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Abstract

Effective prediction of tornado occurrences is
paramount for proactive emergency planning and re-
sponse strategies. In this study, we introduce a novel
approach by leveraging UNET architecture to forecast
tornadoes based on meteorological data. Our model
harnesses the power of UNET to analyze spatiotemporal
patterns in weather data, thereby generating probabilistic
forecasts of tornado occurrence. Key meteorological
variables, including Convective Available Potential Energy
(CAPE), Convective Inhibition (CIN), Mean Sea Level
Pressure (MSLP), Storm Relative Helicity (SRH), Air
Temperature, and Geopotential Height serve as input
features for our model. We evaluate the model’s predictions
against retrospective tornado survey data, demonstrating
its efficacy in producing accurate tornado forecasts.
Our innovative approach offers promising prospects for
enhancing disaster preparedness.

1. Introduction
Tornadoes are sudden and destructive natural disasters

and pose a substantial risk to people and property in the cen-
tral and Southeast United State. Accurately predicting when
and where there is a change for tornadoes is a difficult task
that requires expertise. Discovering new methods to gener-
ate tornado forecasts could help with emergency planning
and preparedness. An AI model has the potential to ana-
lyze large amounts of meteorological data, and process it
more quickly than traditional methods before generating a
prediction. These predictions could be used to help inform
meteorologists tasked with making official forecasts. In this
project we intend to generate tornado forecasts from mete-
orological data. Providing accurate tornado forecasts could
significantly help with disaster preparedness and response
particularly in rural areas

Our inputs and outputs can be described as follows. For
a single input–output pair, our input X is a 3x256x256 ma-
trix, with 3 channels–CAPE, CIN, and Geopotential height.

These 256x256 matrices originate from the NOAA Reanal-
ysis data which is described in greater detail in the dataset
section. These 256x256 grids are centered on the CONUS
or the contiguous United States. Our outputs are ”perfect
hindcast” probability grids from Gensini et. al.

In terms of results, our model shows promise in some
areas, and has shortcomings in others. It almost univer-
sally outperforms the baseline models trained on the same
data, and also in some cases can be shown to perform better
than the prediction made by the Storm Prediction Center for
that same day, however, our current model displays some
issues–it often struggles to predict significant tornadoes (see
experiment section 1), likely due to the sparsity of this data.
Further, while it performs relatively well in predicting the
locations of threats, it struggles with the magnitude–see ex-
periment 2, and future work.

Our outputs are a 256x256 grid of probabilities repre-
senting the chances of a tornado within 20 miles of a given
point based on retrospective tornado survey results. The
Storm Prediction Center issues daily tornado forecasts de-
fined in the same way, and thanks to the work by Gensini et
al[11], we have y labels for every day between 1979 to 2022
describing what would have been the perfect SPC tornado
forecast based on their own criterion: give the probability
of a tornado within 25 miles of any given point. This crite-
rion also includes a ”sigtor” (or significant tornado thresh-
old, often displayed as black hatching on an SPC forecast),
which represents the same probabilities, but specifically for
tornadoes that are considered ”significant” or EF2-EF5 on
the Enhanced Fujita scale.

1.1. Related Work

1.1.1 Direct Relation to our Method

The study conducted by [2] employs reanalysis data (vari-
ous localized parameters) and Satellite data to predict sig-
nificant hail. It underscores the credibility of utilizing re-
analysis data for machine learning. However, the study’s
reliance on a Multilayer Perceptron (MLP) for point-wise
classification poses limitations, particularly in capturing the
intricate spatial and temporal dynamics inherent in weather
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forecasting. Further, while MLPs may offer efficacy in
hail prediction tasks, their inadequacy in comprehensively
addressing the complex atmospheric conditions associated
with tornado occurrences warrants further exploration into
more sophisticated modeling approaches.

[3] applies neural networks to forecast convection up to
2 hours ahead. The predictors consist of a time series of
brightness-temperature grids derived from seven infrared
bands on the Himawari-8 satellite, with the output being
a grid of convection probabilities at the specified lead time.
This work serves as a compelling proof of concept, demon-
strating the feasibility of employing U-Nets on multi-modal
spatial weather data. Specifically, the study showcases the
capability of U-Nets to analyze time-series infrared satel-
lite photos of a given region and predict weather condi-
tions forward in time. Building upon this concept, we pro-
pose a similar approach, albeit with a distinct focus. While
Lagerquist et al. [3] predict convection probabilities 120
minutes into the future, our research endeavors to predict
tornado probabilities approximately 12 hours ahead. This
extension presents an opportunity to leverage U-Nets for
longer-term forecasting of severe weather events, offering
valuable insights into potential forecasting capabilities and
challenges associated with extended lead times.

[4] demonstrates that UNets can be effectively utilized
to produce spatially aware probabilistic predictions for se-
vere weather (in their case, severe hail), however for the
purpose of making useful forward-in-time forecasts, their
inputs consist of HREF guidance, which necessitates uti-
lizing predictions of atmospheric conditions generated by a
numerical model forecasting approximately 13 hours ahead.
Therefore, if the numerical models are off, and they fre-
quently are, the Unet’s predictions will be off. Our method
on the other hand relies on using current atmospheric condi-
tions to make predictions about future tornado probabilities.

Gensini et al. [5, 11], demonstrates the validity of using
SPC storm report data, from which the “Perfect Hindcast”
dataset [3] is derived, as an output or target set for various
classification models using reanalysis as inputs, however
they do not explore the effectiveness of UNets for producing
forecast-like predictions that emulate those of the storm pre-
diction center. Moreover, like previously discussed related
works, Gensini et Al. are not trying to forecast forward in
time. In other words, their methods are using data from T=0
to make predictions about the immediate environment.

Finally, in [6], McGuire and Moore demonstrate the va-
lidity of CNN-based architectures for prediction of high-
end tornado events, and of using input features such as
500mb Geopotential height, which point-wise models like
logistic regression and decision trees cannot appropriately
utilize due to the importance of spatial features that appear
within a given 2D snapshot. They also provide a frame-
work for future work, as they perform feature engineer-

ing to enhance the edges and shapes in geopotential height
plots, thus improving the model’s ability to learn and train
on these features.

1.1.2 State-of-the-art Relation

Related work in terms of state-of-the-art: what ML models
are currently being used by forecasters.

The paper [7] discusses a state-of-the-art decision-tree-
based model, currently utilized by the Storm Prediction
Center (SPC) as a key tool in their forecasting suite to fa-
cilitate informed predictions. As it is a decision-tree model,
with each gridded prediction being independent of the other,
it is incapable performing forward-in-time prediction using
current (T=0) data, and must also rely on short and medium
term numerical forecast models like the NAM (North Amer-
ican Mesoscale Model) , the HRRR (High Resolution Rapid
Refresh Model), and the RAP (Rapid Refresh Model) to
provide numerical inputs that themselves predict the raw
conditions of, say, T= +12hrs.

Another SOA forecasting tool that uses some form of
ML methods is the CIPS Analog Guidance model [8]. This
model performs a meta-analysis of current atmospheric con-
ditions, to find matching atmospheric conditions from the
past (so-called “analogs”) to make probabilistic predictions
about severe weather likelihood. It is considered a respected
forecasting tool used by the Storm Prediction Center. The
model is, however limited, of course, by quality of matching
analogs, and so its usefulness can vary wildly depending on
the nature of the given severe weather threat.

1.1.3 SOA Techniques

Finally, given the relative sparsity of exploration of this
problem setup in meteorological literature, it’s worth
briefly discussing SOA techniques in other fields that better
match the modality of our problem.

Namely, [9] shows the validity of using U-Nets for local-
izing risk. Moreover, [10] provides us with future consid-
erations. Using Multimodal magnetic resonance inputs and
ensembled UNets, they were able to make more specialized,
multi-faceted predictions about the location and nature of
brain tumors. We believe that there is an analogous nature
between these considerations and those of probabilistic se-
vere weather forecasting.

1.2. Methods (2 pages)

Three different models were trained on our dataset, the
first two were a logistic regression model and decision tree
model for the purpose of having baselines, and we note from
our related work section that both of these models have been
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used for severe weather prediction. The second was a pre-
trained U-NET, which we fine-tuned. [13].

The pre-trained U-NET chosen was a model that was
used for semantic segmentation on cars trained on the Car-
vana dataset [15]. We chose this model because it had
been pre-trained on a large dataset and it’s output chan-
nels and input channels matched our desired input and out-
put channels. Our input data was a 3 channel image where
the first channel was cin (convective inhibition), the second
channel was mean sea level pressure, and the third channel
was CAPE (Convective Available Potential Energy). These
channels were chosen because . The labels we used were
two channel ¡images? tensors?¿ where the first channel and
second channel were the probabilities of tornado and sig-
nificant tornado across the United States. These labels were
generated by [11] and as previously stated, represent the
probability of a tornado within 25 miles of any given point.

In explaining our approach, we want to emphasize that
the vast majority of widely use machine learning applica-
tions to severe weather prediction are performed in a point-
wise, purely ingredient-based manner [7, 8]. Unfortunately,
severe weather and especially tornadoes translate across
space. For this reason, tornado-predictions using point-wise
methods will always be at a disadvantage. To remedy this
disadvantage these papers will spend a lot of time and effort
attempting to encode spatial relationships within the point-
wise data. As an example [7] encodes latitude and longi-
tude as features to try to teach the DT model about clima-
tological trends. This is inherently flawed in our opinion,
and we believe the the UNet’s CNN-based architecture can
more adequately learn and capture the intricacies of severe
weather.

1.3. Dataset and Features

Category/Num examples Years

Validation (94,170) 2005, 1992, 1984, 1999,
2014, 2008

Test (94,170) 2017, 2018, 2019, 2020,
2021, 2022

Training (470,850) Rest

Table 1: Data breakdown from 1980 - 2022

In our project, we use datasets from the NOAA Physical
Sciences Laboratory [1]. The resolution of all images is
256x256–this is the result of a resize and crop, to better fit
our model and also to be better centered on the CONUS.
We chose five features: (1). CAPE (convective available
potential energy), mean, surface, per-day. (2). CIN (con-
vective inhibition), ensemble mean, surface, 8x daily (12Z).
(3). Geopotential Height, ensemble spread, tropopause, 8x
daily (12Z). (4). MSLP (mean sea level pressure), mean, 8x

daily (12Z). (5). SRH (storm relative helicity), individual
obs, 8x daily (12Z). (6). Air temperature, individual orbs,
pressure levels, 8x daily (12Z). We conducted minimal data
processing on the dataset, often simply dividing them by
their global max to promote numerical stability. We resized
the input images to only cover the United States. We also
normalized the dataset by scaling the values of the different
features to a common range. Further explanation of each of
these features is explained below.

Figure 1: This is an example of an image from the CAPE
dataset

CAPE, or convective available potential energy–is mea-
sured in Joules per Kg of atmosphere, and also must be an-
chored to a certain parcel starting height. In our case, we
are using surface-based CAPE. CAPE is highly correlated
with the atmosphere’s ability to maintain storms, but says
little to nothing about if a storm can actually form or if the
storm will produce tornadoes.

CIN, or convective inhibition is the negative of CAPE,
and is measured in negative Joules per Kg of atmosphere.
It similarly must be anchored to a particular parcel starting
point. CIN can prevent storm formation which can be to the
detriment of tornadic activity, but it can also allow for more
isolated storms which may promote tornadic activity. Fur-
thermore, some amount of CIN in the atmosphere prior to
storm initiation can allow CAPE to build to explosive levels
prior to storm formation, resulting in stronger updrafts, and
potentially a higher chance for tornadoes.

Geopotential Height of a particular pressure level is an
approximation of the altitude at which that pressure level
can be found. For example, if the 500mb geopotential
height at Palo Alto is 5400 meters, then we know that half
of the atmosphere’s mass column is above 5400 meters and
half is below 5400 meters. Geopotential height plots are
useful for understanding the conditions of the Jet-Stream,
which is the primary driver for the majority of extreme
weather events and tornadoes in the mid-latitudes. [12]

MSLP, or mean sea level pressure, is typically in mil-
libars. MSLP is not directly measured but is rather calcu-
lated based on the observed pressure at a given location,
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adjusted to sea level. MSLP serves as a key indicator of at-
mospheric circulation patterns and weather systems. It pro-
vides valuable information about the overall pressure distri-
bution across a region, which influences wind patterns and
weather conditions.

SRH, or storm relative helicity, is a measure of the poten-
tial for cyclonic updraft rotation in supercell thunderstorms.
It quantifies the amount of horizontal vorticity that can be
tilted and stretched by a thunderstorm’s updraft to produce
rotation. SRH is typically measured in m²/s². High val-
ues of SRH are associated with an increased likelihood of
severe weather events, such as tornadoes. The feature pro-
vides crucial insights into the dynamics of storm develop-
ment and helps in forecasting severe weather conditions.

Air temperature is measured at different pressure levels.
It is typically recorded in degrees Celsius (°C) or Kelvin
(K). Air temperature affects a wide range of atmospheric
processes, including the formation of weather systems, pre-
cipitation patterns, and atmospheric stability. Variations in
air temperature can influence convection, cloud formation,
and the development of weather fronts.

To expand on the previous point further [16] and
many others have demonstrated that things such as frontal
orientation–e.g. if a warm front or cold front is oriented
north-south or east-west or something else–can have signif-
icant impacts on tornadic potential, and CNNs seems par-
ticularly well suited to capturing this complexity. This is
also why one of the key features we trained out models on
was MSLP, or Mean Sea Level Pressure, which is on its own
sufficient for finding fronts and frontal orientations for any
reasonably skilled forecaster.

Figure 2: visual of five channels on 2021-03-25

1.4. Experiments

When training our model, we chose to use a learning rate
of 1e-4 using the adam optimizer with a mini-batch of 64.
We tried out various batch sizes starting from 4 until work-
ing up to 64. We didn’t try batch sizes past 64 given con-
straints on computation. A learning rate of 1e-4 with adam
worked best and provided smooth training.

When analyzing the performance of our models we de-
cided to use KL-divergence:

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
KL-divergence is a standard method used to compare the

difference and similarity between two different probability
distributions. The output of our model had two channels the
first was a point wise probability distribution of generic tor-
nado probabilities–weak or strong tornadoes included–and
the second was that of a significant tornado. We compared
both separately to their corresponding label.

We provide a qualitative analysis of our data demonstrat-
ing both failure cases and success cases on various different
days by showing the true label, the U-Net’s prediction, and
the Storm Prediction Center’s prediction [14].

1.4.1 Experiment 1: Comparison with Baseline Model

For the first experiment a comparison with the baseline
models is provided. For experiment 1, we wanted to see if
the model was capable of not just predicting tornadoes, but
predicting significant tornadoes. This meant that our output
dim was 256x256x2.

In terms of results, we note a set of success cases, and a
set of failure cases. For a remarkable success, we can see
our prediction made by our model 15 has the sig probabili-
ties located remarkably where the sigtor probabilities are in
the perfect true label 14. Furthermore, we note that this far
outperforms the Storm Prediction Center’s prediction from
the same day 16.

For failure mode, however, we note that overall, the
model generally failed to output significant tornado prob-
abilities at all. We posit that due to the very sparse nature
of this data in particular, the model learned to simply avoid
outputting these values most of the time. See figures 6, 5, 7.

Finally, we should also note 4, which shows that though
our model trained on sig tor data was a bit disappointing,
it far outperformed the baseline models. Finally, we should
also note 3, which shows our model far outperforms base-
line models.

1.4.2 Experiment 2: Significant Tornado Prediction

For our second experiment we thoroughly analyzed the per-
formance of our U-Net in predicting the probability of sig-
nificant Tornados. We show one failure case and one suc-
cess case.

One failure case is for March 25th, 2021(Day A), the true
label, the U-Net’s prediction, and the Storm Prediction Cen-
ter’s (SPC) prediction are shown in 5, 6, and 7 respectively.
This covers one of the failure cases in which our model fails
to predict the occurrence of a significant tornado. Note that
significant tornado predictions are indicated by a hatch, as
you can see in 6, the U-Net’s prediction does not have a
hatch.

One of the model’s best predictions was for May 18th,
2017 (Day B), the true label, the U-Net’s prediction, and
the Storm Prediction Center’s prediction are shown in 8, 9,
and 10 respectively. In this example the model performed
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Figure 3: Regular Tornado Probability Results

Figure 4: Significant Regular Tornado Probability Results

strongly and significantly outperformed the SPC’s predic-
tion.

1.4.3 Experiment 3 Tornado

For our third experiment we analyzed the performance of
our model in predicting the probability of tornados. We
present one success case and one failure case.

One failure case is for January 10th, 2021(Day C), the
true label, the U-Net’s prediction, and the Storm Predic-
tion Center’s (SPC) prediction are shown in 11 ??, and 13
respectively. Though our model correctly localizes the tor-
nado, it does not predict proper probabilities.

One of the model’s best predictions was for January 11th,
2020, Day D the true label, the U-Net’s prediction, and the
Storm Prediction Center’s prediction are shown in 14, 15,
and ?? respectively. In this example the model performed
strongly and significantly outperformed the SPC’s predic-
tion. However, once again the U-Net does extremely well
in localizing where the tornado will occur but does not pre-
dict the correct tornado probabilities.

1.5. Conclusion/Future Work

The analysis revealed notable promise in certain in-
stances, where the machine learning models exhibited pre-
dictive capabilities comparable to traditional storm predic-
tion methods. This convergence of predictions with estab-
lished storm prediction techniques underscores the poten-
tial of advanced computational methods in accurately fore-
casting tornado events. The ability of the models to align
closely with storm prediction outcomes suggests that they

Figure 5: High Sig Tornado Day A True Label

Figure 6: High Sig Tornado Day A U-Net Prediction

Figure 7: High Sig Tornado Day A SPC Prediction

capture essential meteorological variables and patterns as-
sociated with tornado formation and development. Reflect-
ing, the model could have used more features and cleaner
features. In terms of performance, The UNET was the high-
est performing algorithm. When comparing the UNET to
the other algorithms, see the Methods section for a descrip-
tion.

In the future, we believe we can expand in multiple ways:
(1). Conduct a comprehensive analysis of feature impor-
tance to identify the most informative meteorological vari-
ables for tornado forecasting. (2). We could also extend the
forecasting horizon to predict tornado occurrences beyond
the current time frame, possibly exploring multi-step fore-
casting approaches. (3). Use a loss function better suited
for the task, such as weighted binary cross-entropy or fo-
cal loss. The new loss function will help ensure that the
model learns to prioritize the correct identification of tor-
nado events. (4). Use Sigmoid, the sigmoid activation fa-
cilitates the interpretation of model outputs in terms of cali-
brated possibilites, enabling stakeholders to make informed
decisions based on the forecasted tornado probabilities. (5).
Normalize the labels, normalizing the labels helps mitigate
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Figure 8: High Sig Tornado Day B True Label

Figure 9: High Sig Tornado Day B U-Net Prediction

Figure 10: High Sig Tornado Day B SPC Prediction

potential biases or inconsistencies in the original tornado
occurrence data, such as variations in reporting practices or
data collection methodologies.
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Figure 11: High Tornado Day C True Label

Figure 12: High Tornado Day C U-Net Prediction

Figure 13: High Tornado Day C SPC Prediction
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