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Abstract

Frontier vision language models (VLMs) struggle to
solve visual math problems. Inspired by LLM reasoning en-
hancements, one promising approach to improve this skill
is to fine-tune VLMs on intermediate, chain-of-thought rea-
soning samples. While several studies have explored the ef-
ficacy of various types of reasoning data, little effort exists
to deeply understand, on an attention-level, why such tech-
niques work. In fact, a recent study found that most of these
VLMs actually struggle to understand the visual compo-
nent of these problems, and instead, rely heavily on textual
cues instead. Motivated by this, we propose a novel image-
to-text attention ratio that quantifies the extent to which a
model relies on visual-only cues, as a potential indicator
for effective reasoning for visual math problems. We fine-
tune a pre-trained VLM on various reasoning samples, and
conduct an extensive quantitative and qualitative analysis
of the models’ reasoning capabilities using the ratio. Not
only does fine-tuning VLMs on reasoning samples improve
the accuracy of these models, but such results are aligned
with their image-to-text attention ratios, showing promise
that a high ratio may indicate greater elicitation of useful,
vision-only reasoning segments. Qualitative analysis of to-
ken heat-maps also reveal that areas with a high image-to-
text attention ratio are indeed, as hypothesized, often corre-
lated with visual-only information.

1. Introduction

With the advent of large language models, math prob-
lems have always challenged such mechanisms. This is
no exception for Vision Language Models (VLMs), a new
architectural family of models that seemingly understand
both image and textual data together (in relation to one an-
other). Frontier VLMs struggle with visual math reason-
ing, and of all performance categories evaluated in the re-
cent Phi-3-Vision technical report [1], visual math reason-
ing spans the lowest performance between 20% and 50%,

across all compared models. Of course, efforts to replicate
’frontier’ performance have been substantive (albeit still a
gap), with notable models including LLaVA [14], Mini-
GPT [25], and Intern-VL [6].

Visual math reasoning includes the ability to effectively
reason and solve mathematical problems that have an ex-
plicit visual component. For example, geometry problems
often rely on shapes, lines, angles, and functions and graphs
require an understanding of how numbers appear on some
x-y plane. Improving a VLM’s ability to understand such
problems has huge potential in real-world fields, particu-
larly in education. Students are able to engage in interactive
conversations with a model that is able to see what they’re
looking at; whether it is a problem, or their own diagrams.

Inspired by LLM enhancement techniques, one promis-
ing approach to improve this skill is to fine-tune open source
VLMs on explicit visual reasoning data related visual math
problems, or what scholars call ’rationales’ [12] [22]. Of-
ten, such data is generated synthetically with a frontier
model (e.g. GPT-o, Claude), before being distilled to a
smaller model.

While there have been many studies exploring different
types of synthetic data to improve this capability across
VLMs, including agentic rationales [18], problem decom-
position [23], multi-class techniques [9], and more, few
have attempted to deeply understand why certain techniques
work, and importantly, compare different knowledge distil-
lation approach through an interpret-ability lens.

In fact, a recent study by Zhang [21] found that most of
these fine-tuned VLMs struggle to actually understand the
visual component of these problems, and instead, rely heav-
ily on textual cues instead. As such, this paper seeks to un-
derstand: For solving visual math problems, what makes a
good rationale? How can we understand a model’s reason-
ing capabilities through different heuristics and indicators?

We hope this not only helps researchers understand
what specific sort of reasoning VLMs should try and elicit,
helping them craft better synthetic data, but also for us to
learn about these models think and reason underneath it all.
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Our contributions are primarily two-fold:

• Our hypothesis, primarily motivated by Zhang’s work
[21], is that effective reasoning should rely equally, if
not more, on visual elements of the diagram. As such,
we propose a novel metric to quantify the degree to
which a VLM’s reasoning and prediction attends to the
image, compared to other tokens, called the image-to-
text attention ratio. Our belief is that this ratio is in-
dicative of a model’s ability to elicit vision-only prop-
erties of a visual math problem.

• To better understand this metric, we fine-tune a
TinyLLaVA3.1b model using various rationales, rang-
ing across different levels of complexity, and quan-
titatively and qualitatively evaluated their outputted
reasoning using our approach to try and understand
what these models ’attend’ to. We focus on geometry
problems, and evaluate these models on the Inter-GPS
dataset (601 pairs in test-set, 2401 in training set).

2. Related Work
2.1. Vision Language Models

The impressive performance of GPT-4o, GPT-V, as well
as Claude vision models has shocked multi-modal research
communities. Upon their release, these models significantly
outperformed open-source models of the time, sparking
wide research efforts to devise new strategies to improve
the performance of these smaller models. These efforts
have targeted a multifaceted range of model abilities, in-
cluding captioning (can these models comprehensively de-
scribe what they see?), spatial intelligence (can these mod-
els accurately pin point specific regions on images?), rea-
soning (can these models go beyond just describing, but
problem-solving based on what they see?), and many more.
All of these abilities have important applications in many
fields; for example, building web-based agents requires
multi-modal models to accurately identify precise regions
on images in order to interact with them.

One successful approach to bridge this gap between
larger models and smaller models is visual instruction tun-
ing [14], as first demonstrated by models such as LLaVa and
Mini-GPT [25]. This technique involves freezing the visual
encoder as well as the language model, pre-training in order
to align these two components via a projection layer, be-
fore fine-tuning using high-quality, synthetically generated
instruction data that cover a range of different tasks. Differ-
ent models are better at different types of tasks, depending
on how the model was fine-tuned.

2.2. Improving Reasoning in LLMs

Attempts to improve reasoning in VLMs have been
largely inspired by strides made for traditional LLMs. We
describe two traditional techniques in this section.

A popular approach to improving reasoning in large lan-
guage models is chain-of-thought reasoning [19], directly
prompting these models with ”Let’s think step-by-step” in
order for these models to output their step-by-step thinking
process, before outputting the answer. This has shown to
improve LLM performance considerably.

Some have used this technique to improve smaller mod-
els by fine-tuning them on reasoning samples or rationales;
that is, intermediate, chain-of-thought reasoning data syn-
thetically generated by larger, more powerful models [8].
This gives researchers more control by allowing them to
explicitly craft different types of reasoning data that will
nudge LLMs to reason in a particular way, while also lever-
aging the superior reasoning capabilities of frontier mod-
els. It is hypothesized that such fine-tuning elicits a smaller
model’s underlying ability to also reason in similar ways.

We leverage both of these techniques to craft various rea-
soning, chain-of-thought samples using frontier models, be-
fore fine-tuning smaller models with such data, before con-
ducting an extensive analysis on such reasoning.

2.3. Existing Techniques to Improve Visual Math
Reasoning in VLMs

Zhang [22] used human-annotated reasoning samples ex-
tracted from lectures and custom-made explanations, in or-
der to try and enhance reasoning. However, these reasoning
samples are not necessarily related to the image; they are
just generic ’explanations’, and not necessarily specific to
the visual diagram. Jia [12] uses a larger model to generate a
detailed description of the image, before using this descrip-
tion to try and generate the reasoning sample. However, a
’gold standard’ reasoning sample was synthetically gener-
ated without the MLM; also again, the reasoning is not di-
rectly related to visual reasoning. Lu’s [16] few-shot GPT-
3.5 model is non-multi-modal, and does not include visual
features entirely as well. Other approaches have used inter-
esting reasoning samples such as decomposing the problem
into smaller sub-problems as some chain-of-thought equiv-
alence [23]. Some have even used micro agent architectures
in order to ’plan’ a strategy to solve the problem [18], and
using this as a sample to fine-tune smaller models to adopt
such agent behavior in how they normally reason and think.

2.4. Interpreting and Understanding VLMs

There is a rich literature in understanding the decision-
making systems of vision models on an attention-level. One
of the main challenges in using attention weights as an ex-
plainable, interpretable heuristic is the challenge of effec-
tively aggregating the weights of multiple layers and atten-
tion heads [5]. Techniques such as attention roll-out or at-
tention flow [2] have been used to account for residual or
skip connections in quantifying their flow across different
layers. However, such techniques, given how vision models



(e.g. ViT, CLIP, etc.) are encoders, are mostly designed for
self-attention mechanisms.

As VLMs have the novel property of ingesting both
text and image data, while outputting text, this study fo-
cuses primarily on interpreting encoder-to-decoder atten-
tion weights. We seek to understand how a model’s out-
putted reasoning reflects what the model is ’attending’ to.
Given the recency of such research, there have been few
efforts in to build better, more insightful interpret-ability
tools for multi-modal models that ingest both image and
text data. Recently, Intel released LVLM-Interpret [17], a
tool for better understanding multi-modal vision language
models. At the time of writing this paper, the team had
not yet released their tool for public experimentation. Yet,
the paper seems impressive, building upon a core encoder-
decoder attention flow mechanism pioneered by Chefer [4].
Few have employed attention-level explainable techniques
for understanding VLM performance on visual math rea-
soning specifically, which is the primary focus of this paper.

3. Dataset
We will be using the Inter-GPS [15] dataset to fine-tune

the models, as well as evaluate their performance. This
dataset has 2, 401 QA pairs in the training split, as well
as 601 QA pairs in the test split. This data-set was cho-
sen because unlike many other math evaluation datasets,
Inter-GPS contains a substantive training dataset that will
be helpful in this study. This dataset is specific to geometry
problems, which will be the specific type of visual math
problem this study focuses on. Each entry in this data-set
contains a Problem Text, a Diagram (image), Choices, and
Diagram Literals (textual description of the diagram). See
Figure 1 for an example.

Figure 1. Example of a problem in the Inter-GPS dataset

4. Methods
To analyze a VLM’s reasoning for solving visual math

problems, we employ a four-stage approach.

1. Synthetic Data Generation: For each of the 2, 401
geometry problems in the training split of the dataset,
we use GPT-4o to generate 3 different types of inter-
mediate reasoning samples.

2. Model Preparation & Fine-Tuning: We prepare vari-
ants of TinyLLaVA3.1B, some of which are just pre-
trained, and others which are fine-tuned using the gen-
erated synthetic data.

3. Evaluation: We evaluate the performance of the pre-
pared models in the previous stage on 601 geometry
problems in the test set, and while doing so, save the
attention weights for analysis in the next stage.

4. Interpret-ability Analysis: We calculate an average
image-to-text attention ratio for each model variant to
analyze what each type of reasoning attends to, and
compare this across models. We also do an in-depth
analysis of each reasoning sample, token-by-token to
better understand what this ratio truly means.

4.1. Synthetic Data Generation

We start by preparing the reasoning data that we will use
to fine-tune smaller models. There are various approaches
to how a ’reasoning sample’ should be structured. Some
have explored concatenating the rationale followed by the
answer, some concatenate the answer followed by the ratio-
nale, and others have employed prefix-tuning techniques in
a multi-task framework [9] where the rationale and the an-
swer have separate loss functions. We follow Wei [19], and
chose the first type of reasoning sample: rationale, followed
by the answer. We explore 3 different types of rationales,
which are depicted in Figure 2.

Visual CoT. While various types of complex reasoning
samples have been tried, surprisingly, there has been little
effort to construct rationales that directly reason from the di-
agram itself. Other approaches are more grounded in visual
descriptions, problem de-compositions, agentic workflows,
but what if we just extracted a frontier model’s direct ability
to reason, in a step-by-step manner, and solve a visual math
problem?

Visual CoT + Diagram Literals. Inspired by Jia[12],
who generated textual descriptions of their diagrams to en-
hance rationale generation in the Describe-Then-Reason ap-
proach, we pre-pended the diagram literal data included in
the Inter-GPS to the existing Visual CoT rationale. This is
hypothesized to give extra context to the model to under-
stand the visual elements of the diagram.

Visual CoT + Symbolic Solver. Often, with math prob-
lems, there are two types of information in the rationale:
reasoning and computation. LLMs are known to be poor as
the latter (quirks with the tokenizer, etc.), and so some have
combined LLMs with symbolic solvers with pre-defined
formal notation and rules that have been shown to improve
math computation abilities. For this reasoning sample, we
follow the prompting rules of the Peano symbolic solver [7].



Figure 2. Examples of different reasoning samples generated by GPT-4o

We also choose GPT-4o as the frontier model to generate
reasoning samples due to its SOTA vision capabilities,
especially in visual math reasoning, as well as its signifi-
cantly reduced cost.

Let Dtrain be our training dataset of 2401 problems,
where D = {(pi, di, ci, ai)}2401i=1 , where p is the problem
text, d is the diagram image, c is the choices, a is the cor-
rect answer. We generate RVisual CoT, Rw/ Diagram Literals, and
Rw/ Symbolic Solver, where R is a set of synthetically generated
reasoning samples based on D. Formally, R = {rj}2401j=1

and rj is the jth reasoning sample for each of the 3 cate-
gories. To generate each reasoning sample:

rj = GPT(pj , dj , cj , aj)

where GPT refers to an API call to OpenAI via a specific
prompt. See Figure 3 for a sample prompt used to generate
a Visual CoT reasoning sample.

Figure 3. Prompt used to generate Visual CoT reasoning sample
using GPT-4o

4.2. Model Preparation & Fine-Tuning

TinyLLaVA [24] was used as our base model for all of
our experiments. We specifically load the checkpoints for

the TinyLLaVA3.1b model from hugging face, which is
their best performing model. We chose this model due to
its comparable performance with existing 7B models such
as LLaVA-1.5 [13] and Qwen-VL [3], modularizable code-
base [11], while at the same time, being only 3.1b parame-
ters (compute was limited).

While we refer to the original paper for more details
[24], the architecture of TinyLLaVA consists of a small-
scale LLM Fθ, which we opt to use Phi-2 (2.7B), a vision
encoder Vγ , which we opt to use SigLIP (0.4B) [20], as well
as a connector Pϕ.

To fine-tune this model, we use LoRA (low-rank adap-
tation) [10] to reduce the number of parameters (θ′ and
γ′ are the learnable parameters) that we need to fine-tune
(rank = 32, α = 64), with a learning rate of 2e − 5 over 3
epochs. As per Zhou’s [24] description, TinyLLaVA max-
imizes the log-likelihood of the reasoning samples autore-
gressively as the training objective.

max
ϕ,γ′,ϕ′

N∑
i=1

logFθ(ri|Pϕ′ ◦ Vγ′(di))

where N is the length of the reasoning sample, and di is
the corresponding image.

Using these techniques, we prepare 5 different model
variants (with different reasoning samples) to evaluate and
analyze:

1. Vanilla Direct: Only pre-trained TinyLLaVA3.1b,
prompted to directly output the answer (A, B, C or D)

2. Vanilla CoT: Only pre-trained TinyLLaVA3.1b,
prompted to reason step-by-step (0-shot).

3. Fine-Tuned Visual CoT: Used RVisual CoT to fine-tune
TinyLLaVA3.1b



4. Fine-Tuned Visual CoT + Diagram Literals: Used
Rw/ Diagram Literals to fine-tune TinyLLaVA3.1b

5. Fine-Tuned Visual CoT + Symbolic Solver: Used
Rw/ Symbolic Solver to fine-tune TinyLLaVA3.1b

4.3. Evaluation

Finally, we evaluate each one of the 5 prepared models
on Dtest by running inference for the 601 test items. We
extract the raw answer (A, B, C, and D) using GPT-4o in
order to calculate the accuracy against the true class. For
every test item i we evaluate each model on, we also out-
put the raw attention weights to analyze in the next stage.
See Appendix 9.1 for the inference prompts we used when
evalauting these models.

4.4. Interpretability Analysis

Our primary hypothesis is that effective reasoning should
rely equally, if not more, on visual elements of the diagram,
compared to the problem text and/or choices in the input
tokens. As such, for a model’s specific output oi for prob-
lem i (oi includes both the reasoning and the answer), we
calculate a novel image-to-text attention ratio in an attempt
to quantify the extent to which a VLM’s outputted reason-
ing actually attends to the image patch tokens, compared to
the input text tokens. We wonder if this ratio could be an
indicator for good reasoning, or perhaps more precisely, a
heuristic for a model’s ability to deeply extract information
accessible only in the visual diagram.

4.4.1 Image-To-Text Attention Ratio

So, how do we calculate the image-to-text attention ratio?
Firstly, for simplicity, as we have 32 decoder layers and 32
attention heads, we build an average attention map across
all layers and heads denoted Ai for problem i. Since Ai is a
square, lower triangular matrix, Ai

r,c corresponds to the de-
gree to which token r attends to token c (attention weight).

We let oi = [t1, t2, ..., tn], where oi is a particular
VLM’s output for problem i, and n is the number of to-
kens in the output. For each output token tj , where j =
1, 2, ..., n, we want to calculate the magnitude in which this
output token attends to the image patch tokens, compared
to the input text tokens. As such, using Ai, we find the
average of the attention weights of all the tokens that are as-
sociated to the visual patches, denoted Vj , and do the same
for the problem text tokens, denoted Pj . Since our SigLIP
encoder produces 729 image visual patch tokens, which is
always more than the number of problem text tokens, it is
important to find the average so that reasoning length does
not influence this metric. Finally, we calculate Vj

Pj
to find

the image-to-text attention ratio for token tj . Hence, to cal-
culate the image-to-text attention ratio Qi for model output
oi

Qi =

n∑
j=1

(
Vj

Pj
)

where n is the number of tokens in the output, Vj is the
average attention weight of token tj across the 729 visual
image tokens, and Pj is the average attention weight of to-
ken tj across a variable number of problem text tokens.

Given some output oi for problem i, this ratio is designed
to reflect on average, is the model reasoning about things
that are exclusive (high Vj , low Pj) to the visual patches on
a deeper or more consistent level?

5. Results
In this section, we aim to answer two main questions:

1. Does fine-tuning TinyLLAVA3.1b on direct, visual
chain-of-thought reasoning samples improve accuracy,
compared to our baselines?

2. Is there any connection between the average image-to-
text attention ratios of these models’ predictions, with
their performance accuracy?

Looking at Table 1, our frontier model GPT-4o used for
the synthetic data generation stage has a relatively high ac-
curacy of 55.91%, which is the current SOTA, and out-
performs other frontier VLMs like Phi-3, GPT-4-Turbo and
Gemini 1.5 Pro. This is promising, as the reasoning samples
generated by our ’teacher’ model seem to be fairly accurate.
Ho [8] found that the better a teacher’s reasoning, the bet-
ter of a ’teacher’ they are to the smaller models. Due to
cost limitations, we were unable to conduct a more exten-
sive evaluation process of these reasoning samples, such as
the multi-CoT evaluation strategy employed by Zhang [21],
but this seemed sufficient for this study.

Interestingly, fine-tuning TinyLLaVA3.1b on just the Vi-
sual CoT data has a sizeable improvement of 6.33% over
zero-shot CoT on the pre-trained model. In qualitatively an-
alyzing dozens of model outputs, we hypothesize that this is
due to the structured, step-by-step reasoning style (see fig-
ure 2) induced by visual CoT reasoning data. The chain-of-
thought process is quite standard; the model starts by iden-
tifying any crucial information in the problem text or in the
diagram, before applying relevant theorems, and crunch-
ing numbers. This structured process also, in some sense,
clearly distinguishes between reasoning and computation,
where the headlines of each step are clearly higher-level
reasoning steps, and computation exists in the sub-text. By
adopting this frame-work of some sort, it seems as though
the VLM is able to apply this general framework to solve
unseen problems. This behavior is different in the Vanilla
CoT model, which has much less structured reasoning.



Model Accuracy (%) Image-to-Text Attention Ratio

Vanilla Direct 15.97 0.20
Vanilla CoT 20.63 0.80
Fine-Tuned Visual CoT 26.96 0.93
Fine-Tuned Visual CoT + Diagram Literals 28.95 1.14
Fine-Tuned Visual CoT + Symbolic Solver 23.46 0.93

GPT-4o CoT 55.91 n/a

Table 1. Accuracy and image-to-text attention ratio of model variants on 601 test pairs in Inter-GPS dataset. Ratio cannot be calculated for
GPT-4o as we do not have access to the attention weights.

Adding diagram literals also seems to improve accuracy
marginally (around 2%). This model, however, only some-
times outputs the diagram literals it was fine-tuned on (and
if it does, it often infinitely repeats itself), perhaps indicat-
ing that it struggles to generate textual descriptions of the
diagram. However, we hypothesize that adding this data
in the reasoning samples may enhance the model’s general
vision comprehension capabilities. The symbolic solver
seemed to confuse the model, more-so than it did help it,
which may indicate that perhaps the lackluster reasoning
capabilities of smaller LLMs (Phi-2) are unable to adhere
to the formal, stringent rules of symbolic solvers (see figure
2), in a way that frontier LLMs are able to.

Overall, however, to answer Question 1, fine-tuning
TinyLLaVA3.1b on reasoning samples clearly shows
improvements upon pre-trained direct and CoT baselines.

Table 1 also shows that a higher image-to-text attention
ratio also loosely (not statistically rigorous) correlates to
higher accuracy. Fine-Tuned Visual CoT + Diagram Lit-
erals has the highest image-to-text attention ratio at 1.14,
and also has the highest accuracy of 28.95%. Likewise,
the Fine-Tuned Visual CoT model has a 0.13 increase in
image-to-text attention ratio compared to the Vanilla CoT
model. This is promising in hinting that it is the models
who are able to more explicitly attend to vision-only infor-
mation, and perhaps maintain a greater connection to these
image tokens as they reason, that perform better.

However, this claim is still limited, as there are various
forces that create a ’good reasoning sample’; only one of
which, may be the extent to which it focuses on the visual
diagram. Instead, in the next section, we shift out focus
to understanding this metric on a deeper level, on a token-
to-token level, trying to visualize what this image-to-text
attention ratio actually correlates with.

That is, we seek to answer the question: if a model has
a high image-to-text attention ratio, what does this exactly
mean on a token level?

Figure 4. Token heat-map of the image-to-text attention ratio for
problem 40, where the darker the colour of the token, the higher
the ratio, and vice versa.

6. Discussion

In this section, we aim to better understand, through a
qualitative lens, what exactly the image-to-text attention ra-
tio tells us, as well as some of the assumptions/limitations
of this ratio as an explainable metric. We hope that learning
about this will help us understand what good visual math
reasoning looks like, and hopefully, provide more insights
as to how to craft better reasoning samples to improve the
visual reasoning skills of VLMs.

To provide more granular details, figure 4 shows a to-
ken heat-map for the outputs of Vanilla CoT and Fine-
Tuned Visual CoT, for problem 40. The token heat-map



is designed so that tokens with a darker background have a
higher image-to-text attention ratio, while the tokens with
a lighter background have a lower image-to-text attention
ratio. Darker patches of ths token heatmap are areas that
attend more to the image, compared to the problem text.
It is important to note that this is a ratio, which means that
dark patches do not correlate to simply deep, highly concen-
trated visual connections, but instead, they correlate to ex-
clusive visual connections to image patches, relative to the
problem text tokens (i.e. what information is only accessi-
ble in the image?). After qualitatively analyzing dozens of
these model outputs, we find various validating examples
of dark patches that do correlate to vision-only information,
increasing our observable belief that the image-to-text at-
tention ratio does contain meaningful information that may
help us better understand model reasoning.

Overall, at a general glance, the Fine-Tuned Visual CoT
has a more consistently darker colour scheme as the model
generates its output, as agreed upon by the overall average
ratios in Table 1. Beyond just a number, this is what it looks
like: more consistently darker patches, which may highlight
unique aspects about a reasoning sample.

We find that darker patches often correlate to 4 different
types of information, most of which are exclusive to the
visual component:

Geometric Properties. Referring to Figure 4, we ob-
serve that the darkest token in the output of Fine-Tune Vi-
sual CoT is the phrase ”are parallel”, which is a very crucial
property to realize when solving this problem, and is only
realizable by looking at the visual diagram. This word does
not exist in the output of Vanilla CoT. We also observe
that the the medium-dark patches in the fine-tuned output
tend to be more explicitly, visual connected tokens such as
”...because they are on the same side of the transversal” or
”corresponding angles”, whereas such visual detail is not
as apparent in the vanilla CoT output, leading to a lighter
token heat-map.

Lines. Referring to Figure 5, we can see that the darker
patches in this model output appear at references to lines
such as ”OX” or ”CD”. While the problem text gives ex-
plicit details on the distances, and introduces these lines,
it is hard to visualize what these lines actually look like
without directly attending to the visual diagram, hence the
emphasis in these locations. We also visualize the average
attention maps for ”O”, ”OX”, and ”CD”, and see strong
attention weights on the letters, as well as medium-strength
patterns across the lines.

Visual Equations. Referring to Figure 6, this is an ex-
ample of a problem whereby the equations themselves are
only located on the image, and do not exist in the prob-
lem text. Good reasoning should effectively attend to these
visual equations, transcribe them, and use them in their rea-
soning steps. It is clear that the Vanilla CoT output failed to

Figure 5. Token heat-map of the image-to-text attention ratio for
problem 1. We include 3 attention maps for ”O”, ”OX” and ”CD”
tokens, and overlap the attention weights onto the scaled image.

Figure 6. Token heat-map of the image-to-text attention ratio for
problem 5. We include the visual attention map for token ”+”.

do so effectively, seemingly over-attending to the ’x’ token
and inaccurately inferring that x = −1 and x = 2, whereas



the Fine-Tuned Visual CoT output has a slew of medium-
dark patches. The darker patches, and this is something that
has been observed in many samples, tend to be the math
questions themselves, which makes sense, as it is likely try-
ing to identify what the equation is. We build the attention
map for + in x + 10, and see that it clearly tries to attend
close to the patches around x+ 10 in the image.

Reminders. Referring to Figure 8, this case is a bit dif-
ferent. We see that at the start of the Fine-Tuned Visual
CoT output, there are already references to the math equa-
tions on the diagram, with a medium-dark color showing
that it attended relatively exclusively to the image. How-
ever, the darkest patches are a little later, where interest-
ingly, while the model is expected to perhaps attend to its
earlier outputs (which it may very well still do), it also still
attends to the image almost as a way to remind itself of what
it saw, verifying that is correct to maximize accuracy. While
there is no conclusive evidence on this behavior, we do ob-
serve that problems with vision-only math problems tend to
have frequent dark patches around math equations in their
output. This could be one explanation.

Figure 7. Token heat-map of the image-to-text attention ratio for
problem 15. We include the visual attention map for token ”6”.

6.1. Limitations

One of the main limitations is that the image-to-text at-
tention ratio is universally quite low at the start of the output
sequence. This is most likely because the first few output
tokens attend heavily to the input text and visual patches
because they don’t have much else to attend to. Over time,
self-attention kicks in and the decoder has more information
to make its predictions based on, but this could confound
the ratios, particularly the first few output tokens. One way
to overcome this is to also measure self attention at each
decoder step; that is, we don’t just calculate the image-to-
text ratio for the input problem text, but we also calculate
the extent to which each output token attends to previously
generated output tokens.

Moreover, we also assume that every layer and every at-
tention head contributes the same amount, via an averaged
attention map. While we chose this approach for simplicity,
there are more advanced approaches [4] [2] that more ac-
curately aggregate across layers and heads that could build
a relevancy map more directly related to an output token’s
connection with input tokens.

7. Conclusion & Future Work

Frontier models struggle with visual math reasoning,
and yet, few efforts have gone into understanding why. In
this study, we propose a novel approach in understanding
how VLMs attend to the visual component of math prob-
lems, proposing an image-to-text attention ratio that shows
promising potential in elucidating sections of a model’s rea-
soning that are more vision-heavy. We demonstrate this in
both quantitative and qualitative ways, both of which have
implications in building greater intuition for VLMs, while
creating new techniques to optimize our synthetic data gen-
eration process. We thank Zhang’s work [21] for the core
motivation for our hypothesis, and see our study as a valu-
able exploration of an approach that may tell us a little more
about the way VLMs reason about visual math problems.

We have identified three main areas of future work.
Firstly, while this study employed mostly qualitative ap-
proaches in evaluating the correlative ability of the image-
to-text attention ratio, using datasets such as MathVerse
[21] that explicitly label vision-only properties may allow
for more rigorous correlations to be discovered. Secondly,
rather than calculating this ratio for the entire model’s out-
put, breaking down a model’s reasoning and measuring each
step’s visual emphasis could inform us of more/less impact-
ful steps throughout a model’s reasoning. This could pro-
vide a more accurate understanding of what specific type of
reasoning to elicit for optimal outcomes. Finally, in the fu-
ture, we hope to package our experiments and visualizations
into an open-source interpret-ability tool to provide greater,
qualitative insight into a model’s reasoning capability.
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9. Appendix
9.1. Inference Prompts

Figure 8. Prompts used when running inference.


