
Transferring Vision: Teaching CNNs to See with ViT Wisdom

Kris Jeong
Stanford University

Department of Computer Science
kjeong@stanford.edu

Pauline Arnoud
Stanford University

Department of Computer Science
parnoud@stanford.edu

Abstract

This paper explores the use of Vision Transformers (ViTs)
as teacher models to enhance the training efficiency and
performance of Convolutional Neural Networks (CNNs)
through a knowledge distillation process. We replicate the
distillation strategy proposed by Touvron et al., where a
CNN teacher model is used to distill knowledge into a ViT
student model. Inspired by their approach, we reverse the
roles by employing a pretrained ViT as the teacher and a
ResNet-50 as the student model. Our methodology adapts
their original distillation loss function, optimizing the stu-
dent CNN to learn from both the ground truth labels and
the teacher ViT’s predictions. This approach aims to com-
bine the computational efficiency of CNNs with the ad-
vanced learning capabilities of ViTs. Experimental results
on the CIFAR-100 dataset indicate that the distilled ResNet-
50 demonstrates a steady increase in accuracy, suggesting
the potential to surpass the baseline ResNet-50 with ex-
tended training. This study contributes to the understand-
ing of cross-architecture knowledge distillation and offers
insights for future research in efficient model training.

1. Introduction
In recent years, transformers have demonstrated remark-

able success in computer vision tasks, significantly outper-
forming conventional models. However, their extensive re-
source requirements and prolonged training times pose con-
siderable challenges. Vision Transformers (ViTs), while
highly effective, demand substantial computational power
and time, which can be prohibitive for many researchers and
practitioners [1].

A notable attempt to address these challenges is the
teacher-student model proposed by Touvron et al. [2],
which leverages a more efficient and well-performing
model, such as RegNetY-16GF [3], to facilitate the training
of ViTs. This approach successfully achieved comparable
accuracy with significantly reduced training time, specifi-
cally 73 hours. Despite this improvement, the training dura-

tion remains a barrier for those with limited computational
resources, particularly when working with smaller, custom
datasets.

To further enhance training efficiency, we investigate
whether the same strategy can be applied to Convolutional
Neural Networks (CNNs), which are generally more effi-
cient to train compared to ViTs due to their lower computa-
tional complexity and inherent inductive biases [4]. Specif-
ically, we explore the possibility of utilizing a pretrained
ViT as a teacher model to guide the training of a CNN. Our
hypothesis is that this additional guidance from the teacher
model will lead to improved performance or faster training
of the CNN.

In this study, we employ a distillation training algorithm
that adapts and modifies the approach proposed by Touvron
et al. to suit CNNs. We train a CNN on a single 8-GPU
node over 12 hours, leveraging the timm library [5] to im-
plement our original contributions. The key contributions
of this paper are as follows:

• We introduce an original CNN-specific distillation
procedure inspired by the transformer-based distilla-
tion method of Touvron et al., effectively reversing
the roles of the teacher and student models. Our
model learns from both the ground truth labels and
the teacher’s predictions, optimizing a weighted sum
of these inputs.

• Experimental results demonstrate that while our dis-
tilled ResNet-50 did not outperform the baseline
ResNet-50 within the given epoch limit, the steady im-
provement suggests potential for better performance
with extended training. We compare and contrast these
results with Touvron et al.’s findings, generating in-
sights about the structural differences between CNNs
and ViTs and their use cases.

This study aims to explore the feasibility of integrating
the advantageous properties of transformers into CNNs and
to derive insights regarding cross-architectural knowledge
transfer.
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2. Related Works

Since their introduction in 2017 by Vaswani et al. [6],
transformers have established themselves as the reference
model for natural language processing. Dosovitskiy et al.
extended this paradigm to computer vision with the in-
troduction of Vision Transformers (ViTs) [1]. ViTs re-
move the need for convolutions by segmenting images into
patches and processing these patches as sequences through
self-attention mechanisms. This architecture excels in cap-
turing long-range dependencies, surpassing state-of-the-art
Convolutional Neural Networks (CNNs) in both accuracy
and efficiency on various benchmarks. However, a key
limitation of this work was that training of these models
was resource-intensive, relying on the extensive JFT-300M
dataset [7] (which consists of 300 million images) and did
not generalize well with limited resources.

To address these limitations, Touvron et al. [2] lever-
aged Hinton et al.’s work on Knowledge Distillation [8]
to introduce a specialized distillation procedure for ViTs.
Their approach integrates an additional class token, termed
the ”distillation token,” enabling the student ViT to learn
from both the teacher CNN’s predictions and the ground
truth labels from ImageNet. Utilizing RegNetY-16GF as
the teacher model, their data-efficient image transformer
(DeiT) achieved comparable accuracy on ImageNet to the
original ViT without any external pretraining data and main-
tained competitive performance across various downstream
tasks, including CIFAR-10, CIFAR-100, Oxford-102 Flow-
ers, Stanford Cars, and iNaturalist-18/19. [9, 10, 11, 12].

Despite the advancements of ViTs, CNNs have retained
their relevance due to their computational efficiency and
competitive performance on smaller datasets. CNNs, intro-
duced with AlexNet in 2012 [13], have been the standard for
image classification tasks due to their lower computational
complexity, smaller parameter space, and inherent inductive
biases such as translation invariance, which facilitate more
efficient training compared to ViTs.

The integration of transformer-like attention mecha-
nisms into CNNs has been a subject of ongoing research.
Several studies have proposed architectures that leverage at-
tention mechanisms within CNNs [14, 15], some even de-
signing directly transplanting transformer components into
CNNs [16, 17]. Building upon these efforts, our work pro-
poses a novel approach inspired by Touvron et al.’s distilla-
tion model. Specifically, we employ a pretrained ViT as a
teacher model to guide the training of a student CNN, aim-
ing to achieve enhanced performance with more resource-
efficient training.

3. Datasets

For our project, we used the CIFAR-100 dataset from
the Canadian Institute for Advanced Research (CIFAR), in-

troduced by Krizhevsky and Hinton in their 2009 techni-
cal report, ”Learning multiple layers of features from tiny
images” [9]. The CIFAR-100 dataset is widely used for
benchmarking image classification algorithms, and consists
of 60,000 32x32 color images across 100 classes, with 600
images per class. As we are investigating resource-efficient
training, we wanted a dataset that was smaller than Ima-
geNet or JFT-300M. We split this dataset into 50,000 train-
ing images and 10,000 test images. All the images are of a
fixed resolution of 32x32 pixels ensuring uniformity across
the dataset and facilitating efficient training and evaluation
of our models. For each of our models, we used PyTorch’s
torchvision.datasets module to load the CIFAR-100 dataset
and create data loaders for the training and validation sets.

To augment the training data and improve the robustness
of our models, we applied several preprocessing steps and
transformations. For the training set, we performed random
cropping with a padding of 4 pixels, followed by random
horizontal flipping. These augmentations help in simulat-
ing variations in the dataset, thus enhancing the model’s
generalization capabilities. Additionally, the images were
normalized using the mean and standard deviation values
of the CIFAR-100 training set: [0.5071, 0.4865, 0.4409]
for the mean and [0.2673, 0.2564, 0.2762] for the standard
deviation. For the validation set, we applied only normal-
ization using the same mean and standard deviation values.

In the original DeiT (Data-efficient Image Transformers)
model [2], the RegNetY-160 CNN teacher is initialized with
weights pretrained on the ImageNet dataset [18], which
consists of 1.2 million natural images across 1,000 classes.
To adapt the RegNetY-160 teacher model to the CIFAR-100
dataset, we modified the final linear layer to have 100 output
classes instead of the original 1,000 classes for ImageNet.
Similarly, in our new proposed DeiT architecture, we ini-
tialized our ViT teacher with weights pretrained on the Im-
ageNet dataset. This pre-training on the large-scale Ima-
geNet dataset allows the ViT to learn rich visual representa-
tions that we wanted to take advantage of so they might be
transferred and distilled into the CIFAR-100 domain. We
therefore kept the original ViT model architecture used in
the paper and, to accommodate the CIFAR-100 dataset, bi-
linearly interpolated the 32x32 images to 224x224 to match
the expected input resolution of the pretrained ViT student
model.

4. Methods

Our methodology begins with a simplified recreation
of Touvron et al.’s architecture to establish a baseline on
CIFAR-100, verifying the reproducibility of their results on
our machines. We then implement our original approach.
We visualize these architectures in Figures 2 and 3 respec-
tively.
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4.1. Recreating Touvron et al.’s Implementation

The Vision Transformer (ViT) architecture, as proposed
by Dosovitskiy et al. [1], processes images by segment-
ing them into non-overlapping patches. For an image of
size H ×W with patch size P × P , the image is divided
into H×W

P 2 patches. Each patch is flattened into a vec-
tor and linearly projected into a D-dimensional embedding
space. To retain positional information, learnable position
embeddings are added to these patch embeddings. The se-
quence of patch embeddings is then processed by a stan-
dard Transformer encoder, which comprises alternating lay-
ers of multi-head self-attention and feed-forward networks
(FFNs) with residual connections and normalization.

In the ViT architecture, the class token is a trainable vec-
tor, appended to the patch tokens before the first layer. This
token traverses the transformer layers and is then projected
with a linear layer to predict the class. This class token,
inherited from NLP models, departs from the typical pool-
ing layers used in computer vision to predict the class. The
transformer processes batches of (N + 1) tokens of dimen-
sion D, of which only the class vector is used to predict the
output. This architecture forces the self-attention to spread
information between the patch tokens and the class token:
at training time, the supervision signal comes only from the
class embedding, while the patch tokens are the model’s
only variable input.

Figure 1. Architecture of the Vision Transformer (ViT) as pro-
posed by Dosovitskiy et al. [1].

Touvron et al. extended this model by augmenting
the original ViT with an additional class token termed the
”distillation token.” The class token learns to replicate the
ground truth labels, while the distillation token learns to
replicate the teacher model’s predictions. During training,
these two tokens’ cross-entropy losses are combined in a
weighted sum, and during inference, the average of these
predictions is returned. By incorporating a token specifi-
cally focused on mimicking the teacher’s outputs, the stu-
dent transformer can more effectively distill the teacher’s
knowledge into its own parameters.

Touvron et al. explored two methods of distillation: soft

distillation and hard distillation. Soft distillation minimizes
the Kullback-Leibler divergence between the softmax of the
teacher and the softmax of the student model. Hard dis-
tillation takes the teacher model’s class predictions as the
ground truth labels for the distillation token. We imple-
mented the latter, which Touvron et al. reported consistently
outperformed the former. We therefore used the following
loss function:

LhardDistill
global =

1

2
LCE(ψ(Zs), y) +

1

2
LCE(ψ(Zs), yt).

where Zs are the logits from the student model, yt =
argmaxc Zt(c) is the prediction of the teacher model, y is
the ground truth labels, and ψ is the softmax function.

As for the selection of teacher models, Touvron et al. ex-
perimented with several CNNs and ViTs and concluded that
the RegNet Y-16GF yields the best performance. Their im-
plementation imports this model from the timm library and
loads in their pretrained weights. In our recreation, we re-
placed the classifier head to match the CIFAR-100 dataset.

For the student model, Touvron et al. experimented
with ViTs with different parameter combinations. In our
recreation, we chose to replicate the DeiT-base model
(deit-base-distilled-patch16-224), as it had the best accu-
racy compared to models with a smaller parameter space.
The architecture is identical to the original paper except for
the classifier head, which we modified to output the correct
number of classes for CIFAR-100.

4.2. Developing Our Architecture

Subsequently, we developed our original architecture us-
ing a ViT teacher and a CNN student. We used the same
pipeline we built to recreate Touvron et al.’s work, with the
following changes.

First, for the teacher model, we selected the
deit-base-patch16-224 model, which Touvron et al.
trained on ImageNet and provided the trained weights
for. We adjusted the classifier head to output the correct
number of classes for CIFAR-100, resizing input images to
224x224.

For the student model, we chose ResNet-50 and trained it
from scratch. Given our project’s aim to investigate perfor-
mance improvements with less training, using a more com-
plex CNN would likely obscure the impact of the teacher.
Thus, a simpler model like ResNet-50 allows clearer obser-
vation of the teacher’s influence.

Our ‘SwitchedDistillationLoss’ class combines the
Cross Entropy Loss between the student’s predictions and
the ground truth labels with the Cross Entropy Loss be-
tween the student’s and teacher’s predictions. The loss used
for backpropagation is a weighted sum of these two compo-
nents. A key design decision we made is to have the student
model make a single prediction as opposed to two predic-
tions (a ”distillation map” and a regular activation map),
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Figure 2. Diagram of Touvron et al.’s distillation model.

Figure 3. Diagram of our proposed switched teacher-student model.

which would be more aligned with Touvron et al.’s ap-
proach. This is because our student model is a CNN, which
makes the implementation of a separate distillation token
less straightforward and potentially less effective. CNNs are
typically more effective when the complexity of the model
is reduced to match their inductive biases (e.g., local recep-
tive fields). Introducing a distillation token could disrupt
this balance, making the training less efficient. By using
a single output, we ensure that the CNN’s architecture re-

mains optimized for its strengths, while still benefiting from
the teacher model’s distilled knowledge.

By synthesizing the efficiency of CNNs with the ad-
vanced learning capabilities of ViTs through distillation,
our methodology aims to enhance performance while re-
ducing resource consumption.
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Figure 4. Test accuracy of baseline ResNet-50 and distilled ResNet-50.

5. Experiments & Results

5.1. Experimental Setup

In our experiment, we sought to validate the effective-
ness of the distillation process by comparing the perfor-
mance of a distilled ResNet-50 against a vanilla ResNet-
50 baseline. To ensure the reliability and reproducibility of
our results, we referenced Wightman et al.’s comprehensive
survey on training strategies for ResNet models [19], adopt-
ing their hyperparameters to train our baseline ResNet-50.
This approach helped us establish a robust baseline, ensur-
ing that any observed differences in performance could be
attributed to the distillation process rather than anomalies in
the training setup.

Wightman et al. reported a Top-1 accuracy of 75.3% for
a ResNet-50. In our experiments on CIFAR-100, our base-
line ResNet-50 achieved a Top-1 accuracy of approximately
72%. We then applied the same hyperparameters to train the
distilled ResNet-50, maintaining consistency across experi-
ments. This consistency in experimental setup ensures that
any differences in results can be attributed to the only vari-
able we modified: the incorporation of the distillation loss,
which measures how closely our student model mimics the
outputs of the teacher ViT.

Our primary metric for evaluation was Top-1 accuracy,
which measures the percentage of test examples where the
model’s highest confidence prediction matches the ground
truth label. We picked this metric because it directly re-
flects the model’s predictive power and offers a strict and
clear measure of correctness, avoiding the leniency of met-

Parameter Value
Model ResNet-50
Batch Size 128
Epochs 2000
Seed 1
Criterion nn.CrossEntropyLoss
Num Workers 1
Input Size 32
Num Classes 100
Learning Rate (LR) 0.01
Optimizer SGD
Momentum 0.9
Weight Decay 0.0005
Scheduler Cosine
T max N/A
Pretrained FALSE

Table 1. Hyperparameters

rics like top-5 accuracy. Top-1 accuracy is also a standard
benchmark in image classification, and the metric used by
Touvron et al. [2]. Thus, by focusing on top-1 accuracy,
we ensured that we were making meaningful comparisons
with existing research and directly assessing the impact of
the distillation process. The hyperparameters used in our
experiments are detailed in Table 5.1.

Our distilled ResNet-50 model was trained for approx-
imately 19 hours, which allowed for roughly 150 epochs.
The baseline model ran for 200 epochs over 5 hours 42
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minutes. The discrepancy in epoch duration is likely at-
tributable to the additional computational overhead intro-
duced by the distillation process, especially as a trans-
former’s forward pass generally takes longer than a CNN’s
due to its complex architecture and larger parameter space.

5.2. Results and Analysis

We evaluated the models at each epoch, plotting the
test accuracy against the number of epochs. To analyze
the trends in accuracy improvement, we fitted logarithmic
trendlines to the accuracy data. The baseline ResNet-50 had
an R2 score of 0.662, suggesting that the baseline model’s
accuracy was not following a logarithmic trend but rather
plateaued around the 72% mark. In contrast, the distilled
ResNet-50’s accuracy trendline exhibited a strong fit, with
an R2 score of 0.962. The logarithmic trendline for the dis-
tilled ResNet-50’s accuracy is given by the equation:

y = −0.112 + 0.139 ln(x)

where y represents the test accuracy and x the number of
epochs. Extrapolating this trendline, we believe the accu-
racy of the distilled ResNet-50 will continue to increase
and eventually overtake the vanilla ResNet-50 around epoch
400. The performance comparison between the two models
is illustrated in Figure 4. The baseline model’s performance
plateaued early, while the distilled ResNet-50 showed a
steady increase in accuracy. Although the distilled model
did not surpass the baseline within the 150 epochs, the trend
suggests potential for continued improvement and possibly
overtaking the baseline with extended training.

Using Figure 4, we can analyze how Vision Transform-
ers (ViTs) impact the training of ResNet-50 in light of the
structural aspects of ViTs and CNNs. Several notewor-
thy insights emerge from this experiment, especially when
comparing our results against those of Touvron et al. [2].

First, the epochs for the distilled ResNet-50 took sig-
nificantly longer than the baseline ResNet-50, likely due
to the additional computations involved in distillation and
the complexity of the ViT teacher model. The student
model must not only compute its own predictions but also
compare them against the teacher model’s outputs. This
comparison involves additional forward passes through the
teacher model, which, being a ViT, further contributes to
the increased computational time. The transformer’s self-
attention mechanism involves quadratic complexity in re-
lation to the sequence length (i.e., the number of patches)
[6]. Touvron et al. did not note an increase in training time
compared to baseline ViTs because the time required for
the additional forward pass through the CNN was negligible
compared to a normal forward pass through a transformer.
Our setup, involving a ViT as a teacher, introduces compu-
tational overhead that may not align well with the efficient
training dynamics typically associated with CNNs.

Second, we notice that the distilled ResNet-50 model,
for the number of epochs we were able to run, underper-
formed compared to the baseline; however, the distilled
ResNet-50 shows steady logarithmic improvement with an
R2 value of 0.96, indicating consistent but slow learning,
whereas the baseline ResNet-50 achieves rapid initial gains
and plateaus around 72%. The slow but steady improve-
ment in the distilled model aligns with Touvron et al.’s find-
ings that distillation can progressively transfer knowledge,
albeit requiring longer training durations to match or ex-
ceed the teacher’s performance. This suggests that the base-
line ResNet-50 is possibly overfitting on the training set
by leveraging its inductive biases optimized for local fea-
ture learning [4]. The baseline model quickly learns the
dominant features but struggles to generalize beyond them,
highlighting the limitations of CNNs on this dataset with-
out additional regularization. This tendency to overfit on
local dependencies is mitigated in the distilled model due
to the global attention the teacher ViT is able to impart.
Given our trendline and Touvron et al.’s findings that dis-
tilled ViT models achieve high accuracy, often surpassing
their CNN counterparts, we can optimistically predict that,
with extended training, our distilled CNN could eventually
surpass the baseline.

Several other factors inherent to the architecture of trans-
formers and CNNs may contribute to the suboptimal perfor-
mance of our distilled ResNet-50 for the initial 150 epochs.
Firstly, using the same hyperparameters for both models
ensured consistency, but this might not be optimal for the
distilled model. Future work could explore hyperparame-
ter tuning specifically for the distilled model, as the optimal
settings might differ from those of the baseline due to the
added complexity of the distillation process. Additionally,
CIFAR-100 images (32x32 pixels) may not fully exploit the
global attention mechanism of ViTs, which are designed to
capture long-range dependencies [1]. Touvron et al. used
larger datasets like ImageNet, where the global attention
mechanism of ViTs can be fully utilized. The mismatch
between the ViT’s strengths and the CIFAR-100 dataset’s
characteristics could explain the suboptimal performance
observed in our distilled ResNet-50. Future investigations
should use datasets with larger images featuring more com-
plex scenes to determine if the global dependencies lever-
aged by ViTs can outperform a basic CNN.

6. Conclusion
In this paper, we investigated the feasibility of improv-

ing the training efficiency and performance of Convolu-
tional Neural Networks (CNNs) using a Vision Transformer
(ViT) as a teacher model. Our approach was inspired by
the successful distillation strategy proposed by Touvron et
al., which utilizes a distillation token to transfer knowledge
from a CNN teacher to a ViT student [2]. We reversed this
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paradigm by employing a pretrained ViT as the teacher and
a ResNet-50 as the student. While our distilled ResNet-
50 did not outperform the baseline within the given epoch
limit, the steady improvement suggests potential for better
performance with extended training. The increased com-
putational overhead and the specific characteristics of the
CIFAR-100 dataset might have contributed to the subop-
timal performance. These insights contribute to a deeper
understanding of the interplay between model architectures
and distillation processes, guiding further optimization in
the field of efficient model training.

6.1. Limitations and Future Works

Our study revealed several limitations and potential areas
for future research.

First, one possible reason for our model’s underper-
formance could be the training duration. Touvron et al.
demonstrated that training vision transformers can benefit
significantly from extended training periods. Future work
should explore running the training for a longer period to
determine if the distillation benefits become more apparent
over time.

Next, as we discussed in section 5.2, the CIFAR-100
dataset, with its small image size of 32x32 pixels, may not
fully leverage the global contextual learning capabilities of
ViTs. The added complexity of the ViT might not trans-
late into performance gains due to the limited spatial in-
formation in small images. Future experiments could in-
volve larger and more complex datasets, such as ImageNet,
to evaluate if the distillation process yields better results
when the dataset’s characteristics align more closely with
the strengths of ViTs.

Lastly, Touvron et al. achieved their results by thor-
oughly testing various configurations of CNN and ViT mod-
els. In contrast, our study focused on a single ViT and CNN
model. A more comprehensive investigation involving mul-
tiple architectures and configurations might identify combi-
nations that benefit more from the distillation process. Fu-
ture work should include a systematic exploration of differ-
ent ViT and CNN models to find optimal teacher-student
pairs. Additionally, as discussed in 5.2, there are numerous
hyperparameters that can be adjusted to potentially enhance
the performance of the distilled models. These include the
learning rate, batch size, weight decay, and momentum,
among others. Specifically, the alpha value (the weight used
in calculating the distillation loss) and the distillation type
(we only utilized hard distillation) are critical parameters
that warrant further experimentation. Exploring soft distil-
lation or a combination of hard and soft distillation might
yield different insights and potentially better performance.
Such thorough hyperparameter tuning could uncover more
effective configurations for the distillation process.

Despite the challenges encountered, our work has al-

ready shown promising results, suggesting that there is sub-
stantial potential for further advancements. We are ex-
cited to continue this line of research, confident that future
work will uncover even more effective strategies for cross-
architectural learning and optimization in the field of com-
puter vision.

7. Contributions & Acknowledgment
Both authors worked together on all aspects of the paper:

finding the topic, literature review, co-writing the codebase,
running the models, data analysis, and writing the paper.

References
[1] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale, 2021.

[2] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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