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Abstract

This work aims to augment the safety validation of au-
tonomous systems by integrating Uncertainty Quantifica-
tion (UQ) of Neural Radiance Fields (NeRFs) into a safety
validation framework and dynamics simulator. By quan-
tifying the uncertainty of the model, we aspire to provide
a more granular understanding of the surrogate model’s
performance and behavior guiding a simulated quadcopter
agent, thereby informing decision-making in safety-critical
scenarios. Our approach involves two methods: a Gaus-
sian Approximation and a Bayesian Laplace Approxima-
tion, both of which estimate the uncertainty in volumetric
density predictions. The data for this approach are distur-
bance vectors that lead to failure modes, generated through
sampling and optimization algorithms within our simula-
tion framework. Despite some limitations, the results in-
dicate that incorporating uncertainty into a comprehensive
safety validation framework can enhance its robustness.

1. Introduction
The input to our approach is a 3D scene represented as a

Neural Radiance Field (NeRF), along with associated color
values, density values, and rendered color. We then use a
Gaussian approximation and a Bayesian Laplace approx-
imation to model the uncertainty in the density values and
the parameters of the NeRF model, respectively. The output
of our approach is a quantification of this uncertainty, which
can be used to inform the sampling of disturbance vectors in
safety validation. This allows us to more thoroughly test the
safety of autonomous systems in various scenarios, taking
into account the uncertainty in the scene representation.

1.1. Neural Radiance Fields

The advent of Neural Radiance Fields has revolution-
ized the field of 3D scene representation, demonstrating re-
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markable capabilities in applications such as view synthe-
sis [12], depth estimation [5], and localization [14]. NeRFs
represent continuous volumetric density and RGB values
in a neural network and generate photo-realistic images
from unseen camera viewpoints through ray tracing. How-
ever, a critical limitation of current NeRF-based methods is
their inability to quantify the uncertainty associated with the
learned appearance and geometry of the scenes they repre-
sent. This information is paramount in real-world applica-
tions such as medical diagnosis [15] or autonomous driv-
ing [11], where confidence in model outputs must be con-
sidered in the decision-making process.

1.2. Safety Validation

Safety validation is a critical process in the development
and deployment of autonomous systems. It involves test-
ing, performance evaluation, and interpretation of the fail-
ure modes of a system to ensure its safe operation [4]. This
is particularly crucial for autonomous systems operating in
safety-critical domains such as autonomous driving, aircraft
collision avoidance, and healthcare. A failure to perform
adequate safety validation can risk property damage or even
loss of human life.

Safety validation can be incorporated at various stages
of the development of an autonomous system. It starts with
defining a complete set of realistic and safe requirements.
Safety can also be incorporated directly into the design of
the system through techniques such as safety-masked rein-
forcement learning (RL) where an agent learns how to op-
erate under the constraint that it only takes actions that have
a minimal likelihood of causing a collision [2].

In the context of safety validation, the adversary plays a
crucial role [3]. The adversary seeks to find disturbances
that lead to failure. The exact goal of the adversary may be
one of the following:

1. Falsification: Find any disturbance that leads to a fail-
ure.

1



2. Most likely failure analysis: Find the most likely dis-
turbance that leads to a failure.

3. Estimation of the probability of failure: Determine
how likely it is that any failure will occur based on
some prior knowledge.

1.3. Prior Work

In the context of our work, we’re dealing with a quad-
copter drone that’s tasked with navigating through a 3D en-
vironment to reach a specified goal while avoiding obsta-
cles. Failures, in this case, are defined as collisions with the
environment. In previous work, we explored the use of Neu-
ral Radiance Fields (NeRFs) in safety validation, specifi-
cally in stress testing a simulated quadcopter agent with a
vision-based controller. The challenge lies in determining
the most probable sequence of transitions leading to failure.
We compared failure modes discovered by the stress testing
agent in simulations conducted with the baseline renderer
(e.g., Blender) and the NeRF-based simulator. Two stress
testing methods were explored: the Monte Carlo (MC) al-
gorithm and the Cross Entropy Method (CEM). The use of
a NeRF-powered simulator was found to potentially reduce
the computational cost of safety validation, thereby increas-
ing safety and expediting the deployment of autonomous
systems.

Figure 1: The problem formulation for safety validation
using a surrogate NeRF model

We leveraged the NeRF as a surrogate model, which al-
lowed for a comprehensive exploration of potential failure
modes and vulnerabilities in safety validation. The detailed
and realistic scene representations provided by NeRFs
aligned with the objectives of creating a controlled and au-
thentic testing environment. We also created a collision-
detection algorithm by generating a collision map and im-
plementing a marching cubes algorithm on the Blender
mesh with a granularity of 40 grid cells per world space
meter. An image transform was then used to turn the col-
lision map into a signed distance field (SDF). The SDF fa-
cilitates the assessment of drone crashes and the collision
risk of trajectories, indicating the proximity to collisions in
world space meters throughout the trajectory. This previ-
ous work provides a solid foundation for further exploration

and development in the field of safety validation using Neu-
ral Radiance Fields. The methods and findings can serve as
valuable context and background for this work.

1.4. Related Work

Recent research efforts aimed at addressing this issue
have primarily relied on empirical methods or auxiliary net-
works.

BayesRays [8] introduces a post-hoc framework to eval-
uate epistemic uncertainty in any pre-trained NeRF without
modifying the training process. Their method establishes a
volumetric uncertainty field using spatial perturbations and
a Bayesian Laplace approximation, but is limited by its de-
pendency on specific NeRF implementations and the need
for a large number of perturbations to achieve accurate un-
certainty estimates.

In contrast, the work by Lee et al. [10] presents the
Bayesian Neural Radiance Field, which explicitly quanti-
fies uncertainty in geometric volume structures without the
need for additional networks. Their method learns a dis-
tribution over all possible radiance fields, which is used to
quantify the uncertainty associated with the modeled scene.
This approach could potentially provide highly accurate and
reliable uncertainty estimates. Furthermore, neither method
provides a principled way to incorporate uncertainty infor-
mation during the training of the NeRF. This is a signifi-
cant limitation as incorporating uncertainty during training
could allow the model to better account for potential errors
or inaccuracies in the data.

In this work, we aim to address this critical aspect of
autonomous systems safety validation by incorporating two
UQ methods alongside a surrogate NeRF model in a dynam-
ics simulator framework. This approach encompasses two
methods: the Gaussian Approximation, and the Bayesian
Laplace Approximation. Our approach will leverage the
strengths of these aforementioned methods while also ad-
hering to their limitations. This allows us to quantify the
uncertainty in the model’s predictions, which is crucial for
many applications, especially those involving safety-critical
decisions [7, 9, 6].

Our work also serves as a natural progression of a pio-
neering effort that revolves around NeRFs and their appli-
cation in vision-based robot navigation and trajectory opti-
mization within 3D environments [1] [13].

2. Dataset
The dataset for this work is composed of disturbance

vectors, which are sampled using MC and CEM. Each dis-
turbance vector is representative of an 18-dimensional state
space, encapsulating the comprehensive state of our system
at any given time step. This state space comprises four key
components: position, velocity, rotation, and angular veloc-
ity. These disturbance vectors are parameterized by a Multi-
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variate Gaussian distribution where µ is a 12-D state vector
mean (in this case, initialized to all zeros) and Σ is a 12x12
covariance matrix containing the variances of disturbance
value samples.

The data collection process involves conducting a large
number of simulations, each introducing a disturbance vec-
tor x at every step. For every trajectory, its likelihood is
calculated by summing up the log-likelihood of each of the
steps:

log p(x) =

T∑
t=1

log p (xt | µ,Σ) . (1)

The trajectories that failed are then filtered out. An example
of the drone’s bounding box colliding with a monolith is
shown in Figure 2. With these failures, the likelihoods of
the trajectories that led to failures in the NeRF simulator
are compared to those from the Blender simulator.

Figure 2: Example of a failure

The CEM accelerates the identification of potential fail-
ure modes by maintaining a proposal distribution, a proba-
bility distribution of the design space. This distribution is
updated using ”elite” samples, which are the best samples
drawn from the distribution. These samples represent the
disturbance values that led to a trajectory and are selected
based on their score, the minimum distance to a collision in
the trajectory. Weights are assigned to each sample accord-
ing to the difference in log probabilities of each elite distur-
bance under the prior and proposal distributions. After nor-
malization, these weights are used to calculate a new pro-
posal distribution, favoring likely disturbances and down-
playing unlikely ones. This process helps identify path-
dependent vulnerabilities in autonomous systems.

Finally, we created three NeRF-specific image datasets
in the typical canonical format, captured via the Blender
raytracing engine. These each contain 200 training images,
150 validation images, and 150 test images paired with the
camera intrinsics for all.

3. Problem Statement & Technical Approach
The primary objective of this work is to quantify the un-

certainty in volumetric density predictions within Neural
Radiance Fields. The problem can be addressed by two
methods: the Gaussian Approximation and the Bayesian
Laplace Approximation. Both methods aim to quantify the
uncertainty of the volumetric density that the NeRF pre-
dicts at various steps in the simulated trajectories that the
drone navigates through. These methods provide a measure
of how confident we can be in the predictions made by the
NeRF at each step of the drone’s trajectory. This measure is
then used in a reward function so that the framework contin-
uously samples more likely and certain disturbance vectors,
leading to more realistic failure modes.
Gaussian Approximation

The Gaussian Approximation method operates by for-
mulating an objective function for the Maximum Likeli-
hood Estimation (MLE) and then optimizing this function
to find the parameters (mean and standard deviation) that
minimize it. The objective function is based on the color
values, density values, and the rendered color of the NeRF
images captured.

We denote the color values as c, the density values as
d, and the rendered color as r. The objective function
f(µd, σd) for the MLE can be defined as:

f(µd, σd) = log

(
Ns∑
i=1

c2id
2
iσ

2
d

)
+

(
r −

∑Ns

i=1 ciµddi

)2
∑Ns

i=1 c
2
iσ

2
dd

2
i

(2)
where µd and σd are the mean and standard deviation of

the volume density, and Ns is the number of samples. The
optimization problem can then be formulated as:

min
µd,σd

f(µd, σd) (3)

Bayesian Laplace Approximation
The Bayesian Laplace Approximation method operates

by approximating the posterior distribution of the param-
eterized NeRF. The method starts with a prior distribution
for the model parameters and then updates this distribution
based on the data (using the likelihood function).

We denote the model parameters as θ, the data as X and
y, and the prior distribution as p(θ).

The likelihood function p(y|X, θ) can be defined as:

p(y|X, θ) =

N∏
i=1

p(yi|xi, θ) (4)

where N is the number of data points, and xi and yi are
the input and output of the i-th data point. The posterior
distribution p(θ|X, y) can then be calculated using Bayes’
theorem:
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p(θ|X, y) =
p(y|X, θ)p(θ)

p(y|X)
(5)

where p(y|X) is the marginal likelihood, which can be
calculated by integrating over all possible values of θ:

p(y|X) =

∫
p(y|X, θ)p(θ)dθ (6)

The Bayesian Laplace Approximation approximates the
posterior distribution with a Gaussian distribution centered
at the mode of the posterior distribution. The mode θ̂ can
be found by maximizing the log posterior:

θ̂ = argmax
θ

log p(θ|X, y) (7)

The covariance of the Gaussian approximation can then
be estimated as the inverse of the approximated Hessian of
the log posterior at θ̂. The Hessian, denoted as H , is ap-
proximated using the Levenberg-Marquardt method:

H ≈ JTJ (8)

where:

• J is the Jacobian matrix of the function f at xk

• JT is the transpose of the Jacobian matrix.

The update rule in the Levenberg-Marquardt method can
be written in terms of the Hessian:

xk+1 = xk − (H + λI)−1g (9)

where:

• xk is the parameter vector at the k-th iteration
• g is the gradient vector of the function f at xk

• λ is the damping factor (set to 0.01 in our framework)

This change allows us to calculate the Hessian without
the need for an analytical form, which can be beneficial
when the analytical form is difficult to derive or compute.
This is the case in this work because of the high dimension-
ality of the state space.

To further improve the robustness of our method, we in-
troduce spatial perturbations to the input data during the fit-
ting process. Specifically, we generate a set of perturbed
versions of the input data by adding small random noise.
This results in a set of slightly different versions of the orig-
inal input, which we denote as Xperturbed. For each perturbed
input Xp in Xperturbed, we perform the optimization process
described above to find the corresponding maximum a pos-
teriori (MAP) estimate θ̂p. We then select the θ̂p that results
in the minimum loss as our final MAP estimate θ̂. This
process of introducing spatial perturbations helps to ensure
that our model is not overly sensitive to small changes in
the input data, enhancing its generalization ability. This is
particularly important in our case, given that images have a
high dimensionality state space.

4. Experiments & Results

We conducted experiments with a NeRF trained on
a simulated Stonehenge environment requiring the quad-
copter drone to navigate around a monolith by following
a simple six-step trajectory 3. We selected this path to op-
timize computational efficiency. The performance of each
method was evaluated by comparing it to a baseline method
(MC/CEM without a reward function) and by comparing
the simulator results directly against the Blender simulator,
which served as the ground truth for failure modes. The
ideal method is expected to result in an increased frequency
of collisions, preferably at earlier time steps, and trajecto-
ries that exhibit low uncertainty from the NeRF and have a
higher likelihood of resulting in a collision.

Figure 3: Trajectory of drone path used in experiments

4.1. Gaussian Approximation

The Gaussian Approximation (GA) method was imple-
mented in two stages: an offline stage for testing and ver-
ification, and an online stage for integration into the safety
validation framework.

4.1.1 Offline stage

In the offline stage, we loaded the corresponding camera pa-
rameters and rendered the image using NeRF for each im-
age in our training dataset. We then extracted the color and
density values from the output and used these to optimize
the parameters of our Gaussian Approximation.

Our optimization resulted in optimized mean and stan-
dard deviation values for the volume density for each image.
The mean represents the central tendency or the average of
the volume density within an image. The standard deviation
measures the amount of variation or dispersion in the vol-
ume density values. Higher values for either metric indicate
a greater degree of uncertainty about the volumetric den-
sity of an image based on the rendered color and the color
predicted by the NeRF model.

We found that there were several images for which the
optimized standard deviation was either absolutely certain
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(σd ≤ 0) or absolutely uncertain (σd ≥ 3). These were not
included in our results.

The results from the offline Gaussian Approximation
method are shown in figure 4, are promising. In our case,
the optimized standard deviations (σd) were all low (≤
1.1σ) to zero for the train, validation, and test sets. The op-
timized mean and standard deviation values are also shown
in relation to each other in figure 5. Both figures provide
clear visual representations of the uncertainty in our volume
density, which seem to indicate that the model has a high
level of confidence in its predictions. This makes sense, as
it was the same canonical data used to train and evaluate the
model.

4.1.2 Online stage

In the online stage, we integrated the Gaussian Approxima-
tion method into the safety validation framework.

A key part of this process is the use of a reward function
that adjusts the disturbance vectors in the sampling/stress

Figure 4: Histograms of σd values for train (top left), validation (top right), and test (bottom)

Figure 5: Uncertainty for all data with GA method

tests directly. The reward is directly proportional to the
likelihood and decreases with increasing uncertainty. All
hyperparameters were chosen practically as a result of ex-
perimentation and observation.
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The reward function is defined as follows:

reward =
(
likelihood − penalty × σdopt

)
(10)

where:

• likelihood is the likelihood of the trajectory
• σdopt is the optimized standard deviation of the volume

density used as a measure of uncertainty
• penalty is a predefined constant (set to 36 in our con-

text)

After 100 simulations, our results are illustrated in table
1. Figure 6 compares the NeRF simulator results directly
against the ground truth Blender simulator.

Figure 6: NeRF w/ GA: MC (top) & CEM (bottom)
Accuracy: 81% & 58%

Precision: 0.1667 & 0.4583
Recall: 0.8876 & 0.5789

Sampling Method w/ Rewards Collision Rate Avg. Collision Step Avg. Traj. Likelihood Avg. Uncertainty
MC No 12% 4.0 34.13032267 1.009453161

CEM No 44% 4.0 39.73473478 0.966691219
MC Yes 12% 3.083333333 38.15115893 0.980460885

CEM Yes 48% 3.833333333 39.22802489 0.938138706

Table 1: Simulation Results for Gaussian Approximation Method

4.2. Bayesian Laplace Approximation

The Bayesian Laplace Approximation (BLA) method
was also implemented in two stages: an offline stage for
testing and verification, and an online stage for integration
into the safety validation framework.

4.2.1 Offline stage

In the offline stage, we applied a Bayesian Laplace Approx-
imation within the simulator and updated the distribution
based on the data using the likelihood function (4). We then
calculated the posterior distribution using Bayes’ theorem
and approximated the posterior distribution with a Gaussian
distribution centered at the mode of the posterior distribu-
tion. The mode was found by maximizing the log posterior,
and the covariance of the approximation was estimated as
the inverse of the approximated Hessian of the log posterior
at the mode.

Our optimization yielded an optimized posterior mean
and covariance matrix per image. We used these to compute
two uncertainty metrics: the normalized trace of the covari-
ance matrix, and the normalized root mean variance (rmv).
These metrics aggregate the model’s prediction uncertainty.
The covariance matrix’s trace, the sum of its diagonal ele-
ments, measures total system variance. In a NeRF model, a
larger trace implies higher overall uncertainty in the sigma
network parameters, indicating a broad range of plausible
values given the data. The root mean variance, the square
root of the covariance matrix diagonal elements’ average,
measures the parameters’ average standard deviation. In a
NeRF model, a larger rmv suggests higher average uncer-
tainty in individual sigma network parameters.

In the Bayesian Laplace Approximation, uncertainty is
contained within the covariance matrix. This is high-
dimensional and difficult to interpret directly. By simpli-
fying our posterior covariance matrix into two metrics, it
becomes easier to understand and communicate the model’s
uncertainty.

The results from the offline Bayesian Laplace Approxi-
mation method are also promising. The method produced
only one significant outlier for our canonical data in the
form of an outlier in our test set. The image for that data
point included very little of the scene, with most of the cam-
era’s focus on the transparent background. This explains the
incredibly high degree of uncertainty.
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The trace and root mean variance values were low, clus-
tered, and very tightly together. Figure 7 illustrates this phe-
nomenon. This is reflective of the same high degree of con-
fidence seen in the Gaussian Approximation method. Fig-
ure 8 indicates a generally strong correlation between the
trace and root mean variance.

4.2.2 Online stage

In the online stage, we integrated the Bayesian Laplace Ap-
proximation method into the safety validation framework.

Similar to the Gaussian Approximation method, we also
use a reward function in the Bayesian Laplace Approxima-
tion method. The reward is directly proportional to the like-
lihood and decreases with increasing uncertainty, which is
the product of the trace and root mean variance of the di-
agonal elements of the posterior covariance matrix. All hy-
perparameters were chosen practically as a result of experi-
mentation and observation.

Figure 7: Histograms of σ values for train (top left), validation (top right), and test (bottom)

Figure 8: Uncertainty for all data with BLA method
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Sampling Method w/ Rewards Collision Rate Avg. Collision Step Avg. Traj. Likelihood Avg. Uncertainty
MC No 12% 4.0 34.13032267 0.00325468

CEM No 44% 4.0 39.73473478 0.003235783
MC Yes 13% 4.153846154 33.9025961 0.003194839

CEM Yes 44% 4.0 39.73473478 0.003253748

Table 2: Simulation Results for Bayesian Laplace Approximation Method

The reward function is defined as follows:

reward = (likelihood − penalty × σ × trace × n) (11)

where:

• likelihood is the likelihood of the trajectory
• rmv is the square root of the mean of diagonal ele-

ments in the posterior covariance matrix
• trace is the trace of the covariance matrix
• n is the number of spatial perturbations (3 in our con-

text)
• penalty is a predefined constant (set to 36 in our con-

text)

After 50 simulations (5 populations with 10 simulations
and 5 elite samples each), our results are illustrated in table
2. Figure 9 compares the NeRF simulator results directly
against the ground truth Blender simulator.

5. Conclusion
5.1. Summary

In this work, we have presented a novel approach to
safety validation using NeRFs. The results from both the
offline Gaussian Approximation and Bayesian Laplace Ap-
proximation methods are promising, showing a high de-
gree of confidence in the predictions made by the NeRF
model. Online methods also show potential through sim-
ulations that integrate uncertainty into the safety validation
framework through a reward function. These simulations
exhibit slight metric improvements compared to those that
disregard uncertainty.

In conclusion, this work represents a significant step for-
ward in the field of safety validation for autonomous sys-
tems. By leveraging NeRFs as surrogate models and incor-
porating uncertainty quantification into the safety validation
process, we have demonstrated the potential for more ro-
bust and comprehensive safety validation for autonomous
systems.

5.2. Limitations & Future Work

This work has several limitations that open avenues for
future research. The NeRF model’s architecture may not
capture high-frequency details in complex scenes, affecting
the accuracy of failure modes.

Figure 9: NeRF w/ BLA: MC (top) & CEM (bottom)
Accuracy: 82% & 64%

Precision: 0.2308 & 0.4545
Recall: 0.2727 & 0.6250

Our safety validation’s reliance on a simulated environ-
ment creates a gap with real-world scenarios. The fixed pa-
rameters in our reward function and the computational cost
of the Gaussian Approximation and Bayesian Laplace Ap-
proximation methods limit their efficacy. A lookup table
from offline methods could enhance simulations by stor-
ing previous computations. The use of aggregate metrics
overlooks pixel-specific variations, limiting the precision of
safety validation. High uncertainty values in some images
indicate struggles with unfamiliar viewpoints and poses,
which could be mitigated by including more close-up views
in the training data. Future work also could explore the ap-
plication of these methods in different domains, such as au-
tonomous driving or robotic manipulation.
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