses predefined anchor boxes as the start-
ing point for it’s prediction of bounding boxes, and three
anchor boxes are allocated for each scale. During training,
for each anchor box, the model learns to predict offsets of
the box to better fit the objects it’s detecting.

3.2.4 Loss Functions

Since YOLOv7 predicts both bounding box coordinates and
class probabilities, it uses several loss functions.

CIoU (Complete Intersection over Union) Loss is used
to measure how much predicted bounding boxes match the
true bounding boxes. It takes into account overlap between
boxes, distance between center points, and aspect ratio:

CIoU Loss = 1− IoU +
ρ2(b,bg)

c2
+ αv (1)

Where:
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• IoU is the Intersection over Union between the pre-
dicted box b and the ground truth box bg:

IoU =
Area of Intersection

Area of Union
(2)

• ρ(b,bg) is the Euclidean distance between the centers
of the predicted box and the ground truth box:

ρ(b,bg) =
√

(x− xg)2 + (y − yg)2 (3)

Where (x, y) and (xg, yg) are the center coordinates of
the predicted and ground truth boxes, respectively.

• c is the diagonal length of the smallest enclosing box
covering both the predicted and ground truth boxes:

c =
√

(w + wg)2 + (h+ hg)2 (4)

Where w and h are the width and height of the pre-
dicted box, and wg and hg are the width and height of
the ground truth box.

• v measures the consistency of the aspect ratio:

v =
4

π2

(
arctan

wg

hg
− arctan

w

h

)2

(5)

• α is a positive trade-off parameter:

α =
v

(1− IoU) + v
(6)

Objectness Loss refers to the model’s ability to distin-
guish between the background and objects. It is the sum of
Binary Cross Entropy Loss for each bounding box:

Lobj = − [ti log(pi) + (1− ti) log(1− pi)] (7)

Where:

• pi is the predicted objectness score for the i-th bound-
ing box.

• ti is the ground truth label for objectness (1 if an object
is present, 0 otherwise).

The overall objectness loss considering all bounding
boxes is:

Objectness Loss =
∑
i

[−ti log(pi)− (1− ti) log(1− pi)]

(8)
Lastly, Class Prediction Loss uses Binary Cross Entropy

Loss to ensure the correct class is assigned to each bounding
box.

The class prediction loss for a single bounding box and
a single class is defined as:

Lcls,ij = − [tij log(pij) + (1− tij) log(1− pij)] (9)

Where:

• pij is the predicted probability for the i-th bounding
box belonging to the j-th class.

• tij is the ground truth label for the i-th bounding box
and j-th class (1 if the object belongs to the class, 0
otherwise).

The overall class prediction loss considering all bound-
ing boxes and all classes is:

Class Prediction Loss =
∑
i

∑
j

[−tij log(pij)

−(1− tij) log(1− pij)] (10)

4. Dataset
The dataset that we are evaluating on and using for

Transfer Learning is Ozfish, which contains 43k bounding
box annotations across 1800 frames. The dataset was col-
lected using video footage by the Australian Research Data
Commons Data Discoveries program. The Ozfish dataset
contains on average 25 fish per frame, and contains a vari-
ety of sizes of fish with many small fish, making it a good
dataset to utilize for this project. Also, the majority of pic-
tures were taken with low lighting and in more opaque set-
tings, making it a more challenging dataset for fish detec-
tion. We used a train-validate-test split of 70-20-10 percent.
For data augmentation, we ran experiments with two differ-
ent datasets: Ozfish without data augmentation (680 images
total) and Ozfish with data augmentation (4570 images to-
tal). The data augmentations included rotation between -7°
and +7°, sheer of ±15°, horizontal and vertical blur up to
1.5 px, and noise up to 3 percent of pixels. The resolution
of our images was 416 by 416 pixels.

5. Experiments, Results, Discussion
5.1. Experiment Overview

Since the goal of our project is to investigate the impact
of Transfer Learning on fish detection, we first evaluated
Ozfish on three types of models. First, we evaluated a pre-
trained YOLOv7 fish detection model (which had been pre-
trained on a large fish dataset). Then, we enhanced this
pretrained model with Transfer Learning on Ozfish. Fi-
nally, we also trained the same model architecture on Oz-
fish from scratch (without any pretrained weights). When
using Transfer Learning and training from scratch, we used
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Figure 3. Examples of Ozfish images.

Figure 4. Examples of augmented images.

the two different datasets: one with augmentation, and one
without augmentation. After this, we ran further experi-
ments to explore how the amount of data used in Transfer
Learning affects model performance.

5.2. Hyperparameters

Our learning rate was 0.01, and the optimizer was SGD
with momentum, with a momentum coefficient of 0.937 and
weight decay coefficient of 0.0005. Our mini-batch size was
64. We chose these parameters because these were the orig-
inal parameters that the pretrained model was trained on,
and we found that these parameters also worked best on our
for scratch and finetuned models as well. To check this,
we did a coarse and fine grid search of hyperparameters.
To mitigate against overfitting, we plotted learning curves
of train and validation error for each model we trained, to
ensure that the model was not overfitting. This helped us
determine to best number of epochs to train the model for.

5.3. Metrics

To evaluate model performance, we used two metrics:
Mean Precision and Mean Recall. To calculate these, we
used CIoU (as defined above) between the predicted and
true bounding boxes.

We used an CIoU threshold of 0.5, meaning that if CIoU
≥ 0.5, it gets counted as a true positive. Mean Precision and
Mean Recall were calculated as follows:

Mean Precision = TP
TP + FP

Mean Recall = TP
TP + FN

5.4. Results

c
Model Mean Precision Mean Recall

Pretrained 0.7628 0.9064
W/ Transfer Learning (no augmentation) 0.7365 0.7323
W/ Transfer Learning (w/ augmentation) 0.7581 0.9140

From scratch (no augmentation) 0.7408 0.7312
From scratch (w/ augmentation) 0.7366 0.7314

Table 1. Performance on Ozfish of Pretrained, Transfer Learning,
and From Scratch YOLOv7

While all the models listed in Table 1 have relatively
close Mean Precision values (all in a range of 3% or less) the
Mean Recall values differ significantly. Recall corresponds
to the model’s ability to minimize false negatives (ie. the
ability to correctly detect all the instances of fish in an im-
age). Precision corresponds to accuracy of detected images
(ie. the model is correctly detecting fish and not other ob-
jects). Thus, we see that all the models in Table [1] were rel-
atively similar in the accuracy of their detections, but some
models were much better than others in capturing all the
fish present in the image. Since the Ozfish dataset contains
an average of 25 fish per image (which is much higher than
most other fish datasets), Mean Recall is an important met-
ric for us to consider when evaluating performance.

From our results, we see that the model trained from
scratch with augmentation performed the worst in terms
of both Mean Precision and Mean Recall. While the
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from scratch without augmentation performed slightly bet-
ter, both From Scratch models did not perform relatively
well. The fact that both of the From Scratch models did not
perform as well confirms the notion that Ozfish is a diffi-
cult to data to train from scratch with, as it is difficult for
the model to learn about the shapes and features of fish with
smaller sized fish and more opaque images.

From our results, we see that the Transfer Learning with
augmentation model performed very similar to the pre-
trained model, with less than a 0.5% difference in Mean
Precision and less than a 0.8% difference in Mean Recall.
This reveals to us that the Transfer Learning task on the
augmented dataset did not have a noteworthy impact on
the overall performance of the pretrained model on Ozfish.
However, further qualitative analysis shows that model with
Transfer Learning was able to better handle certain cases of
images found in Ozfish. Figure 3 and Figure 4 show some
images that were failure cases on the pretrained model, and
their corresponding performance on the Transfer Learning
with augmentation model. We see that with Transfer Learn-
ing, the model does appear to learn more about identifying
fish from backgrounds, especially in cases where fish blend
in with the background, but still struggles with pictures with
many fish and has other similar failure cases.

Interestingly, our results show a significant difference
between the Mean Recall for Transfer Learning without
augmentation (0.7323) and Transfer Learning with augmen-
tation (0.9140). Thus it seems like the method of Trans-
fer Learning without augmentation actually significantly re-
duced the performance of the pretrained model, instead of
enhancing it. We hypothesized that this was potentially due
to the size of datasets used for the Transfer Learning. While
the dataset utilized for Transfer Learning without augmen-
tation contained only 680 images from Ozfish, the dataset
used for Transfer Learning with augmentation contained
4570 images. Thus, in order to investigate the impact that
the amount of data had on the quality of Transfer Learning,
we decided to run further experiments where we utilized
Transfer Learning on the same pretrained model, using only
25%, 50%, 75%, and 88% of the augmented Ozfish training
data. Our results are reported in Table 2.

c
Model Mean Precision Mean Recall

From scratch w/ 100% training data 0.7366 0.7314
Pretrained, no Transfer Learning 0.7628 0.9064

Transfer Learning w/ 25% training data 0.6848 0.6902
Transfer Learning w/ 50% training data 0.7193 0.7203
Transfer Learning w/ 75% training data 0.7472 0.7332
Transfer Learning w/ 88% training data 0.7521 0.8379

Transfer Learning w/ 100% training data 0.7581 0.9140
Table 2. Model Performance on Ozfish, with different amounts of
data used in Transfer Learning

From Table 2 we see that the Mean Precision and Mean
Recall increase as we train with greater percentages of aug-

Figure 5. Failure cases of Pretrained model

Figure 6. Same cases, with Transfer Learning model with 100%
augmented dataset

mented Ozfish data. This follows our previous theory about
the amount of data affecting the quality of Transfer Learn-
ing. We observed that Transfer Learning using 25% and
50% of the augmented training data performed worse than
the from scratch model, which suggests that 25% and 50%
of the augmented training data was not enough for the pre-
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Figure 7. Plot of Mean Recall and Mean Precision versus % of
data used in Transfer Learning

trained model to learn to detect fish in the Ozfish dataset.
We then see that Transfer Learning using 75% of the Ozfish
augmented training data yields better results than the model
that was trained solely the Ozfish training data, and as we
increase the amount of data used even further to 88 and 100
percent, the performance of the model increases substan-
tially. This shows that given sufficient training data, the
model can supplement its learning to perform well on Oz-
fish as well. Therefore it shows the effectiveness of Trans-
fer Learning in creating better fish detection models. How-
ever, we note that in our experiments, we were not able to
substantially improve upon our pretrained model’s perfor-
mance on Ozfish, highlighting the difficulty in training a
fish detection model for small fish and murky water.

6. Conclusion & Future Work
Through experimenting with augmented data and train-

ing using different amounts of data we have seen that the
amount of data used in Transfer Learning significantly bet-
ters the impact of Transfer Learning for detecting fish in
underwater images. Fish detection in murky water and for
small fish continues to be a difficult task for object detection
models, as is demonstrated in our results.

In the future we hope to continue bettering our fish de-
tection model by training on more data with small fish in
murky water. This would include finding other datasets that
contain small fish or reaching out to ecological researchers
to create our own. We also hope to explore other object
detection techniques like SSD, Faster-RCNN, and more ad-
vanced versions of YOLO. These object detection models
employ a variety of techniques that could serve better or
worse in fish detection in underwater images.

7. Contributions
Humishka Zope trained the pretrained model and

the finetuned models with 25 percent, 88 percent,

and 100 percent of data. Ishvi Mathai trained the for
scratch models and the 50 percent and 75 percent of
data. We both wrote various sections of the paper.
There were no other collaborators. We made use of the
public code: https://github.com/pathikg/Underwater-fish-
detection/blob/main/YoloV7%20training%20notebook/Training
YOLOv7 on Fish Dataset.ipynb.
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