Vision is Language: Visual Understanding via LLM

Xiangyu Liu
Stanford

jxiangyu@stanford.edu

Abstract

Many vision tasks can benefit significantly by leveraging
language. Some tasks, such as Visual Question Answering
(VQA) for open-ended questions, require the vision model
to understand language. In this project, I designed a model
leveraging both frozen image model and frozen large lan-
guage models to achieve high accuracy VQA results.

1. Introduction

When we hear “sky is blue”, we can immediately picture
a beautiful blue sky above with a few white clouds in our
mind. Similarly, when we see a dog chasing after a ball,
we can effortlessly describe which is doing what. Hence,
intuitively, there is a large overlap between vision under-
standing and language understanding.

As the Large-Language Model has exhibited promising
capability recently, research to leverage LLM to improve
image understanding has witnessed a rapid advancement.
One fundamental capability of visual understanding is to
perform visual question answering (VQA). Many different
approaches [such as (12)), (4)] that leverage vision encoder
and LLm for VQA tasks have been explored to improve the
overall accuracy of VQA tasks.

However, the open-ended VQA remains a very challeng-
ing task, because it not only involves many traditional vi-
sion tasks, such as object segmentation, but also requires
the natural language understandings. More importantly, it
needs to be able to identify the connection between vision
tasks and the language in order to answer vision related
questions.

In this paper, I plan to use the VQA and CoCo datasets
to train and evaluate the accuracy of the neural network for
VQA performance, with the focus on the open-ended ques-
tions instead of the True/False questions or multiple-choice
questions. More explicitly, the input to my model is an im-
age and a question related to the image, the output will be
the answer to that question.

2. Related Work

Transformer (11) has become a very popular and pow-
erful method for language tasks. For example, both GPT
(10) and BERT (5) used transformer as its architecture and
achieved great performance. Because of its effectiveness,
many explored using transformers in vision tasks and had
seen similar success (6). As a result, there are various ap-
proaches to use transformer to jointly model vision and lan-
guage (1), (12).

With Transformer’s success, pre-training for vision-
language tasks has become popular. One effective approach
for vision-language pre-training is contrastive learning (9),
which allows joint-training a model for both vision and lan-
guage (12).

The current state-of-the-art approaches for Visual Ques-
tion Answering leverage the vision-language pre-training
and have achieved very high accuracy in Vision Question
Answering tasks (4), (12), (3). However, they all treat
the task as a classification problem, which still limits the
model’s capability to achieve human-like results.

3. Methods
3.1. Architecture

For a model to properly answer the open-ended ques-
tions for any given image, it needs to understand both lan-
guage and image, and how they overlap and interact with
each other. Given that the Large Language Model is ex-
tremely effective in encoding the semantic meaning of lan-
guage, projecting the vision features onto the same space
can align the vision feature and the language embedding
and further allow the output prediction.

Hence, I’ve design a simple model, as shown in Fig-
ure [T} It uses a vision backbone to extract the image fea-
tures including spatial features, then those features will pass
through a MLP layer to project onto the text embedding
space. Then a multi-head transformer decoder layer is used
to predict the answer based on the question embedding and
the projected image embedding.

Cosine Similarity Loss

‘ Output Logits

Vision Backbone
Image ||

Mask RCNN

Positional
Encoding

‘ Encoder (BERT) }/
I Tokenizer

| |
Question

Figure 1. Model Architecture

3.2. Vision Backbone

In order to understand the full context encoded in the
image, the vision model needs to not only classify the im-
age, but also detect and segment objects. Therefore, I use a
frozen Mask R-CNN network (7)) in my model.

Since the vanilla Mask R-CNN network also includes
Region Proposal Network (RPN) and Pol layer to detect
the bounding boxes of object, which are not necessary for
QA tasks as long the features are extracted, I removed both
RPN and Rol layers and only use the image backbone of the
Mask R-CNN network as the image backbone in my model.

3.3. Image Projection

The frozen vision backbone produces a 256 13 * 13 out-
put. It is then flattened to a 1-D tensor and passed through a
Multi Layer Perception (MLP) layer to project onto the text
embedding space.

The MLP layer consists of 2 linear layers with 2048 as
the hidden layer size and LeakyReLU as the activation func-
tion.

3.4. Caption Embedding and Similarity Loss

Tused the “’bert-base-uncased” BERT model (5) to define
text embedding space. For the model to correctly capture
the semantic meaning of a given image, its text embedding
projection must have large cosine similarity with the em-
beddings of the captions from the same image.

Because the closer to 1 the cosine similarity is, the more
aligned the embeddings are, to make sure it works with
the learning algorithm, the cosine similarity is inverted and
shifted by 1:

sim(x1,x2) =1 R

maaz(||m1||2 ’ H332||2,6)

With that, the similarity loss function is defined as the
following:

1

Z sim(Embed., Embed;mg) (1)

cecaps

Leop(img) =

c

where M, is the number of captions associated with the
image. Embed;y, is the embedding projection of the im-
age.

3.5. Open-Ended QA, Transformer Decoder, and
QA Loss

The QA task is structured as the next token prediction
task performed by a Transformer Decoder layer. The pro-
jected embedding from the image is used as the memory
(i.e. key) of the Transformer Decoder. The question and an-
swer are processed and fed into the transformer, which will
produce the next output logit.

Similarly, the QA Loss is structured as the next token
prediction loss using cross entropy loss function:

1

Z cross_entropy(logits, target)
qa qacqas
2

where M, is the number of question-answer pairs asso-
ciated with the image.

Lgo(img) =

3.6. Final Loss Function

The final loss function can now be defined as the follow-
ing:

1 . ;
L= 2 7% Leaplimgi) + Loalimgs))
1€ENy

v is a hyper-parameter to control how much weight the
caption embedding loss should be counted for in the final
loss. Ny is the batch size. (Worth noting that the Ny, M,
and M., are different.)

4. Dataset and Features

The dataset I used to train the model is directly from
Coco (8) images with questions and answers annotation
from VQA (2). The training data set with over 100K im-
ages, 400K questions, a test data set with 40K images and
107K questions. Each image can contain different number
of questions and answers. The following image in Figure 2]
is an example of what 1 training data might look like:

4.1. Image processing

The images in VQA come with different sizes. To make
sure the images can be processed in batch, all images are
padded to size 640 X 640 and uniformly scaled down to
320X320, mostly to reduce the computational resource us-
age.

q/a: What is in front of the giraffes? tree

q/a: What do these giraffes have in common? eating
g/a: Could this photo be from a zoo? yes

q/a: Are the animals eating? yes

q/a: Where is the giraffe? near tree

q/a: Is there a zebra? no

q/a: What is the giraffe standing behind? tree
gq/a: Is the giraffe eating the tree? yes

g/a: Are both giraffes standing? no

q/a: Are they at a zoo? yes

q/a: What is on the ground next to the giraffe on the right? log
q/a: Are some of the trees dead? yes

g/a: Are any of the animals eating? yes

q/a: Is the giraffe in the shade? no

g/a: Are these giraffes living free range? yes
g/a: How many giraffes are there? 2

g/a: Is there a rock near the giraffe? no

g/a: How many animals are in this photo? 2

Figure 2. A training data example

4.2. Tokenization

I used the frozen Bert tokenizer with google- bert/bert-
base-uncase weights with a vocabulary size of 30,000. All
texts are tokenzied with *max_length’ as the padding option
and 32 as *'max_length’

All captions of the images in the same batch is padded to
the same length for tokenization.

In order for the transformer to identify the question and
the answer parts, 3 special tokens are added to the tokenizer:

* [QUESTION] token: indicating the beginning of the
question.

e [ANSWER] token: indicating the end of the question
and as well as the beginning of the answer.

e [END] token: indicating the end of the answer.

During training, all questions and their corresponding
answer are processing into 1 sentence in the following for-
mat: ’[QUESTION] question [ANSWER] answer [END]”.

All questions in the same batch are tokenized with
padding to ensure the same shape in the output tensor.

4.3. Batch Size

I use a mini batch of 32 images, mostly due to the re-
source constraints. However, each images might contain

different number of captions and different number of qa tu-
ples, the text encoder and transformer decoder have differ-
ent input sizes.

4.4. Question Answering

After training, the caption embedding part of the model
is no longer used. To answer a question for a given im-
age, | sample the model output logits until the special token
[END] is sampled.

5. Experiments and Results
5.1. Training Losses and Hyper-params

I’ve compared different optimizers’ and different ’s im-
pact on training. For each experiment, I plotted per batch
training loss for Lqp, Lgq, and L.

5.1.1 Different Optimizers

I started an Adam optimizer with 1e =3 as the learning rate,
0.9 as B1, and 0.99 as (3, using v = 0.9 in the final loss
function [3] T also tested a SGD optimizer with 0.1 as the
learning rate, 0.9 as the momentum, with the same v = 0.9
value. Both uses batch size of 32.

However, the Adam optimizer was not able to converge.
The loss became nan after 1000 steps of training.

Caption Loss/train Per Batch E’ I,[

30

0 200 400 600 800 1,000 1,200 1400 1,600 1,800 2000 220

“
Run ™ Value Step Relative
(] vga_with_adam NaN 1,409 5.722 hr
[] vga_with_sgd 6.2637 2,051 1.602 hr

Figure 3. Caption Loss Comparison between Adam and SGD

QA Loss/train Per Batch [R "
80
60
40
20
0 200 400 600 800 1000 1200 1400 1600 (1776 X 2000 220
4
Run ™ Value Step Relative
L] vqa_with_adam NaN 1,409 5.722 hr
[] vqa_with_sgd 15.7742 2,051 1.602 hr

Figure 4. QA Loss Comparison between Adam and SGD

Loss/train Per Batch D J'F L3

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 220
Run t Value Step Relative
[] vga_with_adam NaN 1409 5.722 hr
[] vqa_with_sgd 21.4116 2,051 1.602 hr

Figure 5. Total Loss Comparison between Adam and SGD

Interesting, the Adam optimizer perform very well on
caption loss in the beginning, but does very poorly on QA
loss. I believe this is because Adam optimizer accumulates
the past momentum in order to update the step size. How-
ever, in the large language model and vision space, large
step size often tends to overshoot. Furthermore, for caption
prediction, the Adam works better because the gradient of
the caption embeddings tend to align, but for QA, the ques-
tion embedding can often be different from answers embed-
ding, thus Adam optimizer tends to under-perform.

5.1.2 Different

To further understand the impact of the caption em-
beddings loss, I trained the model with 3 different
set of ~ values: 0.9 (with “vga_with_caption” label),
0.5 (with ”vqa_with_0_5_caption” label) and 0 (with
”vga_no_caption” label).

All are trained with batch size of 32 and a SGD optimizer
with 0.1 as the learning rate, 0.9 as the momentum.

Caption Loss/train Per Batch = l}l

100 200 300 400 500 600 700 800 900 1,000 1,00 1200 1,300 140
Y

Run ™ Value Step Relative
vga_with_0_5_caption 11.6439 1,400 5.783 hr
vga_with_caption 6.5562 1,401 1.177 hr

Figure 6. Caption Loss Comparison between different gamma val-
ues

Because when v = 0, there is no caption loss, the caption
loss in figure[6]does not have any data for “vqa_no_caption”.
Recall that in B} the total loss is defined as: L =

N 2ieny ¥ * Leap(img;) + Lga(img;). The loss of in-

QA Loss/train Per Batch = I,[

el VIR ol Al

100 200 300 400X 500 600 700 800 900 1,000 1,700 1200 1,300

7

Run ™ Value Step Relative
[] vqa_no_caption 24.0628 400 1.41 hr

vga_with_0_5_caption 25.1875 400 1.393 hr

vqga_with_caption 21.9677 403 30.14 min

7

Figure 7. QA Loss Comparison among different gamma values

Loss/train Per Batch = 1;[

(e il AT i

100 200 300 400 500 600 700 800 900 1,000 1,700 1,200 1,300 140
“

Run ™ Value Step Relative
® vga_no_caption 16.1824 1,400 5.18 hr

vga_with_0_5_caption 23.7936 1,400 5.783 hr

vqa_with_caption 21.9763 1,401 1177 hr

Figure 8. Total Loss Comparison among different gamma values

terest is the loss for the question and answers, i.e. Ly,. The
Ly when v = 0.9 is lower than both L,,s when v = 0.5
and v = 0. This clearly indicates using the caption embed-
ding as part of the loss to train the network has a significant
advantage in obtaining lower training loss.

5.1.3 Pretrained Models and Convergence

For the training size of 100K images, it takes about 3700
steps to process 1 epoch with batch size of 32. However,
by leveraging the pretrained Mask R-CNN and Bert mod-
els, training converges after step 1400, as the train loss no
longer decreases. This again proves that reusing the pre-
trained foundational models is very effective in training and
significantly reduces the training time.

5.2. Accuracies

Due to the resource constraints, running the entire test set
was not feasible. Because the online eval rule inleval.ai has
changed, partial results are not accepted. Therefore, I have
to fall back to use the VQA validation set as my test set and
examine the accuracy based on a naive string comparison
between the predicted answer and the real answer.

I use a batch size of 32 images using the validation
dataset, which includes 26333 total questions. (Recall that

http://eval.ai

Loss/train Per Batch for Epoch 0 (| JT-L

0 500 1,000 1,500 2,000 2,500 3,000 3,500 400
s
Run 1 Value Step Relative

[] vqa_convergence 6.6819 3,696 9.576 hr

Figure 9. Total Loss per batch for epoch 0

Loss/train Per Batch for Epoch 1 =]11

80
60
40
20

0 100 200 300 400 500 600 700 800 900 1,000 110

g

Run » Value Step Relative

[] vga_convergence 11.4059 958 1.276 hr

Figure 10. Total Loss per batch for epoch 1

each image can have different number of questions.) The
accuracy result is listed in the table below:

~ | Total Questions | Accuracy (in %)
0.9 26333 99.28
0. 26333 99.28

Surprisingly, the model trained with v = 0.9 achieves
the same accuracy as the model trained without using the
caption embedding loss.

5.2.1 Losses

To understand the inaccuracy, I further examined the inac-
curately predicted answers and compared their with the ex-
pected answer. Here are some examples:

Expected Predicted
25 .25
6:56 6:56
keep elephants out/in | keep elephants out / in

Interestingly enough, all the losses are about the format
of the output. The model doesn’t seem to be able to un-
derstand the semantics of the formatting based on the ques-
tions. E.g. when answering "how much is this donut?”, it
needs to be .25, not 7. 25”. Similarly, when answering
“what time it is”, the model should output ’6:25”, not 76 :
25”.

It turns out that this behavior is caused by the tokenizer.
The model uses a frozen Bert tokenizer with “google-
bert/bert-base-uncased” weights. When it decodes the to-
ken, it adds whitespaces after symbols like ”.”. If I simply
have the tokenizer to tokenize ”.25”, and immediately pass
the output to the tokenizer to decode, it returns ”. 25” in-
stead.

6. Conclusion and Future Work

As a conclusion, leveraging the pretrained vision model
brings significant benefit in training, and using caption em-
bedding as part of the loss improves the training losses.
However, the model trained without using the caption em-
bedding loss achieves the same accuracy as the model
trained with v = 0.9. It would be interesting to further
investigate why the caption embedding loss didn’t help.

Moreover, the main loss seems to be from the token de-
coding. It would be important to further experiment how to
improve the tokenizer in order to achieve 100% accuray on
the validation data.

Lastly, due to the resource constraint and the technical
limitations, I weren’t able to use any LLM with larger pa-
rameter size, such as Llama 2 or Gemma. Nor was I able to
finish running over the entire test set. It would be exciting
to try how using decoder-only LLMs can improve the ac-
curacies of VQA and how the model compares to the other
state-of-the-art models on the VQA performance.

References

[1] J.-B. Alayrac, J. Donahue, P. Luc, A. Miech, 1. Barr, Y. Has-
son, K. Lenc, A. Mensch, K. Millican, M. Reynolds, et al.
Flamingo: a visual language model for few-shot learn-
ing. Advances in neural information processing systems,
35:23716-23736, 2022.

[2] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L.
Zitnick, and D. Parikh. Vqa: Visual question answering. In
Proceedings of the IEEE international conference on com-
puter vision, pages 2425-2433, 2015.

[3] H. Bao, W. Wang, L. Dong, Q. Liu, O. K. Mohammed,
K. Aggarwal, S. Som, and F. Wei. VImo: Uni-
fied vision-language pre-training with mixture-of-modality-
experts. arXiv preprint arXiv:2111.02358, 2021.

[4] X. Chen, X. Wang, S. Changpinyo, A. Piergiovanni,

P. Padlewski, D. Salz, S. Goodman, A. Grycner, B. Mustafa,

L. Beyer, et al. Pali: A jointly-scaled multilingual language-

image model. arXiv preprint arXiv:2209.06794, 2022.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:

Pre-training of deep bidirectional transformers for language

understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[7]1 K. He, G. Gkioxari, P. Dollar, and R. Girshick. Mask r-cnn.

[5

—

(8]

(9]

[10]

[11]

[12]

In Proceedings of the IEEE international conference on com-
puter vision, pages 2961-2969, 2017.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dolldr, and C. L. Zitnick. Microsoft coco: Com-
mon objects in context. In Computer Vision-ECCV 2014:
13th European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part V 13, pages 740-755.
Springer, 2014.

A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh,
S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark, et al.
Learning transferable visual models from natural language
supervision. In International conference on machine learn-
ing, pages 8748-8763. PMLR, 2021.

A. Radford, K. Narasimhan, T. Salimans, I. Sutskever,
et al. Improving language understanding by generative pre-
training. 2018.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all
you need. Advances in neural information processing sys-
tems, 30, 2017.

W. Wang, H. Bao, L. Dong, J. Bjorck, Z. Peng, Q. Liu,
K. Aggarwal, O. K. Mohammed, S. Singhal, S. Som, et al.
Image as a foreign language: Beit pretraining for all vision
and vision-language tasks. arXiv preprint arXiv:2208.10442,
2022.

