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Abstract

T-cell based immunotherapies hold great promise for
treating cancer. However, their efficacy is often limited by
issues such as specificity, toxicity, and longevity. A cru-
cial aspect of developing these therapies is the accurate
characterization of T-cells. While supervised computer vi-
sion models have shown success in analyzing and classi-
fying autofluorescent T-cell images as active or quiescent,
they require large, labeled training sets, which are labor-
intensive to produce. Self-supervised models present a vi-
able alternative, leveraging recent advancements in com-
puter vision to reduce the dependency on labeled data. In
this project, we evaluate the performance of DINOv2, a
popular self-supervised model, in classifying T-cell activa-
tion states. Based on our experiments, we see that DINOv2
can achieve comparable to, and possibly even better per-
formance than, traditional supervised models. However, we
also find that further fine-tuning does not improve the per-
formance of DINOv2 models, and that overall a supervised,
fine-tuned CNN is better at determining the activation state
of a T-cell.

1. Introduction
Biological image modalities are critical to the under-

standing and diagnoses of diseases and are rich in data. De-
velopments in both biological imaging and machine learn-
ing, particularly in the field of computer vision, have led
to new ways of analyzing and recovering data in biological
images. However, the curation of high-quality, large biolog-
ical image datasets is uniquely challenging as generating
these datasets is time, cost and labor intensive [8]. More-
over, these datasets often have issues of class-imbalance,
high dimensionality, and large datasize size, which hinder
performance of deep learning models and require signifi-
cant compute resources to train such models, respectively
[5, 11].

However, recent advancements in deep learning mod-
els may remedy these issues with minimal concessions in
model performance. Specifically, advancements in large-

scale pretrained models provide solid foundations for fine-
tuning and allow deep learning problems to be solved with
reduced data requirements [7]. Moreover, with recent in-
creases in research efforts focused on self-supervised mod-
els, groundbreaking model architectures, such as DINO,
self-supervised GANs, and self-predictive vision trans-
former models, have reduced the performance gap be-
tween supervised and self-supervised learning approaches
[8, 14, 16]. Ultimately, these advancements have increased
the viability of using large, pretrained, self-supervised mod-
els for deep learning tasks as they require less data, less
compute, and have been shown to be more robust against
data imbalances [10]. However, these models are generally
not trained on biological images, rather training on many
general images, and thus are not thought to be easily trans-
ferable to biological applications due to a lack of domain
knowledge. However, since self-supervised models learn
general embeddings about their inputs, these large, pre-
trained, self-supervised models offer a prime opportunity
to employ and validate on biological imaging tasks, even
without specific domain knowledge.

1.1. Approach

In this project, we focus on T-cell images. T-cells help
the body fight off infection by recognizing and killing in-
fected cells. More recently, T-cell based immunotherapies
have made a meteoric rise within the space of genetically
engineered T-cells to fight cancer [17]. One challenge with
these immunotherapies is that it’s difficult to detect “active”
T-cells, T-cells capable of killing infected cells, without ex-
pensive and destructive techniques. Thus, methods of de-
tecting T-cell activation state via imaging alone are neces-
sary to avoid difficult and expensive assays as well as avoid
damaging or exhausting the T-cells.

Our goal is to leverage the strong foundational knowl-
edge of large, pretrained, self-supervised models to develop
a self-supervised computer vision model which classifies
T-cells as active or quiescent (non-active). While existing
supervised models have shown promising results, a self-
supervised model could cut down the labor of generating
annotated data and also leverage the power of existing self-
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supervised foundation models. In particular, we will lever-
age several of Meta AI’s pretrained DINOv2 models, which
are implemented with state-of-the-art vision transformers
using a knowledge distillation approach [14]. We then eval-
uate the performance of the models on the task of binary
T-cell classification.

Based on our experiments, we find that DINOv2 models
can achieve comparable performance to supervised CNN
models when tasked with classifying the activation state of
T-cells, even without further fine-tuning. Within the dif-
ferent DINOv2 architectures, we see that models with less
parameters and that use additional register tokens best cap-
ture the features of T-cell autofluorescent images. However,
we ultimately determine that, given the size of our training
set, the best model for classifying T-cell activation states is
a fine-tuned supervised CNN model.

2. Related Works
2.1. T-cell Immunotherapies

T-cells are integral for identifying cancer-specific or
overexpressed antigens, consequently destroying cancer
cells. T-cell therapies have shown promising results for
some cancers [17]. However, T-cell treatments still have
several limitations, including toxicity, limited specificity,
and longevity [20]. Additionally, characterizing and cul-
tivating T-cells for immunotherapies is labor intensive and
destructive. Often, characterizing T-cells requires fluores-
cent labeling, which can take several weeks, requires ex-
pensive antibodies and reagents, and requires destruction of
the sample tissue. Finally, the quality of the final image is
not guaranteed, as issues in the labeling procedure or in the
imaging can affect the quality of the signal from the fluores-
cent labeling. This could make analysis of the images more
difficult downstream, limiting the usability of the data. [18].

Recent research by Walsh et. al shows that T-cells have
a natural fluorescence resulting from reduced nicotinamide
adenine dinucleotide (NAD(P)H). They also demonstrate
that NAD(P)H fluorescence is indicative of the T-cells’
metabolic activity. Therefore, T-cells can be imaged with-
out fluorescent labeling [18]. Autofluorescent imaging is
an attractive alternative to traditional methods of fluores-
cent imaging, as it doesn’t require tissue fixation or exter-
nal agents and offers higher contrast. Using autofluorescent
imaging to characterize T-cells is drastically less intensive
than traditional methods, and potentially streamlines the T-
cell immunotherapy research process.

2.2. Self-Supervised learning

Computer vision techniques have shown great promise
in extracting relevant features from autofluorescent T-cell
images. Using the same dataset used in Walsh et. al [18],
Wang et. al demonstrated the robust performance of Con-

volutional Neural Networks (CNNs) on classifying the acti-
vation state of T-cells in autofluorescent images [19]. How-
ever, the models used in the study are supervised, and there-
fore require labeled data for training.

To generate the data, blood samples were collected from
six patients. From these samples, equal amounts of acti-
vated and quiescent T-cells were cultivated [18]. This pro-
cess highlights a significant challenge in using computer
vision models for biological data: the labor-intensive na-
ture of generating labeled data. Expert intervention is cru-
cial to ensure accurate labeling, which is essential not only
for the reliability of the research but also for the potential
downstream therapeutic applications. Self-supervised mod-
els can mitigate the issues posed by supervised models.

Self-supervised representation learning (SSRL) models
are pre-trained on pretext tasks to learn robust feature repre-
sentations, which are then fine-tuned for specific tasks, such
as classification, or tailored to particular domains, such as
biological imaging. SSRL models have been successful in
traditional image and speech tasks, and are the foundations
of popular models such as Google’s BERT and OpenAI’s
GPT-3. SSRL models have also seen success in the biolog-
ical domain. For example, GAN-DL is a Generative Adver-
sarial Network (GAN) that could distinguish between un-
treated SARS-Cov2 infected cells, treated SARS-Cov2 in-
fected cells, and uninfected cells with unlabeled data [12].
Similarly, CytoGAN is a GAN that could generate realistic
synthetic fluorescent images of cells and also learn repre-
sentations of cells comparable to CellProfiler features, the
current field norm [6]. More recent models leverage vision
transformer models (ViT). For example, ChannelViT builds
an explicit channel embedding, making it more apt to rep-
resent the distinct information found in each channel of flu-
orescent images[1]. Similarly, scDINO builds on Meta’s
DINO architecture by fine-tuning on non-RGB multichan-
nel images, which are more characteristic of fluorescent im-
ages [15].

In this project, we expand on research done by Wang and
assess whether SSRL models can achieve similar or better
performance than supervised models in characterizing and
classifying T-cells as active or quiescent. We specifically
assess the performance of Meta’s DINOv2 model, a self-
supervised model trained on ImageNet [2]. We hypothesize
that self-supervised learning can further improve the effi-
ciency and effectiveness of working with autofluorescence
data.

3. Data

Our dataset, generated by Walsh et. al[18], consists of
labeled autofluorescence microscopy images of individual
T-cells from 6 individual patients.
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3.1. Data Preparation

To prepare the images for training and testing models, we
followed the image processing pipeline developed by Wang
et al.[19], as described below.

First the data is made uniform via padding – we pad
smaller images with black border pixels as the T-cells tend
to appear towards the center of each image. Then, we fil-
ter out images that are too dim or have no cell visible. To
do so, we employ an entropy based filtering method where
we calculate the entropy for each image, create a normal
distribution of entropies in activated and non-activated im-
ages, define an entropy threshold for images that are too dim
based on these distributions, then filter out all images be-
low these thresholds. Additionally, we filter out any images
containing more than one cell using a binary threshold and
connected components to detect multiple cells in a single
image. Finally, we augment our dataset by creating images
that are rotated by 90, 180, or 270 degrees, as well as im-
ages that are flipped over a horizontal or vertical mid-line.
Through this image augmentation and filtering pipeline, we
end up with 4986 134 × 134 × 1 images – 1758 activated
and 3228 quiescent.

For images run through the DINOv2 models, we addi-
tionally add further zero padding to each input image such
that each image is 140 x 140 x 1 and converted the images
from grayscale to RGB as these models require requires the
height and width of input images to be divisible by 14 and
for images to be RGB.

4. Methods
In this section, we define our baseline methods and re-

port their performance in Table 1. We then go on to intro-
duce our approach of evaluating various pretrained DINOv2
models, which are self-supervised vision tranformers (ViT),
on our dataset and report their performance in Table 2 and
Table 3.

4.1. Baseline

Following research from Wang et. al [19], we use the
following classifiers as baselines: a frequency classifier,
a logistic regression classifier, a one-layer fully-connected
neural network, LeNet CNN, an out-of-the-box pre-trained
CNN, and a fine-tuned CNN, whose accuracy, average pre-
cision, and AUC can be seen in Table 1. The features were
derived from information grayscale pixel values in the raw
images [19]. More information about the baselines and
other models evaluated in [19] can be found below:

Frequency Classifier: a classifier which uses the fre-
quency of positive samples in the training set as a predictive
probability that a sample in the testing set is positive.

Logistic Regression Classifier: a logistic regression
classifier using the features derived from the raw images.

Trained using L1 loss and hyperparameters are tuned using
nested-cross validation.

One-layer Fully-connected Neural Network: A sim-
ple neural network with one fully-connected hidden layer to
learn a non-linear relationship between images and labels.
Hyperparameters are tuned similar to the logistic regression
classifier.

LeNet CNN: A convolutional neural network (CNN)
which consists of a Conv2D, followed by a MaxPool2D,
repeated twice, and followed up by two Dense layers. Hy-
perparameters are tuned similar to the logistic regression
classifier.

Pre-trained CNN: An off-the-shelf Inception v3 CNN
architecture that has been pretrained on (non-biological) im-
ages with an additional fully-connected layer to map the
features extracted from the CNN to our classes. Hyperpa-
rameters are tuned similar to logisitc regression classifier.

Fine-tuned CNN: The same off-the-shelf Inception v3
CNN model from above, but instead of a single additional
fully-connected layer, multiple layers of the off-the-shelf
model are finetuned on biological images. Note that the
number of layers finetuned is a hyperparameter. Other hy-
perparameters are tuned similar to logisitc regression clas-
sifier.

The use of these specific baselines will offer us a broad
reference to be able to compare our model results to ran-
dom, general machine learning, and convolutional tech-
niques offering a wide range of different approaches to
solve this problem.

4.2. Model

4.2.1 DINOv2

DINOv2 was developed in 2024 by Meta AI and extends
from their previous DINO approach, while also taking in-
spiration from iBOT (Image BERT Pretraining with On-
line Tokenization) loss and the centering of SwAV (Swap-
ping Assignments between multiple Views of the same
image)[14]. Like DINO, DINOv2 uses vision transformers
for self-supervised learning instead of CNNs [3]. However,
DINOv2 is trained on a significantly larger curated dataset;
DINO was originally trained on 1.2M images from Google
Landmarks v2 (GLDv2) and DINOv2 is trained on a curated
142M image dataset (LVD-142M) [3, 14].

Similar to DINO, DINOv2 uses knowledge distillation
between a student and teacher network in which the stu-
dent network is trained to match the output of the teacher
network [3]. For a given image, the student network re-
ceives local ”views”, or differing crops of a given image,
which contain < 50% of the original area of the image and
the teacher network receives global views, which contain
> 50% of the original area of the image. The output for
each network is a probability distribution, pt and ps for
teacher and student, respectively, and the DINO loss term
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(1) is minimized to learn the parameters of the student –
note that the DINO loss term is the cross entropy between
the teacher and student probability distributions, measuring
the difference between the two distributions. The teacher’s
parameters are learned by an exponential moving average
of the student parameters.

LDINO = −
∑

pt log ps. (1)

Where DINOv2 differs from DINO is the inclusion of the
”patch-level objective”, where the input image is divided
into patches, and some patches are randomly masked in the
student, but not in the teacher [14], which improves patch-
level tasks. The iBOT loss term (2) is minimized similar
to the above approach, except we are now calculating the
cross entropy of the probability distributions per patch. The
inclusion of the patch-level objective ultimately improves
patch-level tasks since it trains the model to reconstruct a
set of input tokens through knowledge distillation [14, 21].

LiBOT = −
∑
i

pti log psi | where i is a patch. (2)

Moreover, DINOv2 introduces Sinkhorn Snopp (SV)
centering, a KoLeo regularizer (to improve nearest-
neighbor search tasks), adaptation of image resolution (to
improve segmentation and detection on small objects), and
numerous efficient adaptations to improve the performance
of the DINOv2 architecture over the original DINO archi-
tecture, while simultaneously reducing the computational
requirements [14].

4.2.2 Approach

For our approach, we ran images through either the small
(S, 21M parameters) or big (B, 86M parameters) DINOv2
models, with or without registers (details provided in later
sections). Then, we took the concatenated class and patch
tokens (and additionally the register tokens if the model
had registers), and ran it through a single linear layer from
an embedding dimension of 384 (S) or 768 (B) to a single
logit followed by a sigmoid function. As our task was that
of binary classification, we used Binary Cross Entropy as
our loss function. For test time prediction, scores that were
<= 0.5 were classified as 0 and all others were classified as
1. For training, we tried both freezing (preventing the pre-
trained model weights from updating) and fine-tuning the
DINOv2 layer. We attempted some hyperparameter tuning
(i.e. learning rate, batch size) but due to the training time
of our model we were not able to do a full cross-validation
scheme.

This approach is both suitable and the most applicable
for our problem as we want to test the ability for general

Figure 1: A simplified DINO Architecture based off de-
scriptions of DINOv2 in [14] and iBOT in [21]. First, an
input image is sampled and divided into a student (local)
and teacher (global) view. Both views are split into patches
– with some patches of the student view being masked –
and the patches and views themselves are passed into their
respective networks. Once passed through, the DINO head
uses Equation 1 to update the parameters of the student and
teacher network, and the Patch head uses Equation 2 to up-
date the parameters of the student and teacher network.

self-supervised models to be applied to biological image ap-
plications. As DINOv2 is one of the most novel and broadly
trained self-supervised models, we believe our results will
be both relevant and applicable. We considered alterna-
tive approaches such as developing our own self-supervised
model for this task, but decided against doing so due to our
relatively small dataset.
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5. Results

In this section, we present the evaluation of our com-
bined model of various available pretrained DINOv2 mod-
els and a classification head on validation and testing sets
– located in Table 2 and Table 3, respectively. We evaluate
both small (-S, 21M parameters) and big (-B, 86M param-
eters) models. Each model is either labeled as ”Frozen,”
meaning the model weights tuned during pretraining have
been prevented from updating, ”Reg,” meaning the models
have been trained with registers, ”Reg Frozen,” a combina-
tion of the two above, or unlabeled, meaning that the model
was allowed to update its weights as it trained on the auto-
fluorescent T-cell images as described in the Methods sec-
tion.

Accuracy Precision AUC

Frequency Classifier .5256 .4744 .5000
Logistic Regression .7808 .8039 .7183
Simple Neural Net .8006 .8150 .5000
LeNet CNN .8853 .8842 .9334
Pre-trained CNN .9036 .9480 .9596
Fine-tuned CNN .9356 .9638 .9667

Table 1: Accuracy, Average Precision, and AUC accross the
baseline models and evaluated models mentioned in Wang
et. al [19], averaged across patients.

Accuracy Precision AUC

ViT-S Frozen 0.8718 0.8703 0.8544
ViT-S Reg Frozen 0.8735 0.9019 0.8682
ViT-B Frozen 0.8776 0.9073 0.8732
ViT-S 0.8640 0.8659 0.8468
ViT-B 0.8577 0.8523 0.8362
ViT-S Reg 0.9188 0.9341 0.9143
ViT-B Reg 0.8864 0.8855 0.8758

Table 2: Validation accuracy, precision, and AUC across
the DINOv2 models, with best performing models bolded.
Metrics pulled from best performing training epoch.

(a) Accuracy over time.

(b) Loss over time.

Figure 2: Training Performance over time for each DINOv2
model.

Accuracy Precision AUC

ViT-S Frozen 0.8597 0.8687 0.8496
ViT-S Reg Frozen 0.9216 0.9251 0.9158
ViT-B Frozen 0.8542 0.8542 0.8403
ViT-S 0.8572 0.8494 0.8408
ViT-B 0.8542 0.8542 0.8403
ViT-S Reg 0.9216 0.9251 0.9158
ViT-B Reg 0.8864 0.8855 0.8758

Table 3: Test accuracy, precision, and AUC across the DI-
NOv2 models, with best performing models bolded.
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5.1. Evaluation of Model Size

In Table 2 and Table 3, we compare the test performance
ViT-S and ViT-B models with the various model setting de-
scribed above. First, we observe that ViT-S models seem
to perform better than their ViT-B counterparts, or models
with a lower number of parameters are observed to perform
better than those with a higher number of parameters, with
the exception of ViT-B Frozen compared to ViT-S Frozen
and ViT-S Reg Frozen in Table 2. This is consistent with the
training performance as seen in Figure 2a and Figure 2b–
the ViT-S models outperform their ViT-B counterparts dur-
ing training. Here, in the case of Table 3, we find the dif-
ference between the best ViT-S models – ViT-S Reg Frozen
and ViT-S Reg – and the best ViT-B model is 0.0352. This
pattern is indicative of overfitting and consistent with exist-
ing literature given the combination of the ViT-B model’s
larger parameter size and the relatively small size of our
training dataset [13]

5.2. Evaluation of Model Weight Freezing

As show in Figure 3, freezing model weights generally
leads to better performance than fine-tuning the models.
Additionally, the performance of the frozen models were
more stable as indicated by the smoother learning curves
seen in both model sizes. In other words, fine-tuning DI-
NOv2 models on our specific training set did not necessarily
lead to better performance. This is especially clear within
the ViT-B models – the fine-tuned weights likely overfit
on the data and led to worse performance than the frozen
weights. Interestingly, this pattern is not as clear with the
ViT-S models. The fine-tuned ViT-S model with registers
outperformed its frozen counterpart during training. This is
likely because the ViT-S model is less expressive than the
ViT-B model due to its smaller parameter size and therefore
less prone to overfitting. This, combined with the benefits
of including registers, might actually cause the ViT-S model
to benefit from fine-tuning. However, in validation (Ta-
ble 2), the fine-tuned model outperformed the frozen model,
and both models performed equivalently during testing (Ta-
ble 3).

5.3. Evaluation of Model Saliency

To understand the regions of input images that our mod-
els were giving weight to, we generated saliency maps for
correctly and incorrectly classified images for each model.
Saliency maps are generated by running images through the
model forward pass, and then using a backward pass to gen-
erate heat maps of important/sensitive regions from the in-
put image.

In Figure 4, we see three saliency maps for the same
correctly classified activated T-cell from the small model
with registers, small model with registers frozen, and the
big model. In (a) and (b) we see that the models correctly

(a) Performance within ViT-S models.

(b) Performance within ViT-B models.

Figure 3: Training Performance split by Model Size.

focus on the most important region of the image (where the
cell is located) and that freezing the DINOv2 layer of the
model does not impact the region of the input image that it
gives the most weight to indicating that the additional fine-
tuning may not have contributed significantly to model per-
formance. In (c), we see that the big model correctly classi-
fied the same input image but its focus is nowhere near the
cell. This trend was shared in the saliency maps of for many
of the images for the big model which could help explain its
decreased performance relative to the small model. How-
ever, as its performance was still fairly good, this leads us
to wonder if there is additional information being conveyed
in the images in regions where there is no cell visible (i.e.
some sort of bias in the images that’s allowing for inflated
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(a) Small Model with Registers Saliency

(b) Small Model with Registers (Frozen) Saliency

(c) Big Model Saliency

Figure 4: Saliency Maps for a correctly classified cell across
three models.

performance by the model).

In Figure 5, we see two saliency maps for two differ-
ent incorrectly classified T-cells from the small model with
registers. In (a) we see that the model was not able to cor-
rectly identify the most important region from the input im-
age which likely contributed to the incorrect classification.
However, this observation was not uniform across the incor-
rect classifications as in (b) the model was still able to focus
on the correct part of the input image despite its incorrect
classification.

(a) Small Model with Registers Saliency

(b) Small Model with Registers Saliency

Figure 5: Saliency Maps for an incorrectly classified cell
by the small model with registers showing correct focus (a)
and less focused (b).

5.4. Evaluation of Registers

Across both model sizes, models with registers outper-
form models without registers during training(Figure 3),
validation (Table 2) and testing Table 3. The models with-
out registers seem to be assigning importance to low-signal
patches as seen Figure 6a. This is indicative of a known
problem with DINOv2 – the model attempts to use tokens
associated with the low-signal patches to store global infor-
mation, consequently losing the local information associ-
ated with these patches [4].

By introducing additional tokens that are discarded at the
end of the vision transformer, called registers, the model
can learn to aggregate global information in the registers
and preserve the local information in the low-signal patches.
This leads to better learning and empirically better perfor-
mance [4]. The benefits of including registers can be seen in
Figure 6b, which show that the model is correctly focusing
more on T-Cell.

5.5. Comparison with Baselines

Based on Table 1 and Table 3, the best performing SSRL
model (ViT-S Reg) outperforms the Pre-trained CNN and
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(a) Sample saliency map from ViT-S.

(b) Sample saliency map from ViT-S with registers.

Figure 6: Comparison of saliency between small model
with registers and small model without registers.

achieves comparable performance to the fine-tuned CNN.
However, ultimately, the Fine-tuned CNN is the best per-
forming model among both the baseline models and the
SSRL models. This is likely due to the small size of the
dataset. Transformers, the foundation of the DINOv2 mod-
els, inherently require a lot of data to learn robust represen-
tations. While the DinoV2 models already have rich repre-
sentations of image features from the pre-training process,
there likely wasn’t enough data for the models to learn fea-
tures specific to T-cell images.

Interestingly, the best performing frozen SSRL model

(ViT-S Reg Frozen) outperforms the Pre-trained CNN.
This indicates that, when comparing out-of-the-box per-
formance, DINOv2 is better at predicting T-cell activation
state than a pre-trained CNN. More specifically, the weights
learned in the pre-training procedure of the DINOv2 model
are better representing the T-Cell image features than that
of the pre-trained CNN. Overall, with the limited data, fine-
tuning a CNN is a better choice than fine-tuning an SSRL
ViT model, because it is both more accurate and less com-
putationally intensive [9]. Additionally, using DINOv2 out
of the box would lead to better performance than attempt-
ing to fine-tune it. However, further research is needed to
determine if this trend holds with a larger training set.

5.6. Evaluation of Effect of Class Imbalance

Figure 7: Confusion matrix based on test performance of
VIT-S Reg model.

As mentioned in the description of our dataset, we have
almost twice as many quiescent T-cell images as we do ac-
tivated T-cell images. Despite this class imbalance, the best
performing model (ViT-S) is able to distinguish between ac-
tivated and quiescent T-cells – this is demonstrated by the
relatively low number of false positives and false negatives
in Figure 7. This indicates that, despite performing less well
than the baselines, the DINOv2 model is still good at learn-
ing and recognizing the distinguishing features of active and
quiescent cells.

6. Conclusion
In this study, we evaluate the performance of an SSRL

ViT model architecture, DINOv2, with traditional super-
vised CNNs. We specifically focus on the task of classifying
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T-Cell activation based on T-cell autofluorescence images,
which have been shown to be an important task for im-
munotherapy development. We build upon previous work
that demonstrates that supervised CNNs do well at classify-
ing T-Cell activation states.

Based on our experiments, we find that DINOv2 can
achieve similar performance as compared CNNs. We also
see that, if comparing out-of-the-box performance of pre-
trained models, DINOv2 performs better than supervised
CNN at classifying the activation state of T-cells. However,
ultimately, we see that a supervised, fine-tuned CNN is a
preferable choice to a fine-tuned DINOv2 model due to both
having better performance and requiring less computational
resources. This is likely due to the amount of data needed to
fine-tune a DINOv2 model, and the comparably small size
of our training set.

Outside of direct comparisons between the DINOv2 ar-
chitecture and the supervised CNN architecture, we also ob-
served other interesting patterns. Consistent with other DI-
NOv2 experiments, we find that using register tokens leads
to improved performance and a better understanding of T-
cell images. We also find that, with a smaller training set,
a smaller model is more impervious to overfitting than a
larger model. Overall, we demonstrate that DINOv2 can
achieve good performance with biological images without
further fine-tuning, despite the fact that it is trained on non-
biological images. Using an a SSRL ViT model, DINOv2,
out of the box allows for a reduced dependence on data –
as we wouldn’t need to fine-tune – without sacrificing per-
formance. However, it is not necessarily the best possible
model for classifying T-Cell activation based on T-cell auot-
fluorescent images.

6.1. Further Research

Given more time and resources, there are several other
further research topics we could pursue. In this project,
we decided to compare a singular ViT SSRL architecture,
DINOv2, to a supervised CNN. It would be intersting to
evaluate the performance of different SSRL architectures.
Specifically, we could compare the performance of a GAN
model, a ViT model, and a self-supervised CNN model.

Another interesting research direction could be to com-
pare the performance of a pre-trained SSRL model that has
seen biological images in its pre-training process. We men-
tion several examples in the introduction, such as CytoGAN
and scDINO – these models may be better at analyzing T-
cell images than the out-of-the box DINOv2 architecture.

Finally, we can try different ways of pre-processing our
data before feeding it into the models. In this project, we
relied on the same image-processing pipeline used for the
baseline models. However, we can try using a custom image
processing and image augmentation pipeline, and possibly
find better ways to artificially enlarge the training set.

7. Supplementary Materials
The code for our project can be found here. The original

code for the baseline models and for image processing can
be found here.
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