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Abstract

Vision Transformers (ViTs) have shown promise in
outperforming traditional Convolutional Neural Networks
(CNNs) in image classification [4]. This paper investigates
ViTs’ performance in land use classification from satel-
lite imagery, focusing on the WILDS Out-of-Distribution
(OOD) benchmark [8]. We primarly explore the to Func-
tional Map of the World (FMoW) split from the benchmark
as ViT work with images. Our experiments show that ViTs
do not outperform the CNN baseline in the context of OOD
data. Various strategies to enhance ViT performance were
tested, including freezing layers, adjusting learning rates,
integrating metadata, and adding dropout, with only minor
or no improvements. Our findings suggest that while ViTs
offer potential for OOD detection [5], their effectiveness is
limited without significant architectural modifications, ad-
ditional data, or increased computation.

1. Introduction
The Transformer-based model architecture, initially de-

signed for natural language processing (NLP) tasks, has
recently been adapted for image classification through Vi-
sion Transformers (ViTs). Unlike traditional convolutional
neural networks (CNNs), ViTs replace convolutions with
self-attention mechanisms. This architectural shift allows
ViTs to leverage the computational efficiency and scala-
bility of Transformers, enabling them to outperform state-
of-the-art CNNs, especially when pre-trained on extensive
datasets. This progress has significantly boosted the adop-
tion of Transformer models in the field of computer vision.

This project aims to use ViTs to improve the robustness
of models tasked with classifying land use from satellite im-
agery. The need for accurate analysis of our environment is

critical in areas such as disaster management, climate sci-
ence, and agriculture. Given that satellite data is constantly
changing due to both environment changes and human ac-
tivities, it is essential for models to be resilient to distribu-
tion shifts over time. Additionally, due to the varying avail-
ability of data across different regions, it is crucial that these
models generalize well across all regions, rather than being
optimized only for data-rich areas.

Satellite imagery analysis presents unique challenges
due to its variability and the high dimensionality of the data.
The spatial and temporal resolution of satellite images can
vary significantly, requiring models that can adapt to dif-
ferent scales and resolutions. In addition, satellite images
may be taken at night, or with the presence of noise or at-
mospheric disturbances which pose further challenges for
analysis. Traditional CNNs have made considerable strides
in this domain, but their performance remain limited when
dealing with OOD data.

ViTs offer a promising alternative due to their capabiltiy
to capture long-range dependencies and model complex re-
lationships within data. By leveraging self-attention mech-
anisms, ViTs can dynamically focus on different parts of
an image, potentially leading to more robust feature repre-
sentations. However, their application to satellite imagery,
particularly in the context of OOD generalization, remains
an area requiring further exploration.

The project conducts all experiments on the FMoW-
Wilds dataset provided in the WILDS benchmark. The in-
put to our algorithm is a 224 x 224 pixel RGB image, ac-
companied by metadata that includes the region and year of
capture. We use a ViT model to output a predicted land use
category from one of the 62 building or land use categories
provided in the dataset.
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2. Related Work
ViTs arose out of the successes of Transformers in NLP

and applies a standard Transformer architecture directly to
images. Several ViTs have revolutionized image recogni-
tion tasks by leveraging transformer architecture originally
designed for natural language processing and applying them
in either in conjunction with CNNs or in replacement of
certain components of CNNs [1][4][7]. By splitting im-
ages into patches and treating these patches similarly to to-
kens in NLP applications, ViT models trained on mid-sized
datasets such as ImageNet initially yielded modest accura-
cies slightly below those of comparable ResNets. However,
when pre-trained on larger datasets, such as ImageNet-21k
or JFT-300M, ViTs demonstrated superior performance, ap-
proaching or surpassing state-of-the-art results on multi-
ple image recognition benchmarks, demonstrating they can
match or exceed prior record performances by CNNs while
also being less expensive to pre-train [4] [12].

Model regularization and augmentation techniques play
a crucial role in impacting the performance of ViTs. There
are two common data augmentation techniques: RandAug-
ment, which randomly applies a set of image transforma-
tions such as rotation, translation, and color adjustments to
increase the diversity of the training dataset, and Mixup,
which blends pairs of images to create interpolated samples
that enable the model to learn more robust representations.
These data augmentation techniques improve ViT model
performance across various image recognition benchmarks
by providing richer training sets. Model regularization tech-
niques such as Dropout and StochasticDepth also have sig-
nificant impacts on ViT performance by discouraging over-
fitting [12]. We hope that applying these techniques will
prove to increase performance in OOD tasks.

Domain adaptation and OOD detection are crucial for
models that must deal with real-world data variability. Deep
neural networks are able to learn powerful representations
from large datasets, but they may not always generalize well
when the training distribution differs from the test distri-
bution [8]. The introduction of new datasets like FMoW,
which contains over 1 million satellite images with tempo-
ral views, multispectral imagery, and metadata, help address
OOD challenges by providing more diverse and compre-
hensive training data [2]. Minimizing performance degra-
dation due to OOD also necessitates the use of domain
adaptation algorithms to combat decline in model perfor-
mance due to domain shift. DeepCORAL, one such al-
gorithm, performs end-to-end adaptation in deep learning
neural networks and exhibit state-of-the-art performance on
on standard benchmarks [13]. Other research suggests that
large-scale pre-trained transformers, in conjunction with
few-shot outlier exposure setting, can significantly improve
deep neural network performance on OOD tasks across dif-
ferent domains [5]. These findings highlight promising av-

enues for enhancing OOD detection, but there remains chal-
lenges in reliably detecting and handling OOD samples in
real world scenarios and with ViTs.

Pre-training and fine-tuning strategies also help adapt
transformers to specific tasks. BERT, a transformer-based
model for NLP has performed well on tasks such as docu-
ment classification, entity extraction, and question answer-
ing. Although BERT entirely excludes visual features, prin-
ciples involved in BERT’s pre-training and fine-tuning have
influenced approaches to computer vision tasks [3]. Freez-
ing certain layers during transformer fine-tuning helps de-
ter overfitting and retain pre-trained knowledge, which has
been effective in various transformer applications, includ-
ing image recognition [9].

3. Methods
We evaluate two pre-trained checkpoints published

alongside the original Vision Transformer paper [4]: the
base (VIT-B/16) and large (VIT-L/16) sizes. Both mod-
els are trained on ImageNet [11] and ImageNet-21k [10]
with Adam, a batch size of 4096 and L2 regularization with
0.1 decay. The base model has 12 layers and 12 attention
heads and the large model has 24 layers and 16 heads. A
baseline evaluation is also performed using DenseNet [6],
a CNN with residual connections added by concatenating
each layer’s output to all downstream layers along the fea-
ture dimension.

Our ViT model handles images by breaking them into
patches, adding position and class embeddings, and then
passing them as tokens into the transformer encoders. These
encoders are then connected to an MLP that builds a repre-
sentation across all the patches. This representation is then
fed into a class linear layer for classification. In our expire-
ments, we will add the region and year metadata into the
representation before passing it into the classifer in hopes
that it will increase OOD performance. The ViT architec-
ture can be seen in in 1.

Figure 1. ViT architecture

One important augmentation we explore is Deep
CORAL, a domain adaptation algorithm. Deep CORAL
aligns the second order statistics of source and target feature
distributions, which mitigates performance degradation that
occurs when training and testing data distributions differ



[13].

Figure 2. Sample Deep CORAL architecture on a CNN

Although originally developed for CNNs, the method
can be adapted for ViTs. Specifically, after the ViT
processes the image patches and constructs their repre-
sentations through transformer encoders, we apply Deep
CORAL loss to align the source and target domain feature
representations [13]. This alignment reduces the gap be-
tween domains, allowing the ViT to maintain higher ac-
curacy when applied to data from different distributions.
Thus leveraging Deep CORAL enables our ViT to gener-
alize across data distributions and perform better OOD.

Our project will build off the WILDS benchmark code-
base. We will use the benchmark to fine-tune a pre-trained
ViT model on our task. We will do this fine-tuning using an
AdamW optimizer, and with a variety of of learning rates.
Moreover, we will be able to add data augmentation to our
data as to be more robust to OOD distributions. Because of
our computation limitations, we will only work off results
from 10 epochs. We trained on AWS instance with a Tesla
T4 GPU.

Our added code will include the integration of the ViT
model into the benchmark. Re-configuring the last linear
layer to the appropriate number of classes. The option to
freeze a specific number of layers. Modifying the dropout
probabilities for the ViT. We will also add another algo-
rithm by the name of ’MI’ for metadata integration. This
algorithm adds a linear layer to pass the region and year
metadata through and concatenates this info to the image
representation before passing it through the classifier. We
hope that

We will also add tools that will allows for us to conduct
qualitative analysis on our models. Such as printing confu-
sion matrices and comparing the predictions of the models
with the ground truth.

4. Dataset and Features
We will be using the FMoW-Wilds dataset that was pro-

vided in the WILDS benchmark. This dataset provides a
comprehensive benchmark for evaluating models on land
use classification and segmentation tasks. In this dataset,
each input image is represented by a 224 x 224 pixel RGB

image. Each input image is labeled with one of the 62 build-
ing or land use categories. Each example is additionally an-
notated with a metadata vector consisting of the year and
the region (Africa, the Americas, Oceania, Asia, or Europe)
it depicts.

Figure 3. An example image from the train split. With metadata of
Europe (1) and from 2012 (10).

During training, images will be augmented to create a
more robust dataset and improve OOD performance. An
example of such image can be seen in 4

Figure 4. Augmented Image

Our dataset is broken into 5 splits. They are as follows:

1. Training: 76,863 images from the years 2002–2013.

2. Validation (OOD): 19,915 images from the years
from 2013–2016.

3. Test (OOD): 22,108 images from the years from
2016–2018.

4. Validation (ID): 11,483 images from the years from
2002–2013.

5. Test (ID): 11,327 images from the years from
2002–2013.

These 5 splits represent how our models will be tests for
OOD distribution. By training on a disjoint set from the
OOD splits, we will effectively be able to test how time will
affect our performance.



5. Experiments
We evaluate the out-of-distribution performance of our

two ViT models and the CNN baseline on FMoW-WILDS.
Each model is fine-tuned for 10 epochs with a seed of 0
on the FMoW training set, and we report test accuracies
over the in-domain and out-of-domain splits on the worst-
performing region, as in the WILDS guidelines. We also
evaluate the effect of a number of simple ablations on VIT-
B/16: dropout with p = 0.1 (VIT+DROPOUT-01), train-
ing only the last layer and freezing all others (VIT+LAST-
FROZEN), and two algorithm-level changes: test-time trans-
formation with DeepCoral (VIT+DEEPCORAL) and aug-
mentation of the ViT image features with concatenation of
the image metadata (VIT+METADATA). These primary re-
sults are summarized in 1, while loss graphs are presented
for the training, ID validation and OOD validation spits in
5, 6, and 7 respectively.

6. Results

Model Validation Acc. Test Acc. OOD Change Training Time

DENSENET121 0.578 0.463 19.9% 2.58hr
VIT-B/16 0.569 0.436 23.4% 8.502hr
VIT+DROPOUT-0.1 0.561 0.430 23.4% 8.283hr
VIT+LAST-FROZEN 0.371 0.312 15.9% 4.134hr
VIT+DEEPCORAL 0.556 0.428 23.0% 8.283hr
VIT+METADATA 0.568 0.432 23.9% 8.181hr

Table 1. Worst-region accuracies on FMoW. OOD Change mea-
sures the percentage change in the reported test accuracy (out-of-
domain) from the validation accuracy (in-domain).

Figure 5. Training loss on FMoW. DENSENET121, VIT-B/16,
VIT+DROPOUT-0.1, VIT+DEEPCORAL, VIT+METADATA are
presented in yellow, brown, green, light blue and red respectively.
VIT+LAST-FROZEN, presented in blue, fails to converge to the
loss achieved by all other models.

6.1. Baseline Qualitative Analysis

We decided to look into the difference between our base-
line and the VIT in more detail with an evaluation on the
same OOD Test set of 22,108 images. We decided to look at
the confusion matrices of the two models on their predicted
class labels and analyze failure points of the two models.

Figure 6. In-domain validation loss on FMoW.

Figure 7. Out-of-domain validation loss on FMoW.

Figure 8. Baseline Confusion Matrix

The confusion matrix for our baseline can be seen in 8.

We can see from the confusion matrix that an image of a
shipyard (45) was constantly confused as a multi-unit resi-
dential (30). As well, an image of a space facility (50) was
regularly confused as a amusement park (3). There also ap-
pears to be some bias towards places of worship (36).

The top 5 and bottom 5 land-use classes by in-domain
accuracy are presented in 2 and 3 respectively.



Class Accuracy (%) Count

Wind Farm (0) 87.97 399
Toll Booth (55) 87.22 352
Interchange (26) 85.91 220
Stadium (51) 85.22 379
Crop Field (11) 79.60 1137

Table 2. Top 5 classes by baseline accuracy.

Class Accuracy (%) Count

Border Checkpoint (7) 4.95 101
Office Building (32) 6.89 421
Construction Site (10) 8.41 214
Police Station (37) 10.43 345
Debris or Rubble (13) 10.84 83

Table 3. Bottom 5 classes by baseline accuracy.

6.2. ViT Qualitative Results

The confusion matrix for our baseline can be seen in 9.

Figure 9. VIT Confusion Matrix

We can see from the confusion matrix, that there is still
a some confusion of wrongly classifying a shipyard (45) as
a multi-unit residential.

We can see the the top 5 classes based on accuracy for
our VIT model in 4.

Furthermore, we can see the bottom 5 classes based on
accuracy for the VIT model in 5.

7. Discussion

7.1. Quantitative Analysis Comparison

Overall, we find that standard vision transformers fail to
outperform CNNs on the FMoW task, despite their much

Class Accuracy (%) Count

Interchange (26) 82.27 220
Toll Booth (55) 87.22 352
Crop Field (11) 85.91 1137
Solar Farm (49) 85.22 311
Stadium (51) 79.60 379

Table 4. Top 5 classes by ViT accuracy.

Class Accuracy (%) Count

Construction Site (10) 7.84 214
Office Building (32) 7.60 421
Debris or Rubble (13) 9.64 83
Police Station (37) 14.20 345
Fire Station (17) 14.74 312

Table 5. Bottom 5 classes by ViT accuracy.

larger computational overhead, during both training and in-
ference. The DenseNet baseline achieves the best ID val-
idation accuracy, OOD test accuracy and training time, as
well as performing best on our direct metric of domain
adaptation ability—the performance drop between ID and
OOD splits. Furthermore, most of the ViT variant abla-
tions showed comparatively minimal effect relative to the
base VIT-B/16, except for VIT+LAST-FROZEN, which re-
ports the lowest final accuracies by a wide margin. This
is likely because when all low-level layers are frozen, the
residual number of trainable parameters does not provide
enough capacity for the ViT to properly learn the task dur-
ing fine-tuning.

Since all models achieve training convergence and sim-
ilar final training losses, however, we cannot attribute the
drop in ViT performance otherwise to a lack of capacity
to learn the task; conversely, there is significant evidence of
overfitting on most of the ViT models indicated by a marked
rise in validation loss for both ID and OOD settings. It is
most likely that the benefits of self-attention observed in
prior work with ViTs failed to be realized on this dataset,
though further study would be needed to claim more pre-
cise causes.

One clear positive result is that DeepCoral improves gen-
eralization for ViTs, both in and out of domain. The valida-
tion loss trajectories for VIT+DEEPCORAL, marked in light
blue in figures 6 and 7, limit overfitting to a greater extent
than even the DenseNet baseline. In view of the algorithm’s
relative simplicity, it is encouraging to see its effectiveness
confirmed on ViT’s.



7.2. Qualitative Analysis Comparison

Both of our models showed major confusion between
images of shipyards (45) and multi-unit residential (30).
Yet, the ViT model doesn’t seem to confuse space facilities
for amusement parks as much. As well, both models con-
tinue to show bias towards places of worship (36), while the
ViT demonstrating a stronger bias towards this class. We
can attribute this decrease in bias towards places of worship
in the baseline, as a possible reason why the baseline per-
forms better for OOD.

The top and bottom classes by accuracy for both models
indicate that both models achieve high accuracy on classes
like toll booths (55) and crop fields (11), and both perform
poorly on classes such as construction sites (1) and office
buildings (32). One important difference is that baseline ac-
curacy is significantly lower for its worst performing classes
compared to the ViT. Yet, the baseline on average performs
better. This indicates that the baseline model might be dis-
proportionately optimizing for some classes to achieve bet-
ter aggregate performance. Some further analysis could be
conducted to see what learned features are differ between
the models for Border Checkpoint (7) examples. Since it is
the lowest for the baseline, but was not part of the lowest
for the ViT model.

8. Conclusion & Future Work

In this work we analyze the performance of vision trans-
formers (ViTs) on a satellite imagery classification task in
both in-domain and out-of-domain settings. We determine
that the standard vision transformer fails to achieve signifi-
cant performance improvement over a pretrained DenseNet.
These findings counter the emergent narrative in the liter-
ature that ViTs are more robust learners than their CNN
counterparts, and again highlight the need for more granu-
lar studies on the robustness/transferability of ViT learning.

The comparative analysis revealed that while ViTs of-
fer more advanced representational capabilities, they can
still struggle with domain adaptation challenges similar to
CNNs. Integrating Deep CORAL and metadata provided
incremental improvements, but could not fully address per-
formance degradation in OOD data. This suggests that the
robustness of ViTs is not as universal as previously thought
and is highly dependent on specific architectural adapta-
tions and the nature of the task.

Future work should focus on addressing the identified
weak points in ViTs. In [14], for example, static position
embeddings are found to significantly inhibit domain adap-
tation performance compared to learned variants, while a
lack of residual feed-forward connections in the standard
architecture is also identified as a week point. In follow-
up study, we would analyze whether new adaptations akin
to their proposed RVT architecture can be developed to ad-

dress these weak points specifically in our domain of satel-
lite imagery.

Ultimately while ViTs demonstrate potential for high
performance image classification, their robustness and
transferability continue to require further investigation.
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