
Visual Question and Answering Preference Alignment with ORPO and DPO

Maanu Grover
Department of Computer Science

Stanford University
maanug@stanford.edu

Gerardus (Guy) de Bruijn
Department of Computer Science

Stanford University
gdebruyn@stanford.edu

Abstract

In Visual Question Answering (VQA), models like GPT-
4V have gained popularity for generating answers to ques-
tions based on images. For VQA models to be effective and
production-ready, they must go through multiple stages of
training. After pretraining, models undergo a Supervised
Fine Tuning (SFT) stage to improve the quality of the an-
swers and adapt to specific domains. However, these mod-
els often produce systematically incorrect answers with il-
logical justifications. Traditionally, a third stage called Re-
inforcement Learning with Human Feedback (RLHF) is in-
troduced to further fine-tune using a reference model and
rewards for chosen and rejected answers. A more recent
approach, Direct Preference Optimization (DPO), avoids
using rewards altogether and only looks at the likelihood
of the chosen and rejected outputs. However, both these ap-
proaches require an initial SFT stage and a reference model
for alignment. These factors make post-training expensive.
To simplify this process, we experiment with a novel ap-
proach called Odds Ratio Preference Optimization (ORPO)
which was recently introduced for Large Language Mod-
els (LLMs) to simultaneously learn to answer questions and
align with human preferences without a reference model.
ORPO eliminates the need for a third fine-tuning stage al-
together by adding a loss penalty on top of the negative log
likelihood penalty for predicted answers that poorly align
with human preferences. Using the pre-trained blip-vqa-
base model, we incorporate ORPO into the fine-tuning pro-
cess and compare that with vanilla SFT (our baseline) and
DPO plus SFT. We not only evaluate the model based on
performance metrics Exact Match, F1 score and AI judge
(evaluation by external LLM), but also look at the efficiency
to train the model. Our results show that there is not a real
difference in the performance between using ORPO and
DPO. However, training with ORPO has been much more
efficient. Overall training time for ORPO is much faster
because it incorporates both the SFT domain adaption and
preference alignment goals at the same time.

Figure 1. Log probabilities for both chosen and rejected responses
during fine-tuning of the OPT-350M model on the HH-RLHF
dataset. Rejected responses show a comparable probability of gen-
eration even though only chosen responses were used for supervi-
sion. Hong et al. (2024)

1. Introduction

In Visual Question and Answering (VQA), a model that
has been trained on image and text generates answers to
questions about the image. Studies of production VQA
models like GPT-4V have observed systematic errors in an-
swer correctness justified with illogical explanations. (Tong
et al., 2024). For example, struggling to count the number
of items in the image, failing to determine the orientation of
the image subject, or mislabeling the colors or lighting in a
scene. This variety of patterns and the consistency of these
mistakes are a major shortcoming of these models.

It turns out that SFT alone to adapt to specific domains
is not sufficient. Diagram 1 shows how, during supervised
training, the likelihood that an undesirable response is gen-
erated increases alongside the desirable response, despite
not being input as a training example.

To solve this problem, an additional step is performed to
align these models with human preferences. Traditionally,
models are trained to minimize cross-entropy loss in order
to maximize the likelihood of generating the correct answer.
To take into account human preferences, human-aware loss

1

functions (HALO) are introduced to train models to better
align with objectives that are not captured by cross-entropy
loss.

We aim to compare the effectiveness and efficiency of
preference methods when applied to VQA models. To do
this, we will finetune a VQA model on question-answering
data and preferred and dis-preferred responses. We exper-
iment with a novel method called Odds Ratio Preference
Optimization (ORPO), and compare it with the more com-
mon Direct Preference Optimization (DPO) approach. We
find that using ORPO can more quickly produce an aligned
model compared to DPO, as ORPO combines alignment
and SFT stages.

2. Related Work

As mentioned above, model alignment is an important
step in improving the quality of model outputs to align with
human preferences. Li et al. (2024) compares a few dif-
ferent approaches for model alignment on the VQA task,
namely, DPO, SteerLM, and Rejection Sampling, using
LLaVA as the base model. They found that DPO is the most
effective approach, improving the model’s performance on
several visual-instruction benchmarks while maintaining
performance on text instruction tasks which had previously
degraded with visual instruction tuning.

Those approaches, however, are expensive for many rea-
sons. All three require SFT to be performed beforehand.
DPO needs an additional, albeit frozen, reference model to
train the target model. SteerLM even requires training sep-
arate annotation models. This is limiting for anyone inter-
ested in training effective VQA models with limited access
to compute resources.

Hong et al. (2024) suggests a new alignment strategy,
ORPO, that combines the typical SFT and alignment stages
and requires only the target model to train. They accom-
plish this by adding a term to the SFT loss that penalizes
the likelihood of incorrect predictions. They note that the
normal Cross-Entropy Loss function doesn’t directly penal-
ize the probabilities of incorrect tokens, i.e. tokens that are
not the next in the sequence. The result is that the log prob-
abilities of rejected tokens can increase during SFT along
with those of correct tokens, as shown in figure 1. This is
the basis for the additional loss term they introduce.

One final consideration for the VQA task is evaluation of
responses. Most questions in datasets for this task are open-
ended, so multiple answers may be semantically correct
while not matching the ground-truth output in the dataset.
Luo et al. (2022) recommends using multiple alternative an-
swers, and evaluating the model output’s semantic similar-
ity to these alternative answers, as opposed to only checking
if the output matches the ground truth. They find that this
leads to more reasonable and fair model evaluations.

Figure 2. Example of a (image, question) pair with a chosen and
rejected response.

3. Data

To train a VQA model, the dataset must include an im-
age, question, and a target answer. For our preference op-
timization training objective, we require both a preferred
answer and a rejected answer.

D =
{
x(i), y

(i)
w , y

(i)
l

}N

i=1

Here x(i) is a (image, question) pair, y(i)w the preferred
answer and y

(i)
l the rejected answer.

We have found one HuggingFace dataset that uses this for-
mat and includes images. alexshengzhili/mllm-dpo, was
used to train the LLaVA model with DPO. It contains al-
most five thousand examples. We have organized the ref-
erenced images, prompts, and answers from this dataset for
our own training.

We have also incorporated a second dataset, MMInstruc-
tion/VLFeedback which has 80K examples. In this dataset,
the answers have been labeled by various models on criteria
such as helpfulness, visual faithfulness and ethical consid-
erations. However, we have not been able to use this infor-

2

https://huggingface.co/datasets/alexshengzhili/mllm-dpo
https://huggingface.co/datasets/MMInstruction/VLFeedback
https://huggingface.co/datasets/MMInstruction/VLFeedback

Figure 3. Multi modal Encoder-Decoder (MED): We use a Image-
grounded text encoder to process the image and the question, and
we use a image-grounded text decoder to generate the answer.

mation to come up with a chosen and rejected pair for each
image and question pair. We use this dataset to compare the
scores of vanilla SFT between the two data sets, and use it
as an indication of the quality of the datasets.

4. Methods
We use a multi-modal encoder-decoder architecture as

depicted in figure 3. An encoder transformer layer en-
codes the images. A second transformer layer encodes the
question text and subsequently cross-attention is applied be-
tween the text encodings and image encodings to generate
encodings of the text grounded in the image. The decoder
then generates the output which is the predicted answer to
the question about the image, again using cross-attention to
ground the answer in the context of the image and question.
We will only train the decoder. The encoder parameters re-
main frozen. For each method we use the following loss
functions:

• Vanilla SFT: cross-entropy loss to maximize the likeli-
hood generating the correct answer.

• ORPO: cross-entropy loss plus odds-ratio penalty be-
tween the positive (chosen) and negative (rejected) la-
bels.

• DPO: loss based on the difference between how the
currently trained model (policy model) and the refer-
ence model assign probabilities to the positive (cho-
sen) and negative (rejected) labels.

4.1. DPO vs. RLHF

RLHF algorithms generally have two parts: a reward
that is indicative of human preferences and the term for the

Kullback–Leibler (KL) divergence constraint. The algo-
rithm tries to maximize the reward, and the KL-divergence
constraint is used to not trust the reward too much, i.e. to
prevent reward hacking.

The RLHF objective can be formulated as

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x, y)]−βDKL [πθ(y|x)||πref(y|x)]

Here β is a hyper-parameter controlling the deviation
from the base reference policy πref which is the initially
fine tuned SFT model. In practice, the MLLM policy πθ

is initialized with the SFT fine tuned πref.1 Because the
objective is not differentiable, it is typically fine tuned with
reinforcement learning and optimized using PPO Schulman
et al. (2017).
A big challenge is coming up with a scalar award that
reflects how good a response is. Collecting pairwise pref-
erences, though, is much easier to collect. 2 In the Bradley
Terry model, the probability is estimated that a given
pairwise preference is true. The probability distribution p∗

is defined as follows:

p∗(yw ≻ yl | x) = exp(r∗(x,yw)
exp(r∗(x,yw)+exp(r∗(x,yl)

Here yw is the chosen response and yl the rejected
response.

Using a static dataset sampled from p∗ the reward
model rϕ(x, y) can be parameterized and we can estimate
the parameters via maximum likelihood. Now we have a
binary classification problem and we can use the negative
log-likelihood loss:

LR(rϕ, D) =

−E(x,yw,yl)∼D [log σ(rϕ(x, yw)− rϕ(x, yl))]

.
What we see here is that this model only depends on the
difference between the rewards. With several mathemati-
cal steps, paper Rafailov et al. (2023) shows that the DPO
objective can be derived as follows, without using rewards:

.
LDPO(πθ;πref) =

−E(x,yw,yl)∼D

[
log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
Here πθ is the policy model, the model currently being

trained, and πref is the reference model.
The DPO loss function aims to optimize the policy

1Therefore, in our DPO implementation for VQA we will start with the
same model to be fine-tuned as the SFT model that we use as the reference
model.

2The analogy is similar to having two sports teams play each other,
rather than trying to come up with a number how good each sports team is.

3

Figure 4. Per paper Rafailov et al. (2023): DPO optimizes for
human preferences while avoiding reinforcement learning. Ex-
isting methods for fine-tuning language models with human feed-
back first fit a reward model to a dataset of prompts and human
preferences over pairs of responses, and then use RL to find a pol-
icy that maximizes the learned reward. In contrast, DPO directly
optimizes for the policy best satisfying the preferences with a sim-
ple classification objective, fitting an implicit reward model whose
corresponding optimal policy can be extracted in closed form.

model by comparing the probabilities of the response cho-
sen by this policy to those of the rejected response, in re-
lation to a reference policy. β is a hyper parameter used to
scale the comparison which aims to maximize the probabil-
ity of the chosen response over the rejected response.

Because it directly optimizes for human preferences
without the extra step of training an explicit reward model,
DPO can more efficiently align models with the more intri-
cate details of human preferences.

4.2. ORPO

While DPO eliminates the need for training a sepa-
rate reward model, The Odds Ratio Preference Opimiza-
tion (ORPO) training objective introduced by Hong et al.
(2024) takes an even more efficient approach by combining
finetuning and preference alignment stages. The ORPO ob-
jective function consists of the negative log-likelihood loss
typically used in the SFT stage plus an additional term for
penalizing undesirable outputs by maximizing the odds ra-
tio of the likelihood of generating a desirable output versus
an undesirable output. The term is defined as

LOR = −λ log σ
(
log

oddsθ(yw|x)
oddsθ(yl|x)

)
Where x is the input sequence, yw is the desirable output
sequence, yl is the undesirable output sequence, and λ is a
hyperparameter. The odds of a sequence y given a sequence

Figure 5. ORPO adds a penalty to the SFT loss during fine-tuning
based on how much more likely a chosen response yw is generated
compared to a rejected response yl. logPθ(y|x) is the log likeli-
hood of generating output y given x. oddsθ(y|x) = Pθ(y|x)

1−Pθ(y|x)
indicates how much more likely it is that output y is generated
compared to not generated.

x is defined as

oddsθ(y|x) =
Pθ(y|x)

1− Pθ(y|x)

As explained in the paper, when the odds ratio of de-
sirable sequence to the undesirable sequence is high, the
model is much more likely to generate the desirable se-
quence. Training with the loss term LOR will maximize this
odds ratio, which will increases the likelihood of favorable
outputs and decreases the likelihood of unfavorable outputs,
accomplishing the goal of preference alignment. Comput-
ing the odds of generating each sequence only relies on the
target model being optimized. In other words, a reference
model is not necessary as in DPO. As a result, SFT and
ORPO preference alignment can be done in the same stage.

The inspiration for this additional term comes from in-

4

specting the cross-entropy loss.

L = − 1

m

m∑
k=1

|V |∑
i=1

y
(k)
i · log(p(k)i)

Normally, y(k)i is binary with value 1 only for the correct
next token of the sequence and 0 for the rest. Because of the
softmax used to compute the probabilities from the logits,
these log-probabilities have an indirect effect on each other
in the backward pass. However, since y

(k)
i is 0 for all in-

correct tokens, the corresponding log-probabilities receive
no direct penalty from the loss. This is the justification the
authors of the ORPO method give for why the probabilities
of rejected responses increase along with desired responses
after Supervised Fine-Tuning.

The gradient of the additional term also suggests that
ORPO will be effective for the purpose of preference align-
ment. From the paper:

∇θLOR = δ(d) · h(d)

where,

δ(d) =

[
1 +

oddsθP (yw|x)
oddsθP (yl|x)

]−1

We can see that δ(d) will become smaller as the ratio
of the odds of the preferred response to the dispreferred re-
sponse increases. In other words, this gradient term will
have a stronger effect when the model is just as likely to
generate the dispreferred response. This is great property
for the goal of preference alignment.

4.3. Implementation Details

For our experiments we use an existing encoder/decoder
model that has been pre-trained for Visual Question And
Answering: blip-vqa-base from Hugging Face. This open
source BlipForQuestionAnswering model which was pro-
vided by Salesforce does not return logits that can be used to
calculate the odds ratio or the log probabilities that we need
to calculate the human-aware loss functions. We therefore
have created our own custom model ORPOBlipForVQA
which extends BlipForQuestionAnswering. A modified
version of the forward() method was implemented where,
as in the original forward method, the image embeddings
and question embeddings are generated, as well output from
the decoder for the predicted answer. We then also gener-
ate the output for the rejected (negative) answer. Loosely
based on code from the original ORPO paper we use the
logits of both predicted and rejected answer to calculate
the ORPO ratio loss, and add that to the negative log like-
lihood loss multiplied by hyperparameter λ. Due to the
way results from the policy model and reference model are
combined to calculate the DPO loss we created a separate

DPOBlipForVQA class that also extends BlipForQuestio-
nAnswering 3. For the DPO loss code, we took inspi-
ration from a DPO implementation for a text-only LLM
https://github.com/phymhan/llm-dpo.

See appendix A and B for details how we have imple-
mented the ORPO and DPO loss for VQA. We found look-
ing at an actual implementation helped our understanding
of the math in the paper.

For the AI Judge we used an externally hosted model
on together.ai, meta-llama/Llama-3-8b-chat-hf, which de-
termines whether the predicted answer corresponds with the
true answer for a given question. It returns a binary COR-
RECT/INCORRECT score for each example.

5. Evaluation and Experiments
5.1. Evaluation

For evaluation we use three different metrics:

• Exact Match Ratio of how often the predicted answer
exactly matches the true answer.

• F1 Average F1 score across evaluated examples. F1 is
an indicator of the overlap of words between the true
answer and the predicted answer with scores anywhere
between 0 and 1.

• AI Judge Here we let an external LLM determine if
the predicted answer is similar to the true answer for a
given question. In our experiments, we use the QAE-
valChain module from Langchain and the open source
meta-llama/Llama-3-8b-chat-hf model to process a list
of tuples (Question, True Answer, Predicted Answer).
It returns a list of which ones are correct and which
ones are incorrect. The LLM Evaluation score is the
accuracy of our trained model, in other words the per-
cent correct.

Training efficiency is an important goal of our experi-
ments where we compare the different methods. Therefore,
we use the exact same hyper parameters everywhere, like
learning rate, batch size and the number of epochs. For
method specific parameters we use the defaults as recom-
mended by the original papers. We use vanilla SFT as a
baseline, where we fine tune the BLIP decoder using the
mllm-dpo dataset. The training and evaluation datasets are
created with the following structure:

1. Tokenized image and text, generated from the BLIP
processor encoder. As text the first completion re-
sponse is used in each training example.

3A future version would have one class that implements all the various
human aware loss functions, rather than having to deal with one class for
each.

5

https://huggingface.co/Salesforce/blip-vqa-base
https://github.com/xfactlab/orpo/tree/main
https://github.com/phymhan/llm-dpo

Figure 6. Vanilla SFT training loss and evaluation loss over 10
epochs on dataset MLLM-DPO.

Figure 7. DPO training loss and evaluation loss with beta=0.5
over 10 epochs on dataset MLLM-DPO.

Figure 8. DPO training loss and evaluation loss with beta=0.1
over 10 epochs on dataset MLLM-DPO.

Figure 9. ORPO training loss and evaluation loss with gamma=0.5
over 10 epochs on dataset MLLM-DPO.

2. Attention mask generated by the BLIP processor.

3. Output encodings generated by the BLIP processor
for the chosen (positive, true) answer and the rejected
(negative) answer.

The final scores for each model will come from the check-
point that had the lowest evaluation loss. Because of the fair
comparison regarding efficiency, hyper parameter tuning is
out of scope and hence a final validation on a test set has
been deferred.

5.2. Results

In all our training experiments, our model uses the de-
fault AdamW optimizer from PyTorch. We have used the
PyTorch scheduler to exponentially decrease the learning

Figure 10. Evaluation from AI Judge.

rate after each epoch, with gamma=0.9. The AI Judge score,
where the external LLM decides if the predicted answer cor-
responds with the true answer, is only sampled over about
100 examples from the evaluation set. The reason for this
reduced size is because we ran into maximum usage quota
for the externally hosted service on together.ai.

5.2.1 Vanilla SFT, ORPO and DPO training on
MLLM-DPO dataset

• All experiments were run on a single NVIDIA A6000
Ada Generation GPU.

• All three methods were trained over 10 epochs with a
learning rate of 8e-6 and batch size 16.

Table 1 shows the scores and the training time per epoch
for each method. For the SFT + DPO method, only the
additional training time for DPO is shown, meaning, the
SFT part is not included.

Some experimental details about each method:

1. Vanilla SFT: the lowest evaluation score was reached
after eight epochs.

2. SFT + DPO: the recommended range for beta is be-
tween 0.1 and 0.5. Therefore, we ran two experiments:
one for beta=0.1 and one for beta=0.5. DPO fine tun-
ing uses the saved model from vanilla SFT as the start.
After already 1 or 2 epochs, the lowest evaluation score
was reached.

3. ORPO: For training we used lambda=0.5, which is the
same value as used in the original ORPO paper Hong
et al. (2024).

Figure 10 shows the LLM Evaluation score by the AI
Judge. All methods with alignment clearly show a better
score than vanilla SFT. But we have to note that only 100

6

Method Exact
Match

F1 AI
Judge

Epoch
Time
(hr:min)

Vanilla SFT 7 0.0 0.147 0.026 0:02:06
SFT+DPO
beta=0.5 7

0.0 0.159 0.044 0:03:09

SFT+DPO
beta=0.1 8

0.0 0.16 0.0625 0:03:09

ORPO 9 0.0 0.151 0.089 0:02:21
Table 1. Experimental results for three fine tune methods, with
links to corresponding training and evaluation graphs.

Epoch Exact
Match

F1 AI
Judge

Epoch
Time
(hr:min)

1 0.003 0.216 0.31 3:30
2 0.003 0.225 0.23 3:29
3 0.004 .229 0.28 3:29
4 0.002 0.231 0.34 3:29

Table 2. Vanilla SFT Fine tuning the MMInstruction/VLFeedback
dataset

samples have been sent over due to api credit limitations and
therefore the result may not be representative of the dataset.

5.2.2 Vanilla SFT training on MMInstruc-
tion/VLFeedback

We also performed vanilla SFT fine tuning on the MMIn-
struction/VLFeedback dataset. This dataset is much larger
(80K examples) but does not have chosen-rejected pairs that
can be used to train on preference alignment.

• We trained this dataset on EC2 instance type
g4dn.xlarge on AWS which has an NVIDIA Tesla T4
with 1 GPU and 16GB of memory.

• The training was done over 10 epochs with a learning
rate of 8e-6 and batch size 16.

Table 2 shows the evaluation scores after each epoch of
training. Exact Match and F1 are taken over the entire eval-
uation set.

Diagram 11 shows the results of the training loss and
evaluation loss over the four epochs that MMInstruc-
tion/VLFeedback has been trained. An earlier experiment,
with a slightly higher learning rate of 1e-5, and over five
epochs, showed a steady increase of the evaluation loss af-
ter the third epoch.

5.3. Results Discussion

Fine tuning one epoch for DPO takes 35 percent longer
than one epoch for ORPO. This comes on top of the 10
epochs SFT stage that ORPO does not need, because ORPO

Figure 11. Training loss and evaluation loss over four epochs on
dataset MMInstruction/VLFeedback

combines both. Even with incorporating the cross entropy
loss calculation used in SFT, ORPO is only about 10 per-
cent slower than the vanilla SFT baseline. This additional
10 percent is required for calculating the log probabilities
for the negative response, which is not required for vanilla
SFT.

None of the methods were able to come up with a pre-
diction that had an exact match. The F1 score remained in
the 0.15-0.16 range for all methods. However, the align-
ment methods showed better result on the AI Judge metric
compared to vanilla SFT. Especially ORPO showed a better
performance on this metric.

Low evaluation scores, in SFT as well as the follow-
ing alignment fine tuning, could indicate deficiencies in the
model. However, we see that the VLFeedback dataset per-
formed significantly better on all metrics after vanilla SFT
fine tuning. Because of the lack of a rejected response this
dataset could not be fine tuned on the other methods.

6. Conclusion
The MLLM-DPO dataset is probably too complex and

nuanced for our BLIP model. The questions and instruc-
tions in the dataset are open ended, with small nuances be-
tween the chosen and rejected answer. Figure 2 mentioned
in the Data section is one of the more simpler examples we
could find in the dataset. See appendix C for a more sophis-
ticated example of a physics graph and corresponding ques-
tion and answers. Properly fine tuning on this sophisticated
dataset will likely require a model with billions of parame-
ters, while our model has less than 400 million parameters.
F1 and AI Judge scores remain low at about 0.15 and below
0.1 respectively. The MMInstruction/VLFeedback dataset
that was only used for SFT fine tuning because of lack of
preference data shows much higher scores for both metrics,
around 0.3 for each.

Training SFT + DPO is more complex to manage be-
cause it involves handling two stages instead of just one
stage in case of ORPO. Overall training time is also more
efficient for ORPO than DPO because of the separate SFT
stage for DPO. And besides the forward pass for the model
being trained (policy model), the DPO alignment stage re-
quires an extra forward pass for the reference model. Lastly,
the DPO model has a larger memory footprint because

7

Figure 12. With ORPO, SFT fine-tuning and preference alignment
are accomplished all at the same time

it needs to keep the parameters of both the model being
trained and the reference model in memory. At least there is
no backward pass for the reference model so results of the
forward pass do not need to be kept in memory.4 In sum-
mary, with ORPO we accomplish in one stage both goals:
SFT fine tuning and preference alignment. This makes
the combined domain adaptation and preference alignment
much more efficient for ORPO than for DPO. 12

7. Limitations and Future Work
Using ORPO alone requires a sufficiently large prefer-

ence dataset, at least as large as the SFT dataset you might
use instead. For VQA this is very difficult to find. On the
other hand, there are many datasets with chosen - rejected
pairs for just LLM fine tuning.

We need a dataset with simpler questions and chosen -
rejected answer pairs to fine tune a model that only has a
few hundred million parameters. One option is to take an
existing dataset that has triplets (image, question, answer)
and use an external LLM to generate a different answer that
is less preferred, and then add it to the original dataset.

So far we have only compared ORPO to DPO which
is at the moment the most popular method for preference
alignment. A challenge for methods such as ORPO and
DPO is that they all require datasets that include rejected
answers. These datasets are difficult to generate. An-
other method, Kahneman-Tversky Optimization (KTO), de-
scribed in Ethayarajh et al. (2024), eliminates the need for
chosen - rejected pairs altogether. This method only quires
a binary signal of whether an output is desirable or undesir-
able for a given input. This information can be incorporated
in the human-aware loss function.

Due to api limitations, we could only use a limited (one
hundred) examples to validate against and external LLM
model to determine if the predicted response is similar to the
true answer, given the question. A carefully created script,
that at times pauses to not go over the rate limit, could be
used on a larger final test set.

Hyper parameter tuning for each of the methods, and
then use it on the final test set, can give a more accurate pic-

4When using LoRA or other Parameter Efficient Fine Tuning method,
for DPO the parameters of the policy and the reference model can be
shared. Only the policy model then uses the LoRA parameters.

ture of which method has the potential for the best perfor-
mance. The model was too complex and compute resources
too limited to do this for all three methods. In the future
we hope to do this for a more suitable dataset which should
give a better indication of the performance of the method.

Another evaluation metric we can use is win rate, which
also takes into account preferences. For text-only LLM
evaluation, various models have already been designed such
as Alpaca, Dubois et al. (2024).

References
Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B.

Hashimoto. 2024. Length-controlled alpacaeval: A simple way
to debias automatic evaluators.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky,
and Douwe Kiela. 2024. Kto: Model alignment as prospect
theoretic optimization.

Jiwoo Hong, Noah Lee, and James Thorne. 2024. Orpo: Mono-
lithic preference optimization without reference model.

Shengzhi Li, Rongyu Lin, and Shichao Pei. 2024. Multi-modal
preference alignment remedies regression of visual instruction
tuning on language model.

Man Luo, Shailaja Keyur Sampat, Riley Tallman, Yankai Zeng,
Manuha Vancha, Akarshan Sajja, and Chitta Baral. 2022. ’just
because you are right, doesn’t mean i am wrong’: Overcoming
a bottleneck in the development and evaluation of open-ended
visual question answering (vqa) tasks.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon,
Christopher D. Manning, and Chelsea Finn. 2023. Direct pref-
erence optimization: Your language model is secretly a reward
model.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. 2017. Proximal policy optimization algo-
rithms.

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann Le-
Cun, and Saining Xie. 2024. Eyes wide shut? exploring the
visual shortcomings of multimodal llms.

8

http://arxiv.org/abs/2404.04475
http://arxiv.org/abs/2404.04475
http://arxiv.org/abs/2402.01306
http://arxiv.org/abs/2402.01306
http://arxiv.org/abs/2403.07691
http://arxiv.org/abs/2403.07691
http://arxiv.org/abs/2402.10884
http://arxiv.org/abs/2402.10884
http://arxiv.org/abs/2402.10884
http://arxiv.org/abs/2103.15022
http://arxiv.org/abs/2103.15022
http://arxiv.org/abs/2103.15022
http://arxiv.org/abs/2103.15022
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/2305.18290
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/2401.06209
http://arxiv.org/abs/2401.06209

A. Source code BlipForQuestionAnswering for ORPO
Below code is based on open source https://github.com/huggingface/transformers/tree/main/src/transformers/models/blip

. Class BlipForQuestionAnswering has been extended to include the ORPO loss, inspired by the ORPO implementation for
text-only LLMs in the original ORPO paper: https://github.com/xfactlab/orpo/tree/main.

from transformers import BlipForQuestionAnswering
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import torch
import torch.nn.functional as F

class ORPOConfig:
def __init__(self, orpo_lambda):

self.orpo_lambda = orpo_lambda

@dataclass
class ORPOBlipTextVisionModelOutput():

loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None

class ORPOBlipForVQA(BlipForQuestionAnswering):
def __init__(self, config, orpo_config=None):

super().__init__(config)
self.orpo_config = orpo_config

def _calculate_logps(self, logits: torch.FloatTensor, labels: torch.LongTensor,
attention_mask: torch.LongTensor=None):

assert logits.shape[:-1] == labels.shape

labels = labels[:, 1:].clone()
logits = logits[:, :-1, :]
loss_mask = (labels != -100)

labels[labels == -100] = 0

per_token_logps = torch.gather(logits.log_softmax(-1), dim=2,
index=labels.unsqueeze(2)).squeeze(2)

return (per_token_logps * loss_mask).sum(-1)

def calculate_orpo_loss(self, outputs_pos, outputs_neg, positive_labels, negative_labels,
attention_mask):

#check self.tokenizer.pad_token_id

orpo_lambda=self.orpo_config.orpo_lambda

pos_loss = outputs_pos.loss

pos_prob = self._calculate_logps(outputs_pos.logits, positive_labels, attention_mask)

neg_prob = self._calculate_logps(outputs_neg.logits, negative_labels, attention_mask)

Calculate log odds

9

https://github.com/huggingface/transformers/tree/main/src/transformers/models/blip
https://github.com/xfactlab/orpo/tree/main

log_odds = (pos_prob - neg_prob) - (torch.log(1 - torch.exp(pos_prob))
- torch.log(1 - torch.exp(neg_prob)))

sig_ratio = torch.nn.functional.sigmoid(log_odds)
ratio = torch.log(sig_ratio)

Calculate the Final Loss
loss = torch.mean(pos_loss - orpo_lambda * ratio)
return loss

def forward(
self,
input_ids: torch.LongTensor,
pixel_values: torch.FloatTensor,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
neg_labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None

):

vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict

)

image_embeds = vision_outputs[0]
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)

question_embeds = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=return_dict,

)

if labels is not None and decoder_input_ids is None:
labels are already shifted right, see: https://github.com/huggingface/transformers/pull/23153
decoder_input_ids = labels

question_embeds = question_embeds[0] if not return_dict
else question_embeds.last_hidden_state

answer_output = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=question_embeds,
encoder_attention_mask=attention_mask,
labels=labels, #positive labels
return_dict=return_dict,
reduction="mean",

)

10

if labels is not None:
if self.orpo_config == None:

decoder_loss = answer_output.loss.mean() if return_dict
else answer_output[0].mean()

else:
neg_answer_output = self.text_decoder(

input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=question_embeds,
encoder_attention_mask=attention_mask,
labels=neg_labels,
return_dict=return_dict,
reduction="mean"

)
decoder_loss = self.calculate_orpo_loss(outputs_pos=answer_output,

outputs_neg=neg_answer_output,
positive_labels = labels,
negative_labels = neg_labels,
attention_mask=attention_mask
)

else:
decoder_loss = None

return ORPOBlipTextVisionModelOutput(
loss=decoder_loss,
image_embeds=image_embeds,
last_hidden_state=vision_outputs.last_hidden_state,
hidden_states=vision_outputs.hidden_states,
attentions=vision_outputs.attentions,

)

B. Source code BlipForQuestionAnswering for DPO
Below code is based on open source https://github.com/huggingface/transformers/tree/main/src/transformers/models/blip.

Class BlipForQuestionAnswering has been extended to include the DPO loss, inspired by one of the DPO implementations
for text-only LLMs: https://github.com/phymhan/llm-dpo.

class DPOConfig:
def __init__(self, dpo_beta):

self.beta = dpo_beta

@dataclass
class DPOBlipTextVisionModelOutput():

loss: Optional[torch.FloatTensor] = None
positive_logits: Optional[torch.FloatTensor] = None
negative_logits: Optional[torch.FloatTensor] = None

class DPOBlipForVQA(BlipForQuestionAnswering):
def __init__(self, config, dpo_config=None):

super().__init__(config)
self.dpo_config = dpo_config

def _calculate_logps(self, logits: torch.FloatTensor, labels: torch.LongTensor,
attention_mask: torch.LongTensor=None):

11

https://github.com/huggingface/transformers/tree/main/src/transformers/models/blip
https://github.com/phymhan/llm-dpo

assert logits.shape[:-1] == labels.shape

labels = labels[:, 1:].clone()
logits = logits[:, :-1, :]
loss_mask = (labels != -100)

labels[labels == -100] = 0

per_token_logps = torch.gather(logits.log_softmax(-1), dim=2,
index=labels.unsqueeze(2)).squeeze(2)

return (per_token_logps * loss_mask).sum(-1)

def forward(
self,
input_ids: torch.LongTensor,
pixel_values: torch.FloatTensor,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.LongTensor] = None,
neg_labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
dpo_config: Optional[DPOConfig] = None

):

vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict

)

image_embeds = vision_outputs[0]
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long)

question_embeds = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_attention_mask,
return_dict=return_dict,

)

if labels is not None and decoder_input_ids is None:
decoder_input_ids = labels

question_embeds = question_embeds[0] if not return_dict
else question_embeds.last_hidden_state

answer_output = self.text_decoder(

12

input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=question_embeds,
encoder_attention_mask=attention_mask,
labels=labels, #positive labels
return_dict=return_dict,
reduction="mean",

)

if labels is not None:
decoder_loss = answer_output.loss.mean() if return_dict

else answer_output[0].mean()

neg_answer_output = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=question_embeds,
encoder_attention_mask=attention_mask,
labels=neg_labels,
return_dict=return_dict,
reduction="mean"

)
else:

decoder_loss = None

#Return log probabilities for chosen and rejected
return DPOBlipTextVisionModelOutput(

loss=decoder_loss, #loss is from positive anwer
positive_logits=answer_output.logits,
negative_logits=neg_answer_output.logits,

)

def calculate_dpo_loss(self, policy_outputs, reference_outputs, positive_labels,
negative_labels, attention_mask):

policy_chosen_logps = self._calculate_logps(policy_outputs.positive_logits,
positive_labels, attention_mask)

policy_rejected_logps = self._calculate_logps(policy_outputs.negative_logits,
negative_labels, attention_mask)

reference_chosen_logps = self._calculate_logps(reference_outputs.positive_logits,
positive_labels, attention_mask)

reference_rejected_logps = self._calculate_logps(reference_outputs.negative_logits,
negative_labels, attention_mask)

pi_logratios = policy_chosen_logps - policy_rejected_logps
ref_logratios = reference_chosen_logps - reference_rejected_logps

logits = pi_logratios - ref_logratios

losses = -F.logsigmoid(self.dpo_config.beta * logits)

13

loss = losses.mean()

return loss

14

Figure 13. Example image from Sci Graph dataset

C. Example of MLLM-DPO dataset
• Image 13 is from the MLLM-DPO data set, generated from the original sci graph collection.

• Question: What is the significance of the half-wave output signal in Figure 4?

• Chosen answer: The half-wave output signal in figure 4 is significant as it demonstrates the rectification process and
verifies the efficiency of the multiwave rectifier circuit in operation. In the diagram, the half-wave current signal passes
through the comparators (Q9 and Q10) and then connects to a CMOS inverter (Q8), all located within the current mirror
circuit. The inverter is designed to convert this analog half-wave signal into another half-wave signal of the same form,
but alternating polarity, with no additional noise or information loss. This confirmation process is critical to ensuring
the functional integrity of the multiwave rectifier, ultimately contributing to the design and optimization of low-voltage
current mode rectification system.

• Rejected answer: The half-wave output signal shown in Figure 4 is an important part of the proposed rectifier circuit’s
functioning. It indicates the circuit’s performance and capability to generate the output signal in accordance with the
input signal. Additionally, this output signal provides insights into the efficiency and precision of the multiwave rectifier
in processing the input signal under varying low voltage conditions. The test results help in evaluating the circuit’s effec-
tiveness in handling different input and load situations, as the half-wave output signal will have specific characteristics
and shape unique to the multiwave rectifier configuration.

15

https://en.wikipedia.org/wiki/SciGraph

