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Abstract

Land use and land cover data is valuable for many appli-
cations, such as environmental monitoring and urban plan-
ning. In this project, we apply modern deep learning and
computer vision methods to identify land use and land cover
from satellite imagery. We apply transfer learning using
pre-trained convolutional neural networks and vision trans-
formers. After fine-tuning on the NWPU-RESISC45 dataset,
which contains 31,500 RGB satellite images from 45 land
use and land cover classes, we achieve 95.9% classification
accuracy on the unseen test set. We find that transfer learn-
ing with full fine-tuning outperforms transfer learning with
feature extraction only. In addition, we find that the pre-
training dataset and methods can have a significant impact
on the model’s ability to transfer to new tasks.

1. Introduction

Land use describes how land is being by humans, such as
for residential, commercial, industrial, or agricultural pur-
poses. Land cover is a closely related concept, describing
the physical components present and visible on the surface
of the Earth, such as forests, wetlands, and urban areas.
Identifying and tracking land use and land cover is valuable
for many applications. It is important for monitoring and
managing changes in the environment, such as deforesta-
tion, habitat loss, and biome changes due to climate change
[34]. Urban and regional planning relies on land use data for
zoning decisions, infrastructure development, and resource
allocation [2]. Land cover data is valuable for agricultural
management to assess the health of croplands and perform
crop rotation, irrigation planning, and soil management.

Collecting land use and land cover data from ground sur-
veys and field surveys can capture detailed information, but
can be costly and slow to collect. Instead, satellite im-
agery and remote sensing can be used to effectively col-
lect land use and land cover data at a large scale. Nearly
all the Earth’s surface has been captured via satellite im-

agery, with large-scale satellite imagery collection missions
such as the Landsat program run by NASA and USGS [23]
and the Sentinel-2 program operated by the European Space
Agency [9]. As a result, there is far too much satellite im-
agery data to be analyzed and labeled completely by hu-
mans.

In this project, we apply modern deep learning and com-
puter vision methods to identify land use and land cover
from satellite imagery. By doing so, large amounts of
such data can be efficiently and accurately collected, which
would enable frequent and up-to-date large-scale monitor-
ing. Precisely, the input to our algorithm is an RGB satellite
image. We then use convolutional neural networks (CNNs)
and vision transformer (ViTs) to output a predicted land
use/land cover class, e.g., forest, farmland, freeway, etc.
We apply transfer learning using pre-trained ResNet-50 [13]
and ViT-B/16 [8] models. After fine-tuning, we are able to
achieve 95.9% classification accuracy on the unseen test set
of the NWPU-RESISC45 dataset, which contains 31,500
satellite images from 45 classes.

2. Related work

Satellite imagery datasets Satellite imagery has been of
interest to the machine learning community for many years.
One early dataset is the 2010 UC Merced Land Use dataset
[38], which contains 100 satellite images from each of 21
land use classes, such as agricultural, forest, parking lot,
etc. Yang and Newsam, the dataset authors, apply a bag-
of-visual-words approach to classify land use [38]. How-
ever, the UC Merced Land Use dataset is too small for
modern deep learning methods in computer vision. Since
then, larger datasets for satellite image classification have
been constructed. Some datasets classify specific, narrow
attributes of land, such as FireRisk [28] for fire risk as-
sessment and CropHarvest [33] for agricultural classifica-
tion. Other datasets classify broader categories of land
use. EuroSat [14] contains 27,000 satellite images from 10
classes, BigEarthNet [30] contains 590,000 images anno-
tated with multiple labels each, and Functional Map of the
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World [6] contains over 1 million satellite images annotated
with bounding boxes that show land or building use from
among 63 categories, along with geospatial metadata for
each image. In this project, we use the NWPU-RESISC45
dataset [5] dataset, which contains 31,500 satellite images
from 45 scene classes. We choose NWPU-RESISC45 for
its tractable size for this project and its diversity of scene
classes. We discuss more details in §3.

Deep learning computer vision models Deep learning
has been extremely popular in computer vision and has been
successfully applied to many tasks and domains. One pop-
ular and powerful class of models are convolutional neural
networks (CNNs), which use convolutions to efficiently per-
form localized operations to images and intermediate hid-
den states. There are many specific variations and CNN
architectures, such as AlexNet [19], GoogLeNet [31], VG-
GNet [29], ResNet [13], and DenseNet [15]. In this project,
we use ResNet, which uses residual shortcut connections
to improve gradient flow and training stability in very deep
networks. More recently, several computer vision models
using the self-attention-based Transformer [35] architecture
have been developed, including Vision Transformer (ViT)
[8], Swin Transformer [20], and data efficient image Trans-
formers (DeiT) [32]. In this project, we use ViT, which
closely resembles the original Transformer architecture.

Transfer learning In transfer learning, a model is first
pre-trained on a large dataset, then used to extract features
or be fully fine-tuned on a smaller, task-specific dataset of
interest. Early transfer learning approaches found that pass-
ing features from CNNs pre-trained on ImageNet [26] into
simple linear SVM or logistic regression classifiers could
achieve high performance on downstream tasks and chal-
lenges [7, 27, 39]. Transfer learning has been success-
fully applied to many models and architectures. For ex-
ample, performing transfer learning by fully fine-tuning a
pre-trained ResNet [4] or ViT [8] has been found to achieve
strong performance on downstream tasks.

Transfer learning has also been applied to the satellite
imagery domain. For example, Jean et al. (2016) [17]
fine-tune ImageNet pre-trained CNNs on proxy metrics for
poverty in order to predict poverty levels from satellite im-
agery from five African countries. Several works have in-
vestigated training pre-trained models specifically for trans-
fer learning to satellite imagery tasks. Neumann et al.
(2019) [24] investigate in-domain representation learning to
train features for satellite imagery and which dataset char-
acteristics are beneficial for this task. Wang et al. (2023)
[37] apply self-supervised pre-training methods, such as
momentum contrast (MoCo) [11], on large-scale unlabeled
satellite imagery to train models which can be effectively
fine-tuned on downstream satellite imagery applications.

harbor roundabout meadow freeway
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Figure 1. Randomly selected images from the train split of the
NWPU-RESISC45 dataset.

Bastani et al. (2023) [3] also pre-train on satellite imagery,
but they perform supervised learning on a variety of labeled
tasks.

3. Dataset
We use the NWPU-RESISC45 dataset [5] for remote

sensing image scene classification (RESISC), created by
Northwestern Polytechnical University (NWPU). NWPU-
RESISC45 contains 31,500 satellite images from 45 scene
classes, with 700 images in each class. We load the dataset
from the Hugging Face Hub1, which has pre-divided the
dataset into train, validation, and test splits. The train split
contains 60% (18,900 images) of the images in the entire
dataset, the validation split contains 20% (6,300 images),
and the test split contains 20% (6,300 images).

Figure 1 shows images from NWPU-RESISC45. The
45 scene classes include land use and land cover classes
(e.g., desert, farmland, industrial area, mountain), man-
made objects and structures (e.g., airplane, bridge, sta-
dium), and natural landscape features (e.g., beach, cloud,
river). The images are RGB satellite images with a reso-
lution of 256 × 256 pixels. The spatial resolution varies
from about 30 meters to 0.2 meters per pixels. The dataset
was constructed by experts in remote sensing image inter-
pretation, who extracted and labeled satellite imagery from
Google Maps. The images span over 100 countries across
the world, including least developed, developing, and high
developed countries.

NWPU-RESISC45 is designed to be challenging due to
high intraclass diversity and high interclass similarity. For
interclass diversity, images were carefully selected to dis-
play high variability between images, including different il-
lumination conditions, spatial resolution, background, sea-
son, and weather conditions. For interclass similarity, some
similar classes were chosen that may be hard for a model to
distinguish, such as freeway vs. overpass, circular farmland
vs. rectangular farmland, and medium residential vs. sparse

1https://huggingface.co/datasets/timm/resisc45
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residential.

3.1. Data preprocessing

For both training and inference, we perform the standard
normalization of subtracting the per-channel (RGB) mean
pixel value in the train split and dividing by the per-channel
standard deviation of pixel values in the train split. As a
result, the distribution of each RGB channel in the training
set has mean 0 and standard deviation 1, which allows for
more stable and efficient training.

The sizes of the images in NWPU-RESISC45 are 256×
256 pixels, but the models we use in the experiments expect
an input size of 224× 224 pixels. During training, to resize
the input and as a form of data augmentation, we randomly
select a 224 × 224 sized crop from the original 256 × 256
sized image (a new random crop is selected each time the
image is seen across epochs). After selecting the crop, for
additional data augmentation, we randomly flip the image
horizontally and vertically, independently with probability
0.5 each. Flipping horizontally or vertically is a valid form
of data augmentation for this dataset since the satellite im-
ages are taken aerially from a vertical viewpoint. During
inference, we simply resize the entire image to 224 × 224
pixels using bilinear interpolation and anti-aliasing.

4. Methods
4.1. Problem setup

Concretely, the input x to our problem is an RGB satel-
lite image, as described in §3. These images are represented
as tensors with pixel values in the range [0, 255]. After
performing data normalization and resizing, the images be-
come 3× 224× 224 tensors of real numbers.

The output ŷ to our problem is a predicted scene class for
the image, out of the K scene classes defined in the dataset.
More specifically, the model outputs a set of logits/scores z,
where each zi ∈ R is the logit value for class i ∈ [1,K].
These logits are converted into a probability distribution via
the softmax function. The probability pi that the model puts
on class i is given by

pi =
ezi∑K
j=1 e

zj
. (1)

The model’s prediction is taken to be the class with the high-
est probability. The higher the probability, the more “confi-
dent” the model is in its prediction.

During training, we use the standard cross-entropy loss
function between the model’s predictions and the ground-
truth correct label. Letting y be the ground-truth correct
class label for an example, the loss on that example is given
by

L(θ) = − log(py) (2)

Figure 2. Building block for residual learning. The shortcut con-
nection implements an identity mapping which skips over the
stacked layers. Figure is taken from He et al. (2016) [13]

using the natural logarithm with base e, and θ is the model’s
parameters that we are trying to optimize. If the model in-
correctly places close to 0 probability on the correct class y,
the loss approaches +∞, and if the model correctly places
close to probability 1 on the correct class y, the loss ap-
proaches 0. To aggregate the losses of examples across
a mini-batch or the entire dataset, we simply average the
losses.

4.2. Models

We use two model architectures for our experiments:
1) ResNet [13], which is a convolutional neural network
(CNN) architecture, and 2) the vision transformer (ViT) [8].

4.2.1 ResNet

ResNet, short for residual network, is a CNN architec-
ture proposed by He et al. in 2015 [13]. At the time
of its release, ResNet significantly advanced the state-
of-the-art in computer vision, winning first place in the
2015 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC), which measures error on the ImageNet test set
[26].

ResNet seeks to address the observed issue that deeper
neural networks are more difficult to train due to vanish-
ing or exploding gradients, which are propagated and am-
plified through the model’s layers. To alleviate this issue,
ResNet introduces a residual learning framework, where
layers learn residual functions with respect to the layer in-
puts, rather than learn unreferenced functions. To do so,
a shortcut connection, which implements the identity map-
ping, is applied to every few stacked layers, forming a build-
ing block, as shown in Figure 2.

Formally, a building block is defined as

y = F (x, {Wi}) + x. (3)

In this equation, x and y are the input and output vec-
tors of the stacked layers, respectively. The function
F (x, {Wi}) is the function to be learned by the stacked
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layers, parametrized by weights {Wi}. The elementwise
addition of the input x to this function is the identity map-
ping shortcut connection. As a result of this shortcut con-
nection, the stacked layers learn an offset or residual from
the identity mapping, rather than learning a completely new
function from scratch. These shortcut connections allow
for improved gradient flow throughout the layers of a deep
neural network, allowing for more stable training and better
overall results [13].

Concretely, in the ResNet CNN architecture, the build-
ing blocks consist of shortcut connections applied to stacks
of convolution layers. In our project, we use the 50-
layer ResNet-50 architecture, which uses bottleneck resid-
ual blocks consisting of three layers: 1 × 1, 3 × 3, and
1× 1 convolutions. Batch normalization [16] is applied af-
ter each convolution. Within the 50 layers, these blocks are
repeated 3–6 times before the output width and height are
both halved, and the number of channels is doubled. After
all the convolutional layers, average pooling, a fully con-
nected layer, and softmax is applied to obtain classification
probabilities. ResNet-50 contains approximately 26 million
parameters.

4.2.2 Vision Transformer (ViT)

The Vision Transformer (ViT) model architecture [8] ap-
plies the self-attention-based Transformer architecture [35]
to image classification tasks.

The self-attention layer takes a matrix of input vectors
X ∈ Rn×d, where n is the number of input tokens and d is
the embedding dimensionality. It is parametrized by weight
matrices WQ,WK ,WV ∈ Rd×dk , where dk is the dimen-
sionality of the queries, keys, and values. Then, the query,
key, and value matrices (Q,K, V ∈ Rn×dk ) are computed
as

Q = XWQ, K = XWK , V = XWV . (4)

Then, scaled dot-product attention is used to compute the
output matrix O ∈ Rn×dk as

O = softmax

(
QKT

√
dk

)
V. (5)

In multi-head self-attention, there are h attention heads,
each with their own weight matrices. Often, the attention
dimensionality is set to be dk = d/h. Each head computes
an output matrix Oh ∈ Rn×dk . Then, to combine these out-
puts into a final output O ∈ Rn×d, they are concatenated
together and multiplied by a matrix WO ∈ R(h·dk)×d, i.e.,

O = [O1;O2; . . . ;Oh]WO. (6)

Transformer encoder blocks consist of multi-head self-
attention and multilayer perceptron (MLP) blocks, along
with layer normalization [1] and additive residual shortcut
connections, as discussed earlier [13].

Figure 3. Vision Transformer (ViT) model architecture diagram,
taken from Dosovitskiy et al. (2020) [8]. Input images are tok-
enized into patches, which are then passed into the Transformer
encoder. To classify the image, an MLP head is applied to the fi-
nal hidden state of the special [class] token prepended to the
beginning of the sequence.

The Vision Transformer (ViT), shown in Figure 3, first
divides the input image into patches, linearly projects the
flattened patches, and adds position encodings to generate
input tokens. The position encoding allows the model to
know where the original patches appeared, since the self-
attention layer does not explicitly contain any information
about position. Then, these tokens are passed through the
Transformer encoder. To classify the image, an MLP head
is applied to the final hidden state of the special [class]
token prepended to the beginning of the sequence.

In this project, we use the ViT-B/16 architecture, which
is ViT-Base with 16 × 16 input patches. ViT-B/16 has ap-
proximately 87 million parameters.

4.3. Baseline: random initialization

As a baseline learning method, we randomly initialize
the ResNet-50 and ViT-B/16 models, then train on only
the NWPU-RESISC45 dataset using the cross-entropy loss
function (Equation 2). We use the default initialization
methods used in the PyTorch TorchVision [22] implementa-
tions of these models, which is Kaiming initialization [12]
for ResNet and Xavier initialization [10] for ViT.

4.4. Method: transfer learning

To improve on the random initialization baseline, we use
transfer learning [7, 27, 39, 40],where a model is first pre-
trained on a large dataset, then used to extract features or
be fully fine-tuned on a smaller, task-specific dataset of in-
terest. In our project, we fine-tune on the relatively small
NWPU-RESISC45 dataset. Both ResNet and ViT have
been found to enable strong transfer learning performance
to downstream tasks when pre-trained on a large dataset
[4, 8].

When performing transfer learning for this project, we
replace the final fully connected layer of ResNet-50 and
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MLP classification head of ViT-B/16 with a new, randomly
initialized linear layer mapping from the final hidden state
to the 45 classes of the NWPU-RESISC45 dataset. Then,
we fine-tune on NWPU-RESISC45 using the cross-entropy
loss function (Equation 2). We experiment with two meth-
ods for fine-tuning.

1. Feature extraction. In this method, the new randomly
initialized linear head are the only parameters that are
trained, and the rest of the pre-trained model is frozen.
In other words, the pre-trained model is used to ex-
tract features from the fine-tuning dataset, where the
features are the final hidden state. Then, these features
are passed as input into the new linear classifier, which
is being fine-tuned.

2. Full fine-tuning. In this method, the entire pre-trained
model and new linear head is fine-tuned on the new
dataset. We use a lower learning rate during fine-
tuning to avoid moving far away from the pre-trained
weights, which are likely a good starting point.

Feature extraction is more computationally efficient to train,
since only the new linear classifier is being updated. Fea-
ture extraction works well if the fine-tuning dataset is sim-
ilar to the pre-training dataset, but it may not work as well
if the datasets are dissimilar, in which case the pre-trained
model may not extract optimal, meaningful features from
the new fine-tuning dataset. Full fine-tuning requires more
computational resources to train, as the entire pre-trained
model is updated, but it may achieve better performance in
some cases, since updating all parameters allows for more
representational power and may better handle large dissim-
ilarities between the pre-training and fine-tuning datasets.

4.5. Pre-trained models

We experiment with transfer learning using models pre-
trained on 1) ImageNet [26] and 2) Sentinel-2 unlabeled
satellite imagery data [37].

ImageNet We use ResNet-50 and ViT-B/16 weights up-
loaded and pre-trained by PyTorch TorchVision [22, 36] on
ImageNet [26]. ImageNet is a large-scale object classifica-
tion dataset containing over one million images belonging
to 1,000 classes. The pre-training classification objective is
to minimize the cross-entropy loss, as in Equation 2.

Sentinel-2 We use ResNet-50 weights which were pre-
trained on over one million unlabeled Sentinel-2 RGB satel-
lite images via self-supervised learning [37]. Specifically,
we use the weights that were trained via momentum con-
trast (MoCo) [11], which is a form of contrastive represen-
tation learning. In MoCo, positive pairs are augmentations

of the same example, and all other images are negative sam-
ples. The negative samples are stored in a running queue
of keys, and the contrastive loss is computed between the
current query and keys. The gradients are computed only
through the queries, and the key encoder is slowly updated
via a momentum update rule.

4.6. Existing code libraries

We used the ResNet-50 and ViT-B/16 models imple-
mented by the PyTorch TorchVision library [22], along with
pre-trained weights provided by TorchVision. We wrote
training code in PyTorch [25], referring to a PyTorch clas-
sifier training tutorial2.

5. Experiments and results
5.1. Training procedure

For each model and method, we fine-tune on the NWPU-
RESISC45 dataset for 10 epochs. We use a batch size of
128 examples in order to take advantage of GPU parallelism
and maximize memory utilization. We use the widely used
AdamW optimizer [18, 21]. AdamW estimates the first and
second moments of the gradient to enable per-parameter
adaptive learning rates and uses weight decay for regular-
ization. The weight decay λ hyperparameter controls the
strength of this regularization. We use the standard AdamW
beta hyperparameters of (β1, β2) = (0.9, 0.999). For the
learning rate schedule, we perform a linear warmup from
0 to the maximal learning rate over the first 5% of training
steps, followed by a linear decay from the maximal learning
rate to 0 for the remaining training steps.

We perform a hyperparameter grid search across the
maximal learning rate and weight decay strength, training
each combination for the full 10 epochs and choosing the
combination that attains the highest accuracy on the vali-
dation set. The hyperparameter search space and chosen
hyperparameters for each model and method are shown in
Table 1. The exact search spaces were chosen by observing
hyperparameters used in the literature [13, 8] and manually
narrowing down search spaces by performing short training
runs.

5.2. Results

Our primary evaluation metric is accuracy, defined sim-
ply as the proportion of images where the model’s top-1
predicted class label matches the ground-truth correct class
label. For the chosen hyperparameter combination for each
model and method, we report accuracies on the train, vali-
dation, and test sets in Table 2.

For both ResNet-50 and ViT-B/16, we find that perform-
ing full fine-tuning transfer learning using ImageNet pre-

2https://pytorch.org/tutorials/beginner/blitz/
cifar10_tutorial.html
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Model and method Maximal learning rate Weight decay

ResNet-50
Random initialization {1e-3, 3e-3, 1e-2} {1e-4, 1e-3}
ImageNet pre-train, feature extraction {1e-3, 3e-3, 1e-2} {0, 1e-4}
ImageNet pre-train, full fine-tuning {3e-5, 1e-4, 3e-4} {1e-4, 1e-3}
Sentinel-2 pre-train, feature extraction {1e-3, 3e-3, 1e-2} {0, 1e-4}
Sentinel-2 pre-train, full fine-tuning {3e-5, 1e-4, 3e-4} {1e-4, 1e-3}

ViT-B/16
Random initialization {1e-4, 3e-4, 1e-3} {1e-2, 1e-1}
ImageNet pre-train, feature extraction {1e-3, 3e-3, 1e-2} {0, 1e-4}
ImageNet pre-train, full fine-tuning {3e-5, 1e-4, 3e-4} {1e-2, 1e-1}

Table 1. Learning rate and weight decay hyperparameter search spaces for each model and method. The bolded hyperparameter combina-
tions attained the highest accuracy on the validation set.

Accuracy

Model and method Train Validation Test

ResNet-50
Random initialization 0.838 0.813 0.796
ImageNet pre-train, feature extraction 0.949 0.883 0.881
ImageNet pre-train, full fine-tuning 0.998 0.960 0.959
Sentinel-2 pre-train, feature extraction 0.863 0.827 0.820
Sentinel-2 pre-train, full fine-tuning 0.977 0.935 0.930

ViT-B/16
Random initialization 0.881 0.781 0.753
ImageNet pre-train, feature extraction 0.966 0.901 0.885
ImageNet pre-train, full fine-tuning 0.999 0.961 0.955

Table 2. Train, validation, and test set accuracies for each model and method, using the training hyperparameters chosen in Table 1. For
both ResNet-50 and ViT-B/16, transfer learning with full fine-tuning on the ImageNet pre-trained weights attain the highest performance.

trained weights achieves the highest accuracies. The top
accuracies are nearly identical between ResNet-50 and ViT-
B/16, with test set accuracies of 0.959 and 0.955, respec-
tively. These high accuracies indicate that transfer learn-
ing can successfully be applied to the NWPU-RESISC45
dataset.

We do not believe that these models have overfitted to the
training data. Although the training accuracies are nearly
perfect, the test set accuracies are very close at around just
0.05 lower. The weight decay in AdamW [21] and our use
of random data augmentations and transformations in §3.1
likely contributed to the avoidance of overfitting. It is some-
what surprising that the top ResNet-50 and ViT-B/16 mod-
els attain the same accuracies, since ViT-B/16 has over three
times as many parameters as ResNet-50 (87 million param-
eters vs. 26 million parameters).

For both ResNet-50 and ViT-B/16, the baseline random
initialization method performs significantly worse than the
transfer learning methods. This is expected, as random ini-

tialization does not start from capable pre-trained weights
that already encode meaningful, useful features. However,
random initialization still achieves moderately high, reason-
able test set accuracies of 0.796 and 0.753 for ResNet-50
and ViT-B/16, respectively. So, random initialization is not
an extremely weak baseline method, it just performs rela-
tively poorly in comparison to the much stronger transfer
learning methods.

In both ResNet-50 and ViT-B/16, transfer learning with
feature extraction only performs worse than transfer learn-
ing with full fine-tuning, with final test set accuracies lower
by about 0.07-0.11. We hypothesize that this gap may
be due to differences between the pre-training datasets
and the fine-tuning NWPU-RESISC45 dataset. The pre-
trained weights may not extract optimal features for the new
dataset, so allowing the full weights to be updated allows for
more flexibility to learn altered features that are more use-
ful specifically for NWPU-RESISC45. However, feature
extraction only still achieves relatively high accuracies of
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around 0.88 when using the ImageNet pre-trained weights.
So, feature extraction is still a reasonable method to use,
especially when computational resources are limited. Also,
since only the linear classifier head is trained, the same pre-
trained backbone weights can be used for many downstream
tasks. This allows for efficient task-switching if multiple
downstream tasks need to be performed, as only the linear
classifier head needs to switched out. This also reduces the
size of the weights that need to be stored.

Somewhat surprisingly, transfer learning with the Ima-
geNet pre-trained weights performs better than when us-
ing the Sentinel-2 pre-trained weights. When perform-
ing full fine-tuning, the ImageNet weights attain a test
accuracy of 0.959, whereas the Sentinel-2 weights attain
a test accuracy of 0.930. This is surprising because the
Sentinel-2 dataset of satellite imagery is more similar to the
NWPU-RESISC45 satellite imagery dataset than ImageNet
is, which contains ground-based imagery of miscellaneous
objects and no satellite imagery [26]. We hypothesize that
this performance gap may because the ImageNet weights
were pre-trained for longer than the Sentinel-2 weights.
The ImageNet weights were pre-trained for 600 epochs
[36], whereas the Sentinel-2 weights were pre-trained for
100 epochs [37], with both datasets consisting of around
1 million examples. In this case, the longer pre-training
may outweigh the dataset similarity between Sentinel-2 and
NWPU-RESISC45. Another potential reason for the dif-
ference is that the ImageNet weights are pre-trained via su-
pervised learning on labeled classification data, whereas the
Sentinel-2 weights are pre-trained via self-supervised learn-
ing on unlabeled data. Since our downstream task is classifi-
cation, pre-training on a classification task may yield more
relevant features. Given more time and resources, future
work may investigate whether pre-training on satellite im-
agery using supervised learning or more data can increase
the performance of transfer learning.

5.3. Error analysis

In this section, we perform a qualitative error analysis
of which classes the top-performing ResNet-50 model (Im-
ageNet pre-trained, transfer learning, full fine-tuning) pre-
dicts incorrectly the most often. Figure 4 displays the test
set error rates for all scene classes in NWPU-RESISC45,
where the error rate for class y is the proportion of images
with true label y that the model incorrectly labels.

The classes with the highest error rates have other classes
in the dataset that are very similar. For example, palace and
church have the two highest error rates and are very similar
to each other from satellite imagery. Runway has the third-
highest error rate, and is similar to classes such as airport,
freeway, overpass, and intersection. The classes dense resi-
dential, medium residential, and sparse residential are very
similar, and they all have relatively high error rates. It is
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Figure 4. Per-class test set error rates for the top-performing
ResNet 50 model (ImageNet pre-trained, transfer learning, full
fine-tuning). The classes with the highest error rates are those that
have other similar classes in the dataset, e.g., palace and church.

natural that the model struggles with these similar classes,
as images from similar classes will be similar in many ways.
The distribution of images from similar classes likely have
much overlap. In Figure 5, we show concrete examples of
images from the test set that the model incorrectly classi-
fied where the incorrect predicted class is very similar to
the correct class.

7



Predicted: church
Correct: palace

Predicted: airport
Correct: runway

Predicted: dense residential
Correct: medium residential

Figure 5. Example test set images that the top-performing ResNet-
50 model misclassified (ImageNet pre-trained, transfer learning,
full fine-tuning). In this examples, the incorrect predicted class is
very similar to the correct class.

6. Conclusion

In this project, we applied transfer learning using pre-
trained ResNet-50 and ViT-B/16 models for identifying
land use and land cover from satellite images. After
fine-tuning on the NWPU-RESISC45 dataset, we achieved
95.9% classification accuracy on the unseen test set. For
our setting, transfer learning with full fine-tuning outper-
forms transfer learning with feature extraction only. We hy-
pothesize that the pre-trained weights may not extract opti-
mal features from NWPU-RESISC45, so allowing the full
weights to be updated allows for more flexibility to learn al-
tered features that are more useful specifically for NWPU-
RESISC45. Surprisingly, we found that transfer learning to
NWPU-RESISC45 performed better using ImageNet pre-
trained weights than Sentinel-2 satellite imagery pre-trained
weights.

Future work may explore additional pre-training meth-
ods to learn a model that transfers well to downstream satel-
lite imagery tasks. For example, future work could investi-
gate if training for more epochs, on more data, on labeled
data, or with different self-supervised/unsupervised learn-
ing methods yields pre-trained models with better features
for subsequent transfer learning. In addition, future work
may explore learning algorithms to achieve high accuracy
on all classes, including difficult classes that are highly sim-
ilar to other classes in the dataset. Finally, future work may
explore using multimodal language/vision models for satel-
lite imagery. Such models could provide more detailed lan-
guage descriptions of the land use and land cover in a satel-
lite image, beyond just a label from a fixed set of classes.

Contributions

Chenchen Gu performed all the work for this project.
This project is not being shared with another class.
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