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Abstract

Optimal Music Recognition (OMR) is a specialized do-
main within computer vision focused on the interpretation
and conversion of sheet music images into usable musi-
cal notation. Current OMR methodologies primarily lever-
age Convolutional Recurrent Neural Networks (CRNNs)
or Convolutional Neural Networks (CNNs) combined with
transformer encoder-decoder architectures to generate se-
quences of musical symbols from input images.

However, with the advent of the Vision Transformer
(ViT), as introduced in ”An Image is Worth 16x16 Words”
, recent research indicates that minimizing the implicit bias
in deep learning models can enhance interpretative accu-
racy. Therefore, we explore a purely transformer-based ap-
proach to OMR, employing a pretrained ViT alongside a
transformer decoder to generate the desired musical sym-
bol sequences.

Additionally, we incorporated an explicitly defined se-
mantic musical vocabulary tailored for the transformer
encoder-decoder model. Despite encountering technical
challenges that prevented the complete training of our
model, we are confident that this approach represents the
future of efficient and accurate musical symbol recognition
from sheet music images.

1. Introduction
In recent years, the accessibility of extensive digital mu-

sic score collections has greatly benefitted both professional
musicians and amateurs. Platforms like IMSLP and various
library initiatives provide access to vast repositories, mak-
ing previously hard-to-find printed materials readily avail-
able. However, while digitization facilitates easy copying
and distribution and offers durability advantages over physi-
cal copies, many music applications are constrained to sym-
bolically encoded scores.

Notation software, computer-assisted composition tools,
and digital musicology systems primarily focus on
computationally-encoded symbols like notes and bar-lines
rather than pixels from digitized images.

The scientific musicological domain stands to gain sig-
nificantly from music encoded in symbolic formats such as
MEI or MusicXML, allowing for scalability in real-world
scenarios. While initiatives like OpenScore and KernScores
aim to bridge the gap between digitized images and en-
coded music content, manual transcription remains imprac-
tical due to its time and resource-intensive nature. Thus, as-
sisted or automatic transcription systems like Optical Music
Recognition (OMR) are deemed necessary.

Despite the potential of OMR, its reliability currently
falls short of optical character or speech recognition tech-
nologies. Recent advances in machine learning, particu-
larly Deep Learning (DL), offer promise. Past approaches
to OMR typically involve manually segmenting sheet music
into smaller components for individual processing, a cum-
bersome process fraught with inductive biases.

The advent of Deep Learning practices, notably Convo-
lutional Neural Networks (CNNs), has enabled the possibil-
ity of an end-to-end approach to transcribing photos of sheet
music. Current approaches utilize a Convolutional Recur-
rent Neural Network (CRNN), employing a CNN to extract
features from the image and feeding columns of the out-
putted feature map as inputs to a Recurrent Neural Network
(RNN). Given the sequential and patterned nature of mu-
sic, it is believed that sequence models such as Long Short-
Term Memory (LSTM) networks can effectively interpret
and predict musical scores. However, the development of
transformers, which effectively capture long-range depen-
dencies, presents an opportunity to improve OMR tasks.

While transformers have demonstrated superior perfor-
mance over LSTMs in sequence modeling, their ability to
capture relevant features of an image and how they com-
pare to CNNs require further investigation. Transformers
introduce fewer inductive biases into a model compared to
the stricter CNN architecture, suggesting that a Transformer
encoder may better optimize data and capture more relevant
features. This study aims to explore the functionality of
a full Transformer encoder and decoder model for image-
to-sequence tasks, particularly in the context of OMR with
monophonic scores. Such a model has not yet been imple-
mented, but promising results in smaller tasks like OMR
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may pave the way for a transition away from CNNs.
In our proposed model, we take an image of a mono-

phonic (single instrument, single melody) incipit and pass
it through Google’s base ViT encoder pre-trained on
ImageNet-21k to produce encoded outputs which is the last
hidden state of the pre-trained ViT. This output is then
passed into the decoder which then generates the target
sequence in a explicitly defined semantic vocabulary us-
ing both cross attention with the encoder and self-attention
based on the already generated output. When the output
is generated, we compare this with the target sequence of
notes to generate the loss and train and evaluate the model.

2. Related Works
Before the emergence of Deep Learning and its applica-

tion to the field of OMR, primary methods inmvolved mul-
tiple stages of image preprocessing and various computa-
tional methods that do not allow for the kind of learning
possible with modern deep learning methods [6]. The most
relevant paper to what we are exploring is “End=to-End
Neural Optical Music Recognition of Monophonic Scores”
by Calvo-Zaragoza et al. [2], whose dataset and results we
will be attempting to reproduce with a different model ar-
chitecture discussed below. The paper utilizes a CNN to
extract the symbols from the image and then utilizes a RNN
to help with the sequential aspect of translating sheet music.
The paper also utilizes the Connectionist Temporal Classifi-
cation loss function which was not necessary for our model
given our choice of model architecture. The paper required
CTC because of the way the CRNN works with the given
input data (an image of a line of music) and the semantic
sequence it is going to predict. Because the image was di-
vided into sections for the CRNN, the CTC was required
since some sections would generate blanks, not necessarily
actual notes. Given that this paper was published in 2018,
there have been newer methods that we believe will improve
on the results accomplished by Calvo-Zaragoza et al.

Of equal importance to the original Calvo-Zaragoza pa-
per that provides the dataset for our study are a number of
additional research papers and work relevant to our archi-
tecture. An integral base for our work is the “Attention is all
you need” paper by Vaswani et al [11]. By leveraging atten-
tion mechanisms, the Transformer achieves state-of-the-art
results on various tasks, and we utilize the Decoder archi-
tecture from the original Vaswani paper with some slight
modifications for our model. In addition to the original
Transformer and attention mechanism, Vision Transform-
ers (ViTs) have been shown to perform very well on im-
age classification when used on image patches [10]. This
was proposed in ”An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale” by Dosovitskiy et
al. which utilized 16x16 patches of images trained on Im-
ageNet and JFT [3]. This paper produced results that out-

performed ResNet-152x4. This paper is important because
the CRNN in the Calvo-Zaragoza paper could potentially be
outperformed by the use of Vision Transformers (ViT) that
achieve excellent results compared to state-of-the-art CNNs
while requiring substantially fewer computational resources
to train.

In addition to these base models that are building blocks
for our final model. There are a number of similar models
that utilize ViT or transformer-based sequence translation
to tackle similar tasks to that of OMR. Optical Character
Recognition is a related task to OMR where there has been
a fair amount of published research, one main study be-
ing ”TrOCR: Transformer-Based Optical Character Recog-
nition with Pre-trained Models” by Li et al. [1]. In addi-
tion to TrOCR, there is ”Dtrocr: Decoder-only transformer
for optical character recognition,” paper by Masato Fujitake
which differs from our encoder-decoder based approach,
but presents a potential solution to the OMR task built
off of the prior TrOCR paper[4]. There are non-OCR ap-
proaches to understanding document images like an invoice
which is fairly similar to the task of understanding musical
scores. One approach is ”OCR-free Document Understand-
ing Transformer” which uses a more simple Transformer-
based approach utilizing cross-entropy as the loss function
[5]. Interestingly, Rı́os-Vila et al. in ”On the Use of Trans-
formerse for End-to-End Optical Music Recognition” con-
cluded that transformers were not as suited for OMR tasks
as CNNs, but they did not used pretrained ViTs in their
model, which we believe could show large improvements
[9]. More recently in 2024, Rı́os-Vila et al., have explored
the use of an encoder decoder model they call a Sheet mu-
sic Transformer to work on OMR beyond monophonic tran-
scription to deal with more complex sheet music [7]. They
expanded on this model to work on a full page of sheet mu-
sic, employing various methods to analyze an entire page
[8]. These models differ both because they focus on non-
monophonic scores and utilize a CNN as a decoder with
CTC loss, whereas our model uses a pre-trained ViT en-
coder and normal cross-entropy loss. The similarities be-
tween these studies and our model lie in the same Trans-
former decoder to produce the output sequence. Given the
pre-trained ViT we will utilize and the demonstrated suc-
cess by Rı́os-Vila et al. with an encoder-decoder based
structure, we have reason to believe that our proposed ar-
chitecture can be successful.

3. Methods
To encode the image, we employed a ViT Base 16 model

pretrained on ImageNet-21k (14 million images, 21,843
classes). We opted for the base model over the larger ver-
sion due to its significantly fewer parameters, allowing the
combined encoder-decoder model to train for more itera-
tions within the same timeframe. More iterations enable
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the non-pretrained decoder model to learn more accurate
weights. As demonstrated in the original ViT paper, the
base model performs comparably to the large model when
pretrained on ImageNet-21k, with the increased complex-
ity of the larger model only being beneficial with larger
datasets. The ViT must be pretrained to produce rele-
vant results, as transformers lack inductive bias, mean-
ing they require extensive training to encode relevant fea-
tures. The pretrained model divides the input image into
16x16 pixel patches, which are then projected into 768-
dimensional embeddings through a learned projection layer.
These patch embeddings are sequentially arranged and con-
catenated with 1D positional embeddings to produce a se-
quence of (1, 768) embeddings.

During training, we worked with images of varying di-
mensions that were not square. The original ViT was pre-
trained with 224x224 images, and thus learned positional
encodings specific to this dimension. The transformer ar-
chitecture’s parameters for attention weights and linear pro-
jections depend on 16x16 patch sizes. However, the pre-
trained model should theoretically be invariant to input se-
quence length, as shown in the original paper where the
model is fine-tuned on images with different dimensions
than the original 224x224. The first challenge was inter-
polating these 224x224 positional encodings to our target
image dimensions. Our images were not square and var-
ied in size, making interpolation less accurate. We decided
to scale all images to a fixed size of 128x800 and inter-
polate the pretrained positional encodings to this dimen-
sion. While we could have replaced these pretrained encod-
ings with new ones for 128x800 images, we believed that
with our limited data, new encodings would not optimize
as well as the pretrained ones. The ViT encoder produces
768-dimensional embeddings for each image patch, theo-
retically encoding relevant features.

For the Transformer decoder, we utilized the architecture
from the ”Attention is All You Need” paper. This consists of
6 layers with 8 parallel attention heads for both masked self-
attention and cross-attention. We first tokenized the new
semantic vocabulary and introduced a learnable embedding
layer that produced 512-dimensional vectors for each to-
ken. This learned embedding was concatenated with sinu-
soidal positional encodings and passed into the transformer
decoder layers. Each layer used masked self-attention and
cross-attention with feed-forward networks as implemented
in the paper. This architecture allowed our model to capture
more information than the original CRNN. The CRNN took
columns from the CNN output, using past columns rather
than previously predicted symbols to predict the sequence.
By utilizing both masked self-attention and cross-attention,
the decoder attended to the entire image and the generated
sequence, improving the model’s ability to capture both im-
age and musical patterns. In the original paper, both the

Figure 1. This is an example of one of the images of the training
set. This specific example is 220016918-1 2 1. The data comes
with an mei, mid, agnostic and semantic version of this stave.

encoder and decoder use a hidden size of 512. Here, the
transformer decoder has a hidden size of 768, so we mod-
ified the key and value matrices in the multi-head cross-
attention to project from 768 dimensions to 64, resulting in
512-dimensional embeddings when concatenated with the
other 8 heads. We performed this projection within the at-
tention matrices to preserve as much information from the
image as possible. After the decoder layers, we included a
final linear projection from the hidden size to the vocabulary
size.

To evaluate the loss, we used Cross-Entropy loss instead
of the original CTC loss used in the CRNN paper. The
CRNN implementation created a frame for every column
of the featurized image, potentially resulting in frames not
corresponding to symbols. To address this mismatch, the
CRNN included blank symbols in the vocabulary and used
CTC loss to emphasize differences in predicted and true
sequences. However, by using a transformer decoder, ev-
ery frame produces a symbol, eliminating this mismatch.
Thus, we could directly compare our predicted sequence
with the true sequence using cross-entropy loss, which also
masked padded tokens to prevent them from contributing to
the model’s training.

4. Dataset and Features
The dataset which we are using is the PrIMuS Dataset

which stands for “Printed Images of Music Staves” which
can be accessed here http://grfia.dlsi.ua.es/primus/. PrIMuS
contains 87,678 real-music incipits (an incipit is a sequence
of notes, typically the first ones, used for identifying a
melody or musical work), each one represented by five files:
the Plaine and Easie code source, an image with the ren-
dered score, the musical symbolic representation of the in-
cipit both in Music Encoding Initiative format (MEI) and in
a simplified encoding (semantic encoding), and a sequence
containing the graphical symbols shown in the score with
their position in the staff without any musical meaning (ag-
nostic encoding).

In the training of our model, we use 78,755 examples
to train on, and then evaluate on 8,923 examples for the
test set. As described earlier, each file contains different
representations of the same data, but we only use the
image and the semantic representation of the data for the
purpose of our model. We elect to only use the semantic
representation, because it is most fitting for the transformer

3



clef-C1 keySignature-EbM timeSignature-2/4 multirest-23 barline rest-quarter
rest-eighth note-Bb4 eighth barline note-Bb4 quarter. note-G4 eighth barline note-
Eb5 quarter. note-D5 eighth barline note-C5 eighth note-C5 eighth rest-
quarter barline .

Figure 2. This is the semantic representation of the stave shown in Figure 1. This is the sequence that the model would be trying to predict
from the given image. This semantic representation occurs in sequences which we believe a transformer is capable of learning due to the
attention mechanism. We tokenized the vocabulary for this prediction of the note sequence.

Figure 3. This photo is taken from ”An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale” by Dosovitskiy et al.,
which is the model used as our encoder [3]. First, an image is split into fixed-size patches, linearly embedded, position embeddings are
added, and then the resulting sequence of vectors is fed into a standard Transformer encoder. The learnable “classification token” is added
to the sequence so that the model can perform classification.

decoder, which seeks to capture patterns and relationships
between symbols in the outputted sequence. These patterns
are more likely to occur in the semantic decoding, which
captures semantic musical information which inherently
encodes musical patterns. These musical patters may be
less aparent in the agnostic representation, which captures
more physical features of the dataset. Additionally, there is
a converted from the semantic representation to the MIDI
file which meant we could also audibly compare the results
of our model to the results of the CRNN. As is custom with
a Transformer architecture, we tokenized the vocabulary
which consists of 1,781 notes for the semantic representa-
tion of the data. We also added and tokenized a <START>,
<END>, and <PAD> token. The <START> and <END>
token are necessary for the training of the transformer de-
coder. The original CRNN took image columns as frames
and therefore was not concerned with predicting the end
of a sequence. The CRNN simply produced one symbol

per frame. However, to train the transformer decoder,
we need a <START> token, from which the transformer
can autoregressively begin predicting. The <END> token
is necessary to evaluate the predicted sequence. When
testing, the sequence terminates with the <END> token, and
this embedding as well as its relation with the rest of the
vocabulary must be learned. The padded token is included
as our input sequence ids are padded to a constant size to
vectorize the learning process.

The preprocessing of images was another crucial deci-
sion in the training of the model. The ViT was pretrained on
224 x 224 images. However, the PrIMuS dataset included
images in a more rectangular aspect ratio with varying di-
mensions. Scaling these images to the 224 x 224 pretrained
input size would mean patches would include more than one
note, which we believed would detract from the decoder’s
ability to attend meaningfully to the encoded patches. In
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order to vectorize the training process, images within the
same batch would have to be scaled to the same size. In
the original paper, this is done with image padding. While
image padding would not affect the attention mechanisms
withing the transformer, it would skew the information pro-
vided by the positional encodings. These positional encod-
ings seek to capture relativity within an image, and so would
not translate well to images with padding or irrelevant in-
formation. Esentially, the positional encodings would be
unable to differentiate between padded and non padded re-
gions of the image, and so could possibly capture positional
info about padding. Thus, we elected to just scale all im-
ages to the same 128 x 800 size. This size ensured that after
seperating the image into 16 x 16 patches, no patch was
likely to contain more than one note. The images were ad-
ditionally inputted in a greyscale format, meaning they only
had one channel.

The pretrained model required images with three chan-
nels. To account for this mismatch without introducing new
information, we simply extended this one channel value into
three channels. Each channel was then normalized with a
mean of (0.5, 0.5, 0.5) and a standard deviation of (0.5, 0.5,
0.5).

5. Experiments/Results/Discussion
Our primary concern was computational time. The com-

bined Transformer encoder and decoder model comprises
approximately 167 million parameters. For comparison, the
base transformer model used in ”Attention Is All You Need”
contains 65 million parameters and required approximately
12 hours to train with 100,000 training steps. Using this
as a general benchmark, given the similarity in attention
mechanisms, we aimed for around 80,000 training steps.
We chose a batch size of 16, consistent with the CRNN
paper, to balance computational efficiency and gradient up-
date effectiveness. With a training set of 78,755 examples,
we planned to run the model for approximately 20 epochs
to achieve 80,000 training steps.

We adopted the same optimizer configurations as in the
”Attention Is All You Need” paper, which were proven op-
timal for transformer models. This involved using an Adam
Optimizer with a varied learning rate that increased to 2e-5
after 5,000 warm-up steps before gradually decreasing. A
similar optimizer was used for pretraining the ViT model.
The varied learning rate helped mitigate large initial gradi-
ent jumps due to early training losses and allowed for more
precise adjustments as the model approached convergence.
The recommended number of warm-up steps is 5-10 percent
of the total training steps, which equated to approximately
5,000 steps in our case.

The original Calvo-Zaragoza paper employs two per-
formance measures: Sequence Error Rate (the ratio of in-
correctly predicted sequences) and Symbol Error Rate (the

average number of elementary editing operations needed
to produce the reference sequence from the predicted se-
quence). We adopted the Sequence Error Rate as our eval-
uation metric, assessing it on a smaller validation set com-
prising 10 percent of the training set every five epochs. Pre-
dicted sequences were autoregressively generated with the
¡START¿ token removed after generation. The model with
the best validation accuracy was saved for evaluation on the
test set.

Unfortunately, we were unable to fully train the model.
Despite multiple sources indicating that the pretrained ViT
could be fine-tuned on different image sizes, and the orig-
inal paper supporting this adaptation, the ViT model we
downloaded from Hugging Face required input images to
be 224x224 pixels. This requirement potentially eliminated
meaningful information encoded from the music sequence,
as patches contained more than one music note and images
were significantly distorted. Ideally, each embedded patch
would include less than a note, allowing the attention mech-
anisms to attend to multiple patches as necessary.

Additionally, we used Google Colab to train our model
with a GPU, which required downloading all training files
onto Colab. The training files were organized in a man-
ner where smaller directories within the parent directory
contained all necessary information for one image. When
the parent directory was downloaded onto Colab, these sub-
directories lost their contents, preventing the model from
accessing the necessary images and labels. Locally, with
global file paths, the model functioned correctly, producing
outputs for batches and propagating gradients. This sug-
gests that our model can run if the files are correctly down-
loaded onto Colab.

6. Conclusion/Future Work
While we were unable to produce results from the model

we designed, we still believe that there is potential for a
pre-trained ViT encoder and Transformer decoder model to
achieve valuable results on the PrIMuS dataset. All prior
work has either used a CNN encoder or a untrained ViT
which we believe is limiting the performance of those prior
models. The viability of a ViT for the encoder task in OMR
does have the capability of being a valuable solution to
OMR.

It is unfortunate that we were unable to produce any re-
sults despite having a seemingly functional model. Given
the unique dataset and task, there was a lot of code that went
into preprocessing and organizing this data to match with
the new model and loss function. Additionally, I would be
interested in discovering how to adapt the pretrained ViT to
be finetuned on our new image size. That could mean using
the Git Hub of the ViT directly and explicitly downloading
the pretrained weights, instead of downloading the model
from Hugging Face.
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It would be interesting to see if our combine model
would indeed perform better with the number of training
examples provided. That would allude to the ability for
ViT to indeed capture semantically meaningful information
from images, and possibly overtake CNN’s in image to se-
quence generation. Additionally, with more time, it would
be interesting to compare the ViT large model with the ViT
base model, to see if there were significant differences with
relatively little finetuning data.

As for future work, it would be interesting to explore
the use of a ViT decoder Transformer encoder model like
the one we proposed but on an entire sheet such as the one
proposed by Rı́os-Vila et al., [8]. Despite the end result
of our model, we do believe that our proposed model has
serious potential as a solution to the OMR task and more
broadly the image to sequence task.
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