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Abstract

Predicting the geolocations of street-view images is a
difficult problem because of the diverse set of images that
originate from across the world. We attempt to tackle this
challenge by approaching it as a classification problem and
defining geocells and intra-geocell clusters as geographic
classes. Based on the architecture outlined by PIGEON,
the current state-of-the-art work in the area of geolocation,
we utilize a pre-trained Vision Transformer (ViT) model to
generate a geo-embedding that characterizes each of these
clusters. To evaluate loss, we employ the commonly used
Haversine loss function and add a continuous implemen-
tation of supervised contrastive loss, which promotes the
model to push apart the embeddings of distant images. We
aim to see if the implementation of contrastive loss makes
a significant impact on performance, finding that it slightly
improves the rate at which the model classifies an image
within 50km of the target location. These results are also
leagues more accurate than both our human baseline as
well as a ResNet-152 model with a neural network head.
Our findings suggest that the use of contrastive loss may
provide a slight advantage because it enhances the model’s
ability to learn meaningful and discriminative feature rep-
resentations. We hope that this loss concept can be incor-
porated in future geolocation prediction models.

1. Introduction
The ability to globally geolocate images that lack spe-

cific location metadata remains a challenging problem, even
for human experts. Despite these difficulties, geolocation of
images still remains an interesting and relevant task with a
myriad of applications, ranging from locating the origins
of photographs in photo albums, identifying locations of
crime scenes from criminal photographs, and the trending
online video game GeoGuessr, where players compete to
guess the precise location of Google Street View images.
When we focus on the techniques applied today in geoloca-
tion, individuals hone in on certain details, such as species

of fauna and flora, geological features, and architectural dif-
ferences which provide clues to an image’s exact location;
however, it still remains difficult to predict the exact lo-
cation from which a photograph originated just relying on
these larger image characteristics. With the breakthroughs
in deep learning applied to the field of computer vision,
stronger and more advanced model architectures have been
used to continually improve image classifiers by analyzing
them on a more granular scale. This project will explore
the usage of image encoders applied to the context of im-
age geolocation to generate geoembeddings, with the goal
of strengthening performance through identifying and high-
lighting subtle details that may be missed by human review-
ers, but captured through these deep models.

1.1. Related Works

Although deep neural networks have long been used in
the task of image classification, a major breakthrough in the
use of computer vision for image classification came with
the introduction of residual neural networks (ResNets), first
discussed in Deep Residual Learning for Image Recogni-
tion (He et al., 2015) [7]. While testing the hypothesis of
improving models by stacking more and more layers, re-
searchers noticed that increased depth caused a problem of
degradation when the accuracy gets saturated by so many
layers. By introducing shortcuts between layers, this al-
lowed for gradients to be backpropogated through the model
more easily, yielding stronger models even when it con-
tained a large number of layers. These ResNets signif-
icantly outperformed deep convolutional neural networks
with image classification, and became one of the strongest
architectures used for image classification. Despite its suc-
cess, ResNet inherently suffers from limitations in captur-
ing global context due to its localized convolution opera-
tion.

Since then, the field of image classification has signifi-
cantly progressed. Vision Transformers (ViTs), first intro-
duced in An Image is Worth 16x16 Words: Transformers
for Image Recognition at Scale (Dosovitskiy et. al., 2020)
[4], employed self-attention mechanisms to process image
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patches as sequences. This approach allows ViTs to cap-
ture long-range dependencies more effectively, thereby pro-
viding a richer understanding of the image context. Con-
trastive Language-Image Pretraining (CLIP), proposed by
Radford et al. (2021) in Learning Transferable Visual Mod-
els From Natural Language Supervision [8], made further
improvements by leveraging the advantages of transformer-
based models and integrating them with a contrastive learn-
ing framework. Not only do CLIP models feature global
context understanding and multi-modal learning, but they
also provide better scalability and more efficient transfer
learning compared to previous models. Taking advantage of
ViTs ability to efficiently scale, several pre-trained models
of various sizes have emerged from CLIP, including Street-
CLIP, which used the proprietary dataset of OpenAI.

On another track, the field of study in the geolocation
of images has been always been a relevant application of
computer vision that has been continually explored. For in-
stance, one of the first known large scale studies discovery-
ing how to effectively geolocate images was introduced in
2008 with IM2GPS (Hays et al., 2008) [6]. In this study,
they used many simple data-driven features of images, such
as line features, color histograms, and more in order to find
similarity between images and be able to correspond them
to nearest neighbors in their dataset. Though this was an
early attempt, this method is not as effective because it just
looks at raw image data without doing any complex analy-
sis into it, and rather just looks at statistical occurrences.
In fact, most of these methods were limited to nearest-
neighbor approaches after a few preprocessing steps that
extracted simple features using methods such as Scale In-
variant Feature Transform (SIFT) (Zamir et al., 2014) [10].
However, nearest-neighbor approaches are heavily depen-
dent on what exists in the dataset, and it will have signif-
icant issues generalizing to unseen data. As deep learning
advanced more, it began to be applied significantly to this
area of image geolocation. A notable paper that showed
early success was IM2City, where the researchers leveraged
multi-modal learning in order to not only learn image fea-
tures, but also add in understanding of their labels and cap-
tions through natural language processing in order to add to
its predictions (Wu et al., 2022) [9].

Concurrently, further advancement has occurred towards
our intended task of geolocating images. For instance, with
respect to training these models for geolocation, in Re-
thinking Visual Geo-localization for Large-Scale Applica-
tions (Berton et al., 2022), the authors introduce CosPlace,
a training method for the task of geolocating images that is
stronger and more efficient when the dataset sizes become
increasingly large [3]. Some tasks that come with geolocat-
ing image data, such as visual assistance or autonomous ve-
hicles, require the analysis of large and extremely detailed
datasets. By converting the problem of geolocating images

into a classification problem followed by an image retrieval
related action, both training and inference costs of geolo-
cation dropped significantly, and allowed these models to
be trained on much larger datasets which strongly increased
their accuracy as well. Moreover, the current state of the
art work in the field includes the two models PIGEON and
PIGEOTTO, introduced in PIGEON: Predicting Image Ge-
olocations (Haas et. al, 2024) [5]. The only difference be-
tween these models is the source of their training data; while
PIGEON is trained on the game of GeoGuessr (which are
Google Street View images), PIGEOTTO is trained on im-
ages found on Flickr and Wikipedia. In these models, they
are built as classification problems where the images are
classified into clusters of geocells, which can be thought
of different ”classes” or regions or Earth. They introduce
a new loss function, Haversine loss, which is calculated
by the distance between two coordinate points on Earth’s
spherical surface. On top of that, the authors add OpenAI’s
CLIP model to provide synthetic captions of an image, dis-
cussing details like weather, compass direction, traffic, and
more parts of the image that could provide clues to the
photo’s location. By combining all of these details preopro-
cessed through CLIP, PIGEON and PIGEOTTO are able to
classify the image into geocells based on CLIP’s pretrained
embeddings, which were shown to have strong zero-shot
performance on image classification. This classification oc-
curs on 4 layers of granularity, from general location on
Earth’s surface, to a specific spot in a town, predicting the
coordinate where the image was taken.

2. Data
The dataset we are using to train and evaluate our model

is the OpenStreetView-5M dataset [2], which provides over
5.1 million images sourced from over 225 countries and ter-
ritories around the world. These images are paired with a
corresponding longitude and latitude coordinate, pinpoint-
ing exactly where the image was taken. Due to the high
training time associated with training a deep model on such
a large amount of images, we randomly sampled 500,000 of
the original 5.1 million images to be the dataset to be used
throughout our experiments. We performed random sam-
pling in order to get a dataset that is representative of the
images around the world, minimizing the risk of acciden-
tally creating a dataset that is focused on a small subset of
the countries and regions within the original data. Within
the dataset, we designate 80% of the images as our training
set, and 10% each for validation and testing set.

After collecting our dataset, we performed some prepro-
cessing and data manipulation tasks in order to standardize
the images to the same format. Specifically, we changed the
dimensions of each image to be a 224 x 224 image to be fed
into our model. We also performed a secondary task to nor-
malize each picture into the means and standard deviations



of the images in the ImageNet dataset in order to effectively
extract features using Vision Transformer [4] models.

3. Methods

Our approach is based on the overall model architecture
from PIGEON and PIGEOTTO [5], especially since we be-
lieve that the geocell implementation would be the strongest
way to iteratively determine a precise location from larger
general regions. The main difference between our imple-
mentation and the one introduced by PIGEON is the use of
a vision transformer over the use of CLIP, which necessi-
tates text captions on top of the images, which is not readily
availble in our current OSV5m dataset.

3.1. Baselines

To measure the success of our model, we will com-
pare with multiple baselines, the first of which being a
human benchmark by testing on the interface provided
on the OpenStreetView-5M dataset’s HuggingFace page
(https://huggingface.co/spaces/osv5m/plonk). The motiva-
tion behind having a human baseline is because one major
application of this project is into the game GeoGuessr, and
one way to test our model’s success is how it compares to a
human player on the game. Since a human identifying the
location of an image is limited to only looking at simpler
features, such as signs on the road, or species of plants and
wildlife in the image, we want to compare how our model
does when it looks at the image on a more granular level.

Furthermore, another baseline we implemented and want
to compare our final model to is to a pretrained RestNet-152
[7] model with a neural network head. Since the ResNet
was a former state-of-the-art model for image classification,
the ResNet would also serve as a fair baseline for the task
of geolocating images. Since the ResNet was not built for
completely the same task, as the original implementation of
a ResNet was a pure classification task, and we are com-
paring it to a model identifying longitude and latitude co-
ordinates, we modified the head of the ResNet model with
a neural network in order for it to output coordinates rather
than classes. However, the tasks are similar enough to allow
us to use the feature extraction capabilities of the pretrained
ResNet-152 for downstream prediction.

3.2. Loss

Haversine Loss: Similar to the technique introduced by
PIGEON and PIGEOTTO, the loss function we use is the
Haversine loss function, which is derived from Haversine
distance. Haversine distance measures the distance between
two points on a sphere given their longitudes and latitudes,
and this is relevant in our project as we are attempting
to measure the distance between the user’s guess and
the actual coordinates of the location. The formula for

Haversine distance is as follows:

d = 2r arcsin

(√
1−cos(φ2−φ1)+cosφ1·cosφ2·(1−cos(λ2−λ1))

2

)
where r is the radius of the sphere, φ1, φ2 are the latitudes
of point 1 and point 2, and λ1, λ2 are the longitudes of point
1 and point 2.

As a loss function, this can also be interpreted as the
model’s accuracy in how close or far from the true location
the model guesses.

Contrastive Loss: In addition to Haversine loss, we ex-
periment with the implementation of contrastive loss, which
attempts to minimize the distance between similar exam-
ples, and maximize the distance between dissimilar ones.
Given m positive examples and N −m negative examples,
the loss function can be defined as:

L = −EX [log
score(+)

score(+) + score(−)
],

where score(+) =
∑m

i=1 exp(s(f(x), f(x
+
i )) is the sum

of the scores for the m positive pairs, and score(−) =∑N−m
j=1 exp(s(f(x), f(x−

i )) is the sum of the scores the
N −m negative pairs. Here, our score function s(, ) is the
Haversine distance between the two examples. We experi-
ment with the weighting scale of these two loss values.

In our case, we implement contrastive loss slightly dif-
ferently - when we have examples close to each other ge-
ographically, we want to push their embeddings closer to-
gether, and when we have further examples geographically,
we puth their embeddings further apart.

3.3. Geocells and Intra-geocell Clusters

As with many contemporary methods, we approach Im-
age Geolocation as a classification problem. We utilize a set
of pre-computed geocells and intra-geocell clusters to dis-
cretize the Earth’s surface into a pre-set number of classes.
This strategy aligns with the notion that clusters will natu-
rally arise by nature of geographical terrain and urban de-
velopment. Each cluster should represent a meaningful ge-
ographic region and have relatively balanced sizes. This
method was deeply expanded upon by the PIGEON paper
[5], and we wanted to build our models upon this iterative
method of pinpointing a location as we felt it was the most
accurate way to find location on the globe. Though we orig-
inally had a plan of building a model to output longitude
and latitude values, there would have been too much vari-
ance (as evidenced by the results of the baseline), and the
geocell method would be significantly more accurate.

Clusters and Centroids: Firstly, using training image
metadata (image longitude and latitude) and the OPTICS
clustering algorithm (Ankerst et. al., 1999) [1], we com-
pute a set of initial clusters, using Silhouette scores and the
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Figure 1. Geocell and Cluster computation pipeline.

Davies-Bouldin index to evaluate the quality of our clus-
tering and determine the best hyperparameters for our data.
A total of 174 clusters are created. Note that these prelim-
inary clusters are relatively large, omit certain unassigned
outlier data points. Next, we compute the centroids of each
cluster and assign each unassigned data point to its closest
centroid, measuring distance using the previously defined
Haversine distance function. Once all data points are prop-
erly assigned, we recompute the centroids to account for
the newly assigned points. Figure 2 depicts the results of
our clustering operations.

Figure 2. Visualization of centroids and connections. We see that
each cluster is geographically coherent, and that the cluster places-
ments somewhat represent the shapes of the earth’s land masses,
as expected. There are also more clusters in more image-dense ar-
eas, as expected.

Voronoi Tessellations: Once our clusters are created, we
use Voronoi Tessellation to define a contiguous set of clus-
terings by partitioning the plane into regions close to each
of the given clusters. Because normal Voronoi Tessellation
does not account for the curvature of the Earth, we use an
adapted version to ensure that points on the edges are prop-
erly integrated. This new set of clusterings is our set of
geocells, as depicted in Figure 3.

Intra-geocell clusters: These generated geocells are rel-
atively large, ranging in area between 10 and 4,000 square
kilometers. We want to refine our clustering to accurately
capture the desired geographic classifications. To do so, we
re-cluster data points in each tessellation using the same
process, generating a set of over 2,700 total intra-geocell
clusters, with 5 to 100 clusters per geocell.

Figure 3. Visualization of geocells after Voronoi Tessellation.
Now, every location on Earth is accounted for by one of the tes-
sellations, creating a set of classes that encompass every possible
point.

3.4. Creating Geo-Embeddings

Many approaches to this problem have demonstrated that
vision encoder models, such as ResNet, ViT, and CLIP, are
extremely powerful at extracting the important features on
an image for geo-location use. We employ a pre-trained Vi-
sion Transformer (ViT) [4] model to create geo-encodings
of given images. We selected ViT because of its self-
attention mechanism, which allows it to understand and en-
code global context more effectively, and ability to learn
complex and high-level features that may be more relevant
for distinguishing between different geographic locations.
Additionally, ViT is compatible with image-only data, with-
out the need for captions, which aligns with our OSV5M
dataset. On top of these encodings, we add a linear layer
to learn a geo-embedding for each geocell as well as each
intra-geocell cluster.

Figure 4. Visualization of geocells after Voronoi Tessellation.
Now, every location on Earth is accounted for by one of the tes-
sellations, creating a set of classes that encompass every possible
point (image source: Haas et al., 2024 [5])

3.5. Location Cluster Retrieval

During inference time, we select the top k geocells that
most closely match the geo-encoding of a given image. This
allows for diversity of location to account for the possibility
of two geocells on opposite sides of the Earth having similar



geo-embeddings. The model then selects the cluster with
the closest geo-encoding, and outputs the coordinates of the
centroid of the cluster. We can safely expect correct outputs
to be within 50km of the actual image location.

4. Experiments
For our experiments, we compare the results of the our

ViT model with the various baselines proposed. We modify
the hyperparameters of the ViT model, specifically whether
or not to use contrastive loss, different levels of contrastive
weight (α), as well as different values of temperature (τ ).
We trained the ViT model with a learning rate η = 1×10−7,
and the prediction head was trained with a learning rate η =
1× 10−3. We trained each model with 10 epochs, and used
the AdamW optimizer. We did an 80 − 10 − 10% split of
our data for training, validation, and testing, with a total of
100,000 images used for the training. For the computation
and clustering of the geocells, we used a separate 100,000
images from the same dataset in order to generate this. The
embeddings for the geocells were also generated using the
ViT transformer model.

4.1. Baseline

For the human baseline, the authors and 5 friends (sam-
ple size of n = 8) played the interactive demonstration
on the HuggingFace webpage, and recorded how far their
guesses were from the actual location of the image. After
completing all 50 images, the distance was averaged and
that was the final score kept for each player. At the end,
the score for each player was again averaged across the 8
individuals to give the final score for the human baseline.

The neural network head (and final two layers of ResNet-
152) was trained on the same image dataset that was used to
train the final model. It is trained for 5 epochs, with the hy-
perparameters including a learning rate of 1×10−3, weight
decay of 1 × 10−4, batch size of 32, as well as using the
AdamW optimizer. After training is complete, it is eval-
uated on the same 50 images testing set, and the average
distance away from the true points is kept as its score.

4.2. Models

The main pretrained model we used in order to com-
pute the embeddings of the pictures was the ViT transformer
model. The benefits of the ViT model was that it is stronger
than the ResNet architecture due to it having self-attention,
allowing it to capture the relation between different objects
in the image and ultimately giving it a stronger embedding
for us to find its location from. Unlike the PIGEON model
where we based our models on, we didn’t use a CLIP model
that combines synthetic image captions with images learn
embeddings, we believed that using ViT would allow us to
focus more on image features and not require the use of ex-
ternal data.

We experimented with multiple configurations of our vi-
sion encoders in order to determine what would yield the
strongest accuracy when predicting the correct geocells that
the images were taken in. Specifically, we tested between
training with or without the use of contrastive loss, and if
it is being used, then we also modify how much we want
to weight the contrastive loss in our overall loss calculation.
Not only that, we had another hyperparameter of tempera-
ture. used in the contrastive loss in order to determine how
much we “soften” or “harden” the final probability distribu-
tion.

4.3. Results

Model Avg. Dist. (km)
Human Baseline 1,219.8

ResNet (Non-Clustering) 9,328.7
ViT + Haversine Loss 208.6

ViT + contrastive loss (τ = 0.3, α = 0.5) 173.3
ViT + contrastive loss (τ = 0.5, α = 0.5) 167.2
ViT + contrastive loss (τ = 0.5, α = 0.75) 185.2

Table 1. Results of experiments

As we can see in Table 1, initially, the most signifi-
cant observation is that the human baseline vastly outper-
formed the ResNet implementation. One possibility is that
the ResNet model was originally a classification model, not
one that outputs a continuous range. As a result, if the
ResNet incorrectly classifies anything, the output could be
entirely off (consider an example where the ResNet guessed
that a picture was taken in the United States when it was ac-
tually in London - it would have a really high Haversine
loss). Since our model will be designed to output a contin-
uous range of longitude and latitude points, it should easily
be able to outperform the ResNet baseline, as when it is in-
correct, it will more likely be incorrect by a smaller margin
since it will output closer coordinates.

However, beyond the baselines, we see that the imple-
mentation of ViT is significantly stronger than both the hu-
man and ResNet baselines, by a factor of around 50 times
better than ResNet, and 7 times better than human perfor-
mance. The incorporation of contrastive loss further im-
proves performance by a factor of approximately 1.2 times.
However, with the variation of all hyperparameters, we see
that contrastive loss gives similar results with very marginal
differences.

4.4. Discussion

First of all, the results of the non-clustering algorithms
do not perform as well as the geocell clustering, and this
makes sense due to the iterative nature of determining an
exact location using geocells. By slowly looking from a set
of larger geocells to smaller clusters, we are able to zoom in



step by step to determine an exact location. However, with-
out the use of geocells, the model essentially just outputs
a random longitude and latitude coordinate. As a result,
if the model was wrong, it could have completely missed
the general area of where it should have been predicting in.
When the geocells predict incorrectly, at least it is resultant
of smaller and smaller regions of searching, allowing for
smaller error.

Moreover, we see that introducing a contrastive loss
component to the often used Haversine loss model allows
for further improvement. This intuitively makes sense, as
contrastive loss allows for the model to further learn the dif-
ference between positive and negative examples per class,
which reduces the chances that the model classifies the im-
ages in the wrong geocell.

When examining the hyperparameters of the contrastive
loss model, we notice that there aren’t significant differ-
ences between the different hyperparameters, but there are
important differences to note. With higher levels of τ ,
the model seems to perform stronger because it makes the
probability distributions softer through normalization. As
a result, the model is able to generalize better to unseen
examples because the probability distributions it generates
doesn’t overly favor certain examples, which lead to more
instances of false predictions. With a level of α ≈ 0.5, the
model seems to do a better job of balancing between the
regular loss and contrastive loss, which shows for the better
results. When we increase the contrastive weight too much,
then the model performance seems to slip a bit.

5. Conclusion
Through the course of this project, we explored the ap-

plication of ViT models in geolocating images. Instead of
looking at individual featuers of the image and comparing
them with other images in a nearest neighbors approach like
that was done in early works in geolocation, we primarily
approached the task as a classification problem (similar to
the work done by the authors of PIGEON) and built upon
the use of geocells and classifying images into geocells
based on their embeddings from vision transformers. Over-
all, the results demonstrated that the vision transformers,
when compared with human baselines or simple ResNet ar-
chitectures, had stronger results, but still falls short against
state of the art models like PIGEON.

Within the use of vision transformers, we compared the
differences between the use of contrastive loss, and with-
out contrastive loss, during the training step of these trans-
formers. Using contrastive loss demonstrated a slight im-
provement in the overall accuracy of the model, primarily
due to it’s capacity to distinguish between correct and in-
correct examples and be able to generalize better than its
non-contrastive counterpart. We also find that with higher
temperature, the results are a more normalized which gives

stronger results than lower levels of temperature. Finally,
we find that weighting the contrastive loss generally less al-
lows for better results, which indicates that it is helpful in
the accuracy but Haversine distance already has a strong ef-
fect.

Overall, contrastive learning techniques are quite strong
in geolocation tasks just because there are many extremely
similar images, and the model’s ability to distinguish be-
tween subtleties differentiates a good model from a great
one. When you think about geolocating images with ex-
tremely similar features, such as a beach, the contrastive
learning allows us to differentiate beaches from opposite
ends of the globe despite them almost all having the same
exact sand, ocean, and sky features.

5.1. Future Work

To improve on our results, we could explore different
variations of the pretrained model we fed into computing
the embeddings for the image to be fed into the geocells.
Not only that, we could have experimented with multimodal
data - the original PIGEON paper discussed adding syn-
thetic captions to supplement the model in order to make
the embeddings stronger. With a stronger dataset, we could
also explore the use of image metadata. With the knowledge
of the time the picture was taken, the direction the user was
facing during the image, and maybe a panoramic view of the
picture, our model could yield significantly stronger results
as well.

Finally, a bias that needs to be acknowledged within the
current datasets that were used in this experiment was that
the world wasn’t represented proportionally in the dataset -
for example, there were regions of the world significantly
unrepresented. Though this could be a result of the fact that
some places naturally have lower population density, our
model underperforms on places where there aren’t as many
images from just because the geocells are generated from
images existing in the training set. To make our model more
generalizable, it is also important that we have a strong
dataset that properly represents different areas of the world
equally.
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