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Abstract

Routability prediction is vital in electronic design au-
tomation (EDA), traditionally tackled with heuristic meth-
ods. Leveraging the CircuiteNet2.0 dataset, we propose a
Vision Transformer (ViT)-based approach, enhanced with
transfer learning using DINOv2, to improve prediction ac-
curacy. Our ViT-Hybrid model combines transformer en-
coding for capturing global spatial relationships and CNN-
based decoding for detailed reconstruction. Evaluated on
over 10,000 chip design samples, our model shows perfor-
mance comparable to existing baselines. This study demon-
strates the potential of integrating Vision Transformers and
DINOv2 in EDA, setting the stage for more efficient and ac-
curate routability prediction.

1. Introduction

The scaling down of semiconductor devices poses un-
precedented challenges in electronic design automation
(EDA), particularly in routability prediction, which ensures
that chip designs are free from physical and electrical vio-
lations before manufacturing. This task has become more
complex with the increase in circuit density and design in-
tricacies. Routability prediction is vital as it impacts the
manufacturability, performance, and yield of the final chip
products.

Traditionally, routability has been addressed through
heuristic methods or simplified computational models,
which often fall short in handling the complexities of mod-
ern integrated circuit (IC) designs. Recent advancements
in machine learning, especially deep learning, have opened
new avenues for addressing these challenges more effec-
tively. The CircuitNet2.0[4] dataset provides a rich resource
for training and validating new predictive models, offering
comprehensive multi-modal data from over 10,000 chip de-
sign samples. In our

Our paper introduces an innovative adaptations of the
VisionTransformer architecture designed specifically for

predicting routability from high-dimensional, image-based
data representations of IC layouts. We aim to improve pre-
diction accuracy over the baseline.

1.1. Routibility Prediction

Routability prediction is a crucial aspect of the electronic
design automation (EDA) process that involves predicting
the feasibility of routing electrical connections on a chip
without causing physical or electrical violations. This pro-
cess is essential for ensuring that the design of integrated
circuits (ICs) can be successfully manufactured and will op-
erate as intended.

Routability prediction assesses the likelihood that the in-
terconnects (wires) within an IC design can be placed with-
out exceeding the available routing resources or violating
design rules. These rules are essential to prevent issues
such as signal interference, delay faults, and other electri-
cal problems that can degrade the performance of the final
product or even render it non-functional.

2. Related Work
2.1. Machine Learning for Routability Prediction

In the past decade, there has been a growing focus on
utilizing machine learning for the design automation of
ICs. Specifically, for routability prediction, the layout of a
chip’s physical placement can be viewed as an image, mak-
ing it natural to model this problem using existing CNN-
based image-to-image translation methods. RouteNet [9]
and GPDL [8] are two of the most notable studies that lever-
age Fully Convolutional Neural Networks for routability
prediction. Both employ an encoder-decoder architecture,
where convolutional (CONV) and pooling (POOL) layers
are used for downsampling, and transposed-convolutional
(TRANS) layers are used in the decoder for upsampling, en-
suring the final output matches the input size. In this paper,
we use GPDL as the base model to compare model perfor-
mance, as our approach is also CNN-based.

Other research efforts have explored the topological cor-
relation among circuit netlists by modeling the netlist as
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graph nodes and relational edges, leveraging Graph Neural
Networks (GNNs) to learn latent relations [11] [6].

Combining CNNs and GNNs has also become a popu-
lar research area recently, as it can take advantage of both
geometric and topological information [12].

2.2. Vision Transformer Models

Transformers [10] were initially proposed for machine
translation and have quickly become the state-of-the-art in
most Natural Language Processing (NLP) tasks. Unlike re-
current networks, Transformers do not suffer from mem-
ory limitations due to their unique self-attention mecha-
nisms. There have been attempts to utilize transformer-like
self-attention architectures with CNNs)for computer vision
tasks.

Vision Transformers (ViTs) [3] represent a significant
adaptation of Transformer architecture for computer vision
tasks. ViTs operate by splitting an image into patches, flat-
tening these patches, and then producing lower-dimensional
linear embeddings from the flattened patches. After adding
positional embeddings, these sequences are fed into a
Transformer encoder. ViT models are typically pre-trained
on large datasets and then fine-tuned on smaller datasets for
specific tasks, such as image classification. ViTs are highly
adaptable and capable of efficiently processing both local
and global features, making them suitable for applications
that involve analyzing large-scale chip design images.

2.3. Transfer Learning with DINOv2

Transfer learning has emerged as a powerful technique
in machine learning, allowing models pre-trained on large
datasets to be adapted for specific tasks with smaller
datasets. DINOv2 [1] is a state-of-the-art self-supervised
learning model trained on a vast corpus of internet images.
It has shown excellent performance in various computer vi-
sion tasks, including segmentation, classification, and depth
estimation.

In our research, we explored the use of DINOv2 for
routability prediction. By integrating DINOv2’s robust fea-
ture extraction capabilities into our Vision Transformer-
based model, we aimed to leverage its pre-trained knowl-
edge to enhance the performance of our predictive model.
This approach aligns with recent trends in using transfer
learning to bridge the gap between large-scale pre-training
and domain-specific fine-tuning, particularly in fields with
limited data availability like EDA.

2.4. Public Dataset for EDA

The EDA industry has traditionally been a closed en-
vironment compared to the broader software development
world, primarily due to business concerns that necessitate
keeping data private. Hardware specifications vary sig-
nificantly, and data collection in this field is both time-

consuming and computationally intensive. The EDA in-
dustry requires an ”ImageNet moment” to foster open data
sharing and advance research.

CircuitNet [2] represents the first large-scale open-
source AI dataset in this field. Its successor, CircuitNet2.0,
offers even better coverage, addressing a wider range of de-
sign targets and prediction tasks [4].

3. Methods
In this section, we start by outlining our task and describ-

ing the baseline model used for comparison. Following this,
we detail our efforts to enhance the baseline model.

3.1. Task Description

Our task is to predict routability by estimating the con-
gestion level during the placement stage in EDA design.
Congestion measures the density of routed wires on the lay-
out and is often used to optimize the positions of macros
and cells during floorplanning and placement. Since obtain-
ing precise congestion data requires time-consuming global
routing, a fast prediction model is desirable to accelerate
the design process. Thus, the goal of congestion prediction
models is to use data from the placement stage to predict the
congestion map after global routing, saving valuable time in
the design cycle. An example of a congestion map can be
seen in Figure 4.

3.2. Baseline Method

Congestion prediction can be framed as an image-to-
image translation problem. Given input feature images, a
congestion map is generated and compared to the ground
truth. For detailed examples of features and predicted re-
sults, please refer to Section 4.2.

Our baseline model, GPDL, is adopted from [8]. It is
a generative model that utilizes a Fully Convolutional Net-
work (FCN) encoder-decoder architecture to translate im-
age grid features into a congestion map. Figure 6 illustrates
the model architecture described in [8]

Figure 1: GPDL Model Architecture

3.3. Our Approaches

GPDL is a compact model particularly effective for con-
gestion prediction in the hardware design domain. This ef-
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fectiveness largely stems from the relatively small training
dataset typical in chip design, which discourages the use of
deeper CNN models due to the increased risk of overfitting.
Below, we identify some of GPDL’s limitations before sug-
gesting potential improvements.

1. Limited Receptive Field: The use of small (3x3) con-
volution kernels in GPDL restricts its ability to exam-
ine distant topological relationships. Due to its limited
depth and compact structure, GPDL has a constrained
receptive field, hampering its capacity to capture ex-
tensive global spatial relationships.

2. Loss of Low-Level Information: GPDL employs
pooling for down-sampling, which helps the model
learn robust representations against minor spatial vari-
ations. However, this method can result in the loss
of crucial low-level details during the phase of recon-
structing the output image.

To address these challenges, we propose a hybrid
encoder-decoder model Vit-Hybrid that integrates vision
transformers with CNNs. This model employs a vision
transformer to encode the image into patches, processes
these patches through transformer encoder layers equipped
with multihead attentions, and finally utilizes CNN up-
sampling techniques to reconstruct the image from feature
vectors.

Leveraging the transformer attention framework en-
hances our model’s ability to capture global spatial relation-
ships while maintaining a relatively shallow network archi-
tecture, thus offering an unlimited receptive field.

To mitigate the loss of low-level information, we have in-
corporated skip connections from the transformer encoder
layers to the corresponding CNN decoder layers. This al-
lows for direct transmission of information from the en-
coder to the decoder, preserving essential details.

As shown in Figure 2, our model consists of two main
parts: a ViT-based encoder and a decoder comprising mul-
tiple TransConv layers.

1. Encoder: Three features are concatenated in the chan-
nel dimension into a (N, 3, 256, 256) tensor, which is
passed into a PatchEncoder layer. This layer divides
the image into patches, applies a linear transforma-
tion, and adds positional embeddings before passing
the tensor to the transformer encoder. A standard set of
five transformer encoder layers is used to generate the
latent feature output, with the size of (N, num patches,
latent feature dimension) for decoding.

2. Decoder: The latent feature is then reshaped to (N,
num patches, patch size, patch size), which in turn
goes through five different TransConv layers to return
to the original image size by doubling in size per layer.

The resulting tensor is passed through another CONV
layer before entering the Sigmoid layer to produce the fi-
nal prediction. There are optional skip connections be-
tween corresponding transformer encoder layers and the
TransConv layers which are not demonstrated in the figure.

3.4. Transfer Learning with DINOv2

Inspired by the Cryo-Transformer (Cryo-ViT) presented
in our lectures, we explored the effectiveness of transfer
learning using DINOv2 for our routability prediction task.
DINOv2 is a self-supervised learning model trained on a
large corpus of internet images, offering state-of-the-art per-
formance in various computer vision tasks such as segmen-
tation, classification, and depth estimation. Given its robust
feature extraction capabilities, we integrated DINOv2 into
our model pipeline to enhance feature representation.

Implementation: Initially, we appended the latent fea-
tures extracted from DINOv2 to the input images and
passed them through our encoder-decoder network. How-
ever, this approach significantly slowed down training due
to the high dimensionality of the DINOv2 output features
(768 dimensions), which restricted the batch size.

To optimize this, we modified our approach by directly
concatenating the DINOv2 features with the outputs of our
encoder, followed by a convolution layer and a Sigmoid ac-
tivation. This method leverages DINOv2’s robust feature
extraction while maintaining computational efficiency.

3.5. Implementation

Our code is built on top of the CircuitNet2.0 code-
base, which provides the code to train the GPDL baseline
model. We implemented the ViT-Hybrid model and the Di-
nov2 version of ViT-Hybrid as follows:

• ViT-Hybrid model: https://github.
com/sherryxiao1988/routability/blob/
main/routability_ir_drop_prediction/
models/transformer.py

• Dinov2 version of ViT-Hybrid:
https://github.com/sherryxiao1988/
routability/blob/main/routability_
ir_drop_prediction/models/dinov2.py

Additionally, we wrote code to use optuna for hyper-
parameter space search:

• Hyperparameter search code:
https://github.com/sherryxiao1988/
routability/blob/main/routability_
ir_drop_prediction/train_
transformer.py
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Figure 2: ViT-Hybrid Architecture.

4. Dataset and Features

4.1. Dataset

We utilize the CircuitNet2.0 dataset [4], which includes
over 10,000 chip design samples for CPUs and GPUs.
These samples are generated using commercial 14nm and
28nm FinFET process design kits (PDKs) and electronic
design automation (EDA) tools. The dataset provides com-
prehensive multi-modal data, including netlist connectivity,
cell placement, routing congestion, IR-drop, timing, power,
and more. In this research, we focus on training with the
28nm FinFET data. Detailed statistics of our dataset are
shown in Table 1

Generating these samples is both time-consuming and
computationally expensive. For instance, creating a sin-
gle data sample for the smallest design, zero-riscy, takes
about 2 hours, whereas the largest design, NVDLA-large, re-
quires nearly 1 week to generate a single data sample. This

presents a significant challenge in the industry.

4.2. Features

For routability prediction problem, in nature, it’s a pixel-
level regression, or sometimes called image-to-image trans-
lation. The inputs and output are as follows.

Inputs are images produced from the circuit design pro-
cess. We use 3 images as input features:

Macro Region: An image or feature map indicating
the placement and distribution of larger circuit components
(macros) across the chip. This helps in understanding the
spatial constraints and opportunities for routing intercon-
nects.

RUDY: A feature map representing the estimated wiring
demand in different regions of the chip. This metric helps
predict areas where the density of required interconnects
might exceed the available routing resources.

RUDY pin: Similar to RUDY, this feature focuses
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Design #Cells #Nets #Macros #Pins #IOs #Samples

RISCY 46,184 47,233 3 180,069 563 3,456
RISCY-FPU 65,464 66,903 3 252,390 563 3,456

zero-riscy 35,969 36,225 3 138,569 563 3,456
OpenC910-1 754,981 766,436 32 3,062,504 1,341 96
Vortex-large 1,018,221 1,107,255 376 3,731,139 1,242 74
Vortex-small 113,961 124,058 43 433,449 1,234 96

NVDLA-large 1,478,865 1,637,556 80 5,705,108 1,734 68
NVDLA-small 270,072 285,465 108 1,039,571 538 89

Table 1: Statistics of samples in CircuitNet 2.0.

specifically on the density related to pin connections, pro-
viding a finer granularity of prediction where pin-related
congestion might occur.

We combine them along the channel dimension to form a
tensor with dimensions (N, 3, 256, 256). Here, N represents
the batch size, 3 indicates the number of channels, and the
last two dimensions, 256 and 256, correspond to the height
and width of the image, respectively.

The output is a congestion map with dimensions of
256x256 pixels, where each pixel represents the congestion
level in that area. The congestion is measured on a scale
from 0 to 1, with higher scores indicating more congestion.

An example of these features is demonstrated in Figure
3.

(a) Macro Region (b) RUDY (c) RUDY Pin

Figure 3: Examples of image features used in the model:
macro region, RUDY, and RUDY pin.

The corresponding label for the above three features and
the congestion map predicted is demonstrated in 4.

4.3. Data Augmentation

Data augmentation is crucial for enhancing the robust-
ness and generalizability of the model. For our research
on routability prediction, we explored several augmentation
strategies to assess their impact on model performance.

Flipping: Flipping is studied in [4]. It applied both hori-
zontal and vertical flipping to the input images as a baseline.
Flipping helps the model become invariant to the orienta-
tion of the layout, which can be particularly useful given
that certain circuit designs might exhibit symmetrical prop-
erties.

(a) Label (b) Prediction

Figure 4: Examples of label and prediction congestion
maps.

Rotation: Images were rotated by angles of 90, 180, and
270 degrees. While rotation can help the model generalize
better to different orientations, we observed that excessive
rotation could introduce artifacts due to the non-uniform na-
ture of circuit layouts. This effect suggests that some orien-
tations might not be equally valid or prevalent in the dataset,
potentially leading to performance degradation.

Translation: We translated the images in both x and y
directions by up to 10 pixels. To handle the areas that be-
come vacant due to translation, we filled these regions with
black pixels (value 0). This method of handling the trans-
lated areas might introduce artificial edges, which could ad-
versely affect the model’s learning process. Future work
could explore more sophisticated filling techniques to miti-
gate this issue.

5. Results

We conducted 10 trial training sessions to train our ViT-
Hybrid models over 3000 epochs, utilizing Optuna for hy-
perparameter optimization. The configurable parameters
included learning rate, weight decay, and batch size. As
shown in Figure 5, the optimal combination of these pa-
rameters was found to be a batch size of 32, a learning rate
of approximately 3 × 10−4, and a weight decay of about
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5 × 10−6. Among these, the learning rate emerged as the
most critical hyperparameter influencing training accuracy.

Figure 5: Hyperparameter Search with Optuna

Even after training for more than 3000 epochs, our model
exhibited overfitting; the training loss continued to de-
crease, but the validation results began to worsen. There-
fore, we chose to limit our experiments to 3000 epochs with
Optuna. This decision helped balance the training process
and prevent further overfitting.

5.1. Model Configuration

The Vit-Hybrid model was configured with an input size
of 3×256×256, utilizing 8×8 patches, resulting in a total
of 1024 patches per image. The latent feature size in the
transformer was set to 64, with the MLP layer size at 128.
The model architecture included five transformer encoder
layers and five TransConv layers. We used Mean Squared
Error (MSE) as the loss criterion.

5.2. Evaluation Metrics

We evaluated the model performance using two metrics:

• Normalized Root Mean Square Error (NRMSE):
This metric assesses the average magnitude of errors
between the predicted and actual values, normalized
by the range of the dataset. Lower NRMSE values in-
dicate closer agreement between predictions and the
true data, reflecting better model accuracy.

• Structural Similarity Index Measure (SSIM): SSIM
evaluates the visual similarity between the predicted
and actual images, focusing on aspects like luminance,
contrast, and structural integrity. Higher SSIM values
suggest better visual quality and accuracy in the pre-
dictions.

5.3. Summary of Results

The evaluation results are detailed in Table 3, which
compares the performance metrics across different models
and the baseline which has random weights.

Table 2: Experimental results on routing congestion predic-
tion

Dataset Model NRMSE SSIM
CircuitNet2.0 Random Weight 0.3868 0.3349
CircuitNet2.0 GPDL 0.0473 0.7691
CircuitNet2.0 ViT-Hybrid 0.0503 0.7751

We achieved results that are very close to those of the
GPDL model for both metrics. However, we do not con-
sider this an outperformance of the base model since the
difference is not significant. We believe there are several
reasons for this outcome:

1. ViT-based models are known to perform best when
pre-trained with a backbone model and then fine-tuned for
downstream tasks. This approach is particularly benefi-
cial when the available data for downstream tasks is limited
compared to datasets like ImageNet used for training back-
bone models. Our dataset is also quite limited in size (thou-
sands of samples), making the adoption of a pre-trained
backbone model advantageous. Although we have imple-
mented the necessary code, we lacked the time and com-
puting resources to fully tune the DINOv2 version of the
ViT-Hybrid model to achieve better results.

2. Our findings may also suggest that while DINOv2 ex-
cels in tasks such as segmentation, its pre-trained features
may not directly translate to improvements in routability
prediction due to the unique nature of the problem. This
outcome might be attributed to the DINOv2 model being
pre-trained on segmentation tasks, which differs from our
pixel-level regression task for circuit data. However, due
to time constraints, further tuning and adaptations were not
explored to confirm this hypothesis.

5.4. Other Attempts

5.4.1 Feature Pyramid Networks

We also explored other FCN-based methods, such as Fea-
ture Pyramid Networks (FPN) [7], to enhance the feature
representations between encoders and decoders. The code
for this approach can be found here. However, this method
did not yield significant improvements, so we did not in-
clude it in the core method section.

FPN is a relatively large model, and training it took much
longer compared to the more compact models like GPDL
and ViT-Hybrid. Despite extensive training (up to 40,000
epochs), FPN did not overfit, but it showed only minimal
improvement. We believe the limited size of our dataset
makes it unsuitable for large models like FPN.
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5.4.2 Concatenating Coordinate Information

The ViT model divides image inputs into patches, causing
the pixel position information to be lost due to the linear
projection embedding layers. We attempted to concatenate
normalized coordinate information to the input as two ad-
ditional channel features (code). However, this approach
did not yield significant performance improvement. While
exploring this idea, we found [5], which applied the same
concept to ViT-based speech emotion recognition with good
results.

In data listed in chronological order, time information
is essential. In images preprocessed from sound data, the
passage of time can be inferred from the x-axis coordinate
information, allowing ViT to determine the order of the di-
vided patches from the x- and y-coordinate information.
Concatenating the coordinate information directly to the in-
put image retains pixel position information and transfers it
to ViT.

We suspect that while this method is beneficial for
speech emotion recognition, where the temporal order is
crucial, it does not apply as effectively to our domain. In
our case, the spatial relationships in the congestion map do
not carry the same inherent sequential significance as tem-
poral data does in speech recognition. Thus, the added co-
ordinate information does not provide the same advantage
in predicting congestion levels.

5.5. Data Augmentation Analysis

Table 3: Test result for different data augmentations

Data augmentation NRMSE SSIM EMD
With Flip on GPDL 0.0617 0.8182 0.0029

With Rotation on GPDL 0.0635 0.8111 0.0031
With Translation on GPDL 0.0620 0.8146 0.0032
With 3 data aug on GPDL 0.0630 0.8137 0.0033

Figure 6: Training loss for different data augmentations

Effects of Augmentation: Our experiments indicated
that while augmentation can potentially enhance model ro-

bustness, it also led to slower training and slightly worse
performance metrics. This outcome may be attributed to
the specific characteristics of circuit images, where the spa-
tial relationships and orientations are critical. Translation,
in particular, seemed to disrupt the inherent structure of the
circuit layouts. Flip augmentation remains the most effec-
tive data augmentation technique. Although the initial re-
sults showed a slight degradation in performance with more
aggressive augmentation, further tuning of augmentation
parameters and methods might yield better outcomes.

6. Conclusion and Future Work
6.1. Conclusion

In this work, we demonstrated the potential of Vision
Transformers (ViTs) in the domain of routability predic-
tion within electronic design automation (EDA). Our ViT-
Hybrid model, combining a ViT encoder for global spatial
relationships with a CNN decoder for refined reconstruc-
tion, achieved performance comparable to the established
GPDL baseline on the CircuiteNet2.0 dataset. This con-
firms the viability of adapting transformer architectures for
specialized EDA tasks.

While our ViT-Hybrid model didn’t significantly outper-
form the GPDL baseline, several factors contributed to this:

• Limited Dataset Size:: The small dataset size typical
of chip design (in the thousands) might not be suffi-
cient for the ViT to fully leverage its ability to learn
complex patterns.

• Transfer Learning Challenges:Our preliminary ex-
periments with DINOv2-based transfer learning
showed promise but didn’t yield substantial gains. The
pre-trained DINOv2 features, optimized for segmenta-
tion, might not be ideally aligned with the nuances of
routability prediction.

• Potential for Inaccurate Topology Representa-
tion:In highly congested layouts with complex topo-
logical relationships, our model might struggle to ac-
curately represent the underlying circuit structure, or
represent long-range effects. This could lead to less
precise predictions of routability issues.

6.2. Future Directions

With additional resources and time, we would explore
several avenues to enhance our approach:

• Detailed Result Analysis: We would conduct a thor-
ough analysis of the model’s performance on individ-
ual samples, identifying specific design characteristics
or circuit features that lead to higher or lower accuracy.
This would involve examining the model’s predictions
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at a macro and pixel level to pinpoint areas of strength
and weakness.

• Deeper Transfer Learning Integration: More in-
depth exploration of the DINOv2 features, possibly
involving fine-tuning of the DINOv2 layers them-
selves, could lead to better utilization of the pre-trained
knowledge. We would also investigate alternative pre-
trained models with task types more closely aligned
with routability prediction, such as models designed
for image-to-image translation or regression. This
might offer better transferability and enhance the ef-
fectiveness of transfer learning.

• Hybrid Architectures:Combining graph neural net-
works (GNNs) with our ViT-Hybrid model could
capture both geometric and topological relationships,
leading to a more comprehensive understanding of
routability challenges.

• Refine Data Augmentation: Developing more so-
phisticated data augmentation strategies tailored to cir-
cuit layouts could enhance model robustness and gen-
eralization.

• Real-World Validation:Evaluating the model on real-
world industrial chip designs would provide invaluable
insights into its practical utility and potential for real-
world impact.

By addressing these aspects, we believe that transfer-
learning-enhanced, transformer-based models hold signif-
icant promise for advancing routability prediction and ac-
celerating the EDA design process.
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