
What Can Activation Patching Tell Us About Adversarial Examples?

Neil Rathi
Stanford University
rathi@stanford.edu

Katherine Yu
Stanford University

kyu2024@stanford.edu

Abstract

Although they achieve state of the art performance on
vision tasks, deep neural networks have been shown to be
vulnerable to adversarial examples, inputs that appear to
be almost identical to ordinary inputs but cause the model
to produce incorrect predictions. In order to interpret the
behavior of vision models on adversarial examples, we use
activation patching, a technique in which we patch in acti-
vations from a model given an ordinary input into another
run of the model given an adversarial input. This allows
us to determine which neurons in a model have the greatest
causal importance in producing correct predictions. The
task we examine is object classification on the ImageNet
dataset, and we specifically analyze the neurons within the
GoogLeNet architecture. We find that patching individual
neurons or circuits can recover the original class predic-
tions on samples, but identifying which activations to patch
depends on both the true label and target label of the at-
tack. Despite this limitation, we argue that patching can
still help mitigate the risks from adversarial attacks, as it
allows us to more deeply understand how models respond
to these inputs.

1. Introduction
Good deep learning models for vision tasks are not ro-

bust to adversarial examples: small perturbations on clean
inputs that lead to highly confident misclassification. These
examples are often functionally invisible to humans (see
Figure 1, but cause otherwise good and generalizable mod-
els to perform extremely poorly [20]. Szegedy et al. [20]
generate these examples via straightforward gradient-based
optimization, computing and applying a noise mask to an
input image; however, other work has also shown that it
is possible to construct physical adversarial examples—i.e.
objects misclassified from images at a variety of angles [1].
Such examples can be extremely dangerous for vision mod-
els applied in the real world.

Since vision models are so complex, interpreting how
the model acts on these adversarial inputs is very challeng-

ing. While past work on vision model interpretability has
focused on explaining classifier predictions (e.g. SHAP,
[12]) and understanding model internals as visual filters
(e.g. DeepDream, [15]), little work has attempted to un-
derstand adversarial examples from the perspective of in-
terpretability.

Here, we use techniques from the mechanistic inter-
pretability of language models to better understand how vi-
sion models process adversarial inputs. In particular, we
utilize activation patching, or causal tracing, a method
used for component localization. At a high level, activa-
tion patching allows us to identify which model components
(neurons, layers, attention heads) are used when processing
certain inputs and for making certain predictions. Activa-
tion patching has recently been used to discover neural cir-
cuits in LLMs [5, 23, 24], and can be used for editing fac-
tual associations [14]. The technique makes use of ‘clean’
and ‘corrupt’ inputs to causally intervene on activations and
determine which neurons are decisive in a model’s predic-
tions; in this sense, adversarial examples are a natural test-
ing bed for activation patching.

Here, we investigate how a small pre-trained model
(GoogLeNet, [19]) behaves on adversarial examples, using
activation patching to identify components responsible for
misclassification. The inputs we use are images in an exist-
ing dataset (ImageNet) along with adversarial examples we
generate from them.

Broadly speaking, we are primarily interested in two
questions.

(1) Can activation patching help localize components that
respond to adversarial inputs?

(2) Can activation patching help us find a universal com-
ponent that responds to adversarial inputs?

The difference between these questions is somewhat subtle.
The goal of much mechanistic interpretability work is to
argue that models can be completely decomposed into uni-
versal component parts—that is, these components should
not be dependent on the input. We are interested in both
questions: whether adversarial inputs trigger any localiza-
tion (as it is very possible that they do not) and whether they

1



“sombrero”
90.69% confidence

+

PGD noise
(exaggerated 10x)

=

“magnetic compass”
100.00% confidence

Figure 1: Constructing adversarial examples for GoogLeNet using projected gradient descent [6, 10]. We add imperceptibly
small noise (exaggerated tenfold here for visualization) computed by gradient ascent subject to minimizing the ℓ∞ norm,
which causes GoogLeNet to confidently misclassify the new example.

trigger a single ‘adversarial input component.’1

In what follows, we first detail past work on adversarial
examples their interpretability. We then detail the general
methodology of the experiments, including both activation
patching and generation of adversarial examples. In the fol-
lowing section, we describe the methods and results of three
experiments: patching neurons, circuit discovery, and im-
age reconstruction. Section 5 concludes.

2. Related Work
Deep neural networks are not robust to adversarial ex-

amples, and various attack methods have been formulated
which can be categorized according to certain aspects of the
attack. An untargeted attack aims only to produce an incor-
rect classification by the model while a targeted attack aims
to have the model predict a specific label. Regarding knowl-
edge of the model, white-box attacks assume complete ac-
cess to the model, including its parameters, and black-box
attacks may only have access to the training data, the logits
outputted by the model, or the final predictions made by the
model [7].

In white-box attacks, the task of finding adversarial
examples can be formulated as an optimization problem.
Szegedy et al. use a weighted sum of the magnitude of the
noise and the loss of the model on the resulting image and
target label as the objective, and L-BFGS as the optimiza-
tion algorithm [20]. Improving on this technique, Goodfel-
low et al. use the Fast Gradient Signed Method (FGSM), in
which they compute an untargeted adversarial example by
adding the sign of the gradient of the model loss at the input
and label scaled by a small factor to the original input. This
can efficiently be computed by backpropagation, and is less

1By component here, we mean a single neuron or a ‘circuit’ of neu-
rons, which refers to a sparse connected subgraph of the neural network
that performs the same function as the network on a certain type of input.

expensive than L-BFGS. Additionally, the authors hypothe-
size that the linear nature of neural networks explains their
vulnerability to adversarial perturbation, as well as being a
possible cause for the generalization of adversarial exam-
ples across different architectures and training sets [6]. The
transferability of adversarial examples across models is a
property used in black-box attacks, in which the examples
are generated for a substitute model and then tested on the
target model. Since black-box attacks require much less in-
formation than white-box attacks, they are more practical
and further establish that adversarial examples are not just
a theoretical concern.

In general, approaches to the issue of adversarial exam-
ples have involved how we can design or train more robust
models. A NIPS 2017 competition organized by Google
Brain found that common defenses included gradient mask-
ing, which is a technique that reduces the effectiveness of
attacks that use the gradient, such as by changing the model
to make it non-differentiable or have zero gradient in most
places. Other defense types include detecting adversarial
inputs, although in many cases the detector can be attacked
as well, and adversarial training, although the model tends
to overfit to the specific attack used in training or learn
gradient masking [11]. Madry et al. approach adversarial
robustness by framing it as a min-max optimization prob-
lem, in which they seek a model that minimizes the maxi-
mum possible loss that any attack can induce. The method
they use is adversarial training, in which all training exam-
ples are replaced with a perturbed counterpart. They claim
that projected gradient descent, introduced by Kurakin et al.
[10], is a universal “first-order adversary”, in that it achieves
a greater loss than other adversaries using only first order in-
formation about the model. The models that they train with
this attack as the adversary are indeed robust to other attacks
as well, maintaining a high accuracy on the MNIST dataset.

2



Another observation is that larger models are more robust
after adversarial training, suggesting that a more complex
decision boundary is needed to classify adversarial exam-
ples correctly [13].

Focusing more on interpretability, Tao et al. propose an
approach to detecting adversarial examples for face recog-
nition models, which involves extracting a set of neurons,
denoted attribute witnesses, that are critical for identify-
ing specific human face attributes, e.g. eyes and nose.
These neurons are found by determining which attributes
and neurons have bi-directional relations, which means that
changes in attributes lead to changes in neurons, and vice
versa. A new model is constructed by enhancing the val-
ues of attribute witnesses and weakening the values of other
neurons. Inconsistent predictions between the new model
and original model indicate an adversarial input [21].

We also seek to interpret the behavior of vision models
on adversarial examples, and we use the technique of activa-
tion patching, introduced by Meng et al. for the purpose of
editing factual associations in GPT. The process of calculat-
ing a state’s contribution to a correct factual prediction in-
volves three steps: there is a clean run, in which a prompt is
given to the model and the correct prediction is outputted, a
corrupted run, in which the embedding of the subject in the
prompt is corrupted with noise so that the model outputs an
incorrect prediction, and a corrupted-with-restoration run,
in which the model is run on the noisy embedding but an
activation from the clean run is patched in. For the last run,
if the correct prediction is outputted after patching, we can
infer that the activations patched are causally important in
producing the correct prediction [14].

Wang et al. extend this technique to the task of indi-
rect object identification in GPT-2, where for the clean run
the model is given the original prompt and in the corrupted
run the prompt no longer has a clear indirect object com-
pletion but has the same sentence structure as the original
prompt. Regarding the model as a set of circuits, they deter-
mine which circuits are involved in the task by tracing back
the information flow through the model, beginning with the
logits [23]. For our task, the inputs to the clean and cor-
rupted runs of the activation patching naturally correspond
to original and adversarial images, and we follow a similar
process to trace information flow in vision models.

In order to understand best practices for activation patch-
ing, Zhang and Nanda examine the methodological choices
of other works and compare the results of changing a sin-
gle method in the process. Specifically, they compare cor-
ruption methods, evaluation metrics used for patching, and
sliding window patching to single layer patching. For eval-
uation metrics, they consider logit difference and proba-
bility difference from patching. When probability is used
as the metric and the corrupted input results in a negligi-
ble probability of the correct output, they note that nega-

tive model components, which hurt performance, are easily
overlooked. This is due to probability values having to be
non-negative, so logit difference does not suffer from the
same issue. We take this result into consideration in our
methodology. Another comparison involves sliding window
patching, which means patching multiple adjacent layers in
the model at once. Compared to single layer patching, this
method results in more pronounced patch effect [24].

3. Methods

Following early work on the interpretability of vision
models [17], we focus our experiments on GoogLeNet [19],
a relatively small (22-layer) pre-trained ConvNet. We im-
plement the model using PyTorch and TorchVision [18, 22].
Our goal with activation patching is to determine which
neurons, or circuits of neurons, are responsible for misclas-
sification of adversarial examples.

Mechanistic interpretability techniques can be applied at
multiple levels of analysis; here, we define a neuron as a
single filter in a convolutional layer. So, for example, in
[19], GoogLeNet’s first convolutional layer has exactly 64
neurons. We choose this level of analysis because it allows
us to have relatively granular control (compared to say, en-
tire layers) without being over-specific: it’s unlikely that
individual pixels would have a meaningful effect on output
[24].

3.1. Activation Patching

Activation patching is a technique that allows us to deter-
mine causal relationships between neurons and model be-
havior. In essence, we run the model on a clean input, stor-
ing the activations at each layer. We then run the model
on an input that differs in a single dimension, and at a sin-
gle component, ‘patch over’ the activation(s) from the clean
run (see Figure 2). If the output of the model is now equiva-
lent to the output on the clean run, we can conclude that the
dimension of difference causally depended on the patched
component.

Formally, we consider tuples (xcl, x∗) of a ‘clean’ image
and a ‘corrupted’ image (i.e. an adversarial example). We
first run a forward pass of the model on xcl, caching the
activations at each neuron i. We then run a forward pass of
the model on x∗, storing outputs. Then, for each i, we run
a forward pass of the model on x∗ until neuron i, at which
point we replace the activation at i with the cached value
from the forward pass on xcl. We then resume the forward
pass on x∗, storing the outputs.

Our measure of interest is the patch effect defined by
[24]. Following their notation, let cl, ∗, and pt be the clean,
corrupted, and patched runs, respectively. Define the logit

3



Figure 2: Activation patching. In the patched run, we intervene on the activation of a single component with its cached value
from the clean run. We repeat this procedure for every component at our chosen level of analysis.

difference2 between inputs x, y on a model run r as

ldr(x, y) = logitr(x)− logitr(y). (1)

We define the patch effect as

patch effectr(xcl, x∗) =
ldpt(xcl, x∗)− ld∗(xcl, x∗)

ldcl(xcl, x∗)− ld∗(xcl, x∗)
. (2)

We normalize as in [23], which means that the patch effect
is typically in the interval [0, 1], where an effect size of 1
indicates that patching has completely recovered the clean
run, and effect size of 0 indicates that the patching has no
effect.

To locate relevant neurons, for each image, we sweep
through all neurons in convolutional layers, patching in ac-
tivations from the clean run. We do not consider non-
convolutional layers as these are less theoretically interest-
ing: they do not

3.2. Dataset

We evaluate the model on a random 256 image3 sub-
set of the ImageNet validation set [3].4 As a benchmark,
GoogLeNet achieves 74.22% accuracy on this dataset off-
the-shelf.

To generate adversarial examples, we use a projected
gradient descent (PGD) attack [10]. The PGD algorithm
maximizes a loss function subject to a constraint; here, our

2The patch effect can also be defined in terms of other difference met-
rics, including output probability and KL divergence [9]. However, logit
difference is the standard metric for work on activation patching. See [24]
for more discussion.

3We use only 256 images due to compute costs—activation patching
is computationally intensive, as each image requires a run of the model for
each neuron.

4We choose the validation set rather than the test set in order to verify
accuracy, as ImageNet test labels are not made available.

constraint is the ℓ∞ norm. In effect, our goal is to generate
an input x∗ that is minimally different from xcl with regards
to our constraint, such that our model predicts y∗ ̸= ycl with
maximal confidence. The PGD update rule is given by

xt+1 = πxt,ϵ(xt + α · sgn(∇xJ(θ, xt, ycl))), (3)

where πxt,ϵ(·) is a projection function that clips each ele-
ment of the input to within a distance of ϵ, a hyperparameter
specifying the size of the perturbation, from xt. In our im-
plementation, we use the torchattacks library [8] with
a simplex projection and α = 0.001 over ten steps. We
select corrupted labels y∗ randomly.

4. Experiments
In what follows, we detail three experiments on activa-

tion patching with GoogLeNet. In Experiment 1, we exam-
ine activation patching on individual neurons. In Experi-
ment 2, we explore how activation patching might help us
identify relevant circuits of neurons across layers. In Ex-
periment 3, we study how activation patching can be used
to re-construct ‘clean’ inputs from corrupted ones.

4.1. Experiment 1: Patching Neurons

Here, we patch the activations of single neurons in
GoogLeNet. Recall that we are particularly interested in
two questions:

(1) How does patching activations affect model perfor-
mance on adversarial inputs?

(2) Is there a single universal ‘adversarial input’ neuron or
circuit of neurons?

If the answer to (2) is no, then we would additionally like
to know what influences which neurons are relevant when
parsing adversarial inputs—is it a function of the clean input
or the corrupt label?

4



4.1.1 Methods

For each input xcl, we run the PGD adversarial attack de-
scribed in Section 3.2 to generate a corrupted input x∗. We
then follow the procedure outlined Section 3.1: we run the
model on xcl and x∗; then, for each neuron i we run the
model on x∗, patching the activation at neuron i from the
run on xcl.

We consider three sets of inputs. The first is simply our
testing set, to which we apply a PGD attack targeting ran-
dom labels y∗. For the second, we use the same clean input
for all runs of the model, and generate corrupted inputs by
targeting 256 different labels; similarly, for the third, we use
256 different clean inputs with the same corrupted label.

This allows us to probe how the clean and corrupted in-
put modulate which neurons are relevant: if the neuron is
modulated by the clean label, we expect to see the same
relevant neuron across all examples in the second set; if the
neuron is modulated by the corrupted label, we expect to see
the same relevant neuron across all examples in the second
set.

GoogLeNet achieves 0% accuracy on all of our corrupted
datasets off-the-shelf.

4.1.2 Results

We find that patching single neurons does indeed impact
model performance; however, we do not find evidence for a
‘universal’ neuron which responds to adversarial inputs.

0

100

200

300

400

0 20 40 60
Layer Number

N
eu

ro
n 

N
um

be
r

0.00

0.05

0.10

0.15

0.20

Patch Effect

Figure 3: Example of patching neuron activations on a sin-
gle input. The y-axis labels the neurons for each convolu-
tional layer (N.B. layers vary in number of neurons); fill cor-
responds to patch effect. We see a single spike in patch ef-
fect at layer 53, inception5b.branch2.0.conv, in
neuron 138.

Figure 3 details an example of patching neuron activa-
tions for one input image. We see that exactly one neu-
ron, inception5b.branch2.0.conv.138, induces
a much larger effect when patched: the mean patch effect
across neurons for this example is 0.002 ± 0.0001 (95%
CI), while the patch effect for neuron 138 is 0.208.

We notice similar patterns for all input images. We run a
one-sample t-test on the maximum patch effect (over neu-
rons) across all examples (against µ0 = 0) and find that for
each example, a single neuron does indeed cause a signifi-
cant increase in patch effect (p < 0.001). On average, this
neuron induces a 0.200 ± 0.01 (95% CI) increase in patch
effect from the mean.

However, these neurons are unique to the input: for our
256 images, there are 184 unique neurons which, when
patched, induce a major increase in patch effect. We also
find that holding the clean image or target label constant
does not totally control the effect: we find 54 and 87 unique
neurons in these conditions, respectively (with average in-
creases in patch effect 0.317 ± 0.049 and 0.179 ± 0.008).
Preliminary analysis does not reveal an immediate correla-
tion between inputs or labels which are dependent on the
same neuron. So, it is clear that the specific neuron that
fires is not a straightforward function of the clean input or
corrupt label, but rather likely a function of features from
both.

On the other hand, nearly all of these neurons occur very
late in the model. Of the 256 neurons, 254 are in layer 32 or
after, and 161 of these are in the final 15 layers. Intuitively,
this means that GoogLeNet parses clean and corrupted in-
puts similarly in its early layers, and only begins to parse
differences later. Or, in other words, PGD attacks exploit
neurons in later layers. This resembles prior mechanistic in-
terpretability work on early vision circuits in GoogLeNet—
early layers act as filters that parse basic features [16], e.g.
as curve detectors or Gabor filters [4]. Since these basic
features are common to both the clean and corrupted in-
puts, patching early activations does not significantly affect
the model.

4.2. Experiment 2: Patching Circuits

We next examine circuits, or sets of connected neurons
across layers, using methods from [23] and [2]. In particu-
lar, we use a version of the Automatic Circuit Discovery
(ACDC) algorithm [2].

4.2.1 Methods

To identify a circuit of neurons, ACDC considers a network
to be a computational graph G, where our goal is to isolate
a maximally sparse subgraph H such that H and G have
approximately the same output for some type of input. For
each input to G, we begin by setting H ← G and perform-

5



(a) Clean. “wooden spoon,” 99.98% conf. (b) Corrupt. “ox,” 99.94% conf. (c) Patched. “wooden spoon,” 99.83% conf.

Figure 4: Corrupted input generated via PGD. The model correctly classifies the clean image, but misclassifies the corrupted
image. The model correctly classifies the corrupted image after patching an entire circuit, with high confidence. Note that
the patched image is not different from the corrupt image; instead, the model activations for each neuron in the circuit are
patched from the clean run.

ing a clean run. Then for each node v ∈ H , we iteratively
patch each parent of v from the clean run, and measure the
patch effect. If this effect is below a certain threshold τ , we
remove the node from H .

We run ACDC with τ = 0.1 on the same dataset as Ex-
periment 1, with the same random target labels.

4.2.2 Results

Similarly to Experiment 1, we find that patching circuits
does impact model performance, but fail to find a single
‘universal’ circuit that is causally responsible for misclassi-
fication.

For each input example, we find a single, highly sparse
circuit which has a causal effect on adversarial input clas-
sification. The mean logit difference after patching is
0.261±0.019, which is higher than the average when patch-
ing a single neuron; running a t-test against µ0 = 0 we
reach significance, p < 0.001.

The circuits are sparse: the largest consists of just 11
nodes, and most circuits consist of just 2-3 nodes; addition-
ally, they almost all consist of neurons in the final 20 layers.
However, as with single neuron patching, these circuits are
unique to the input.

4.3. Experiment 3: Reconstructing Images

Finally, we consider whether activation patching on sin-
gle neurons can be used to ‘re-construct’ clean images from
corrupt ones. We do so using projected gradient descent on
patched activations.

Note that this method requires the original activations—
as such, it is not a feasible counter to adversarial attacks.

Rather, we’re primarily concerned with whether a single
clean activation alone is enough to reverse-engineer a clean
image from a corrupted one.

4.3.1 Methods

To reconstruct clean images, we utilize PGD. Our goal is to
generate an image that is ‘as close as possible’ to the corrupt
image, but also matches the patched activations from xcl
at the target neuron i. For each image, we take the target
neuron as the causal neuron found in Experiment 1.

More formally, recall that in PGD, we are optimizing for
a loss function subject to a constraint on distance, such as
the ℓ∞ norm. Here, we consider the loss function to be
the mean squared error between the model activations at
layer L and the patched activations at neuron i. We run
PGD on corrupt inputs x∗ to generate reconstructed inputs
xrc such that at neuron i, the activations for xrc are maxi-
mally close to the activations for xcl, while xrc and x∗ are
minimally different (note that Equation 3 describes gradient
ascent, whereas here, we perform gradient descent).

4.3.2 Results

We find that reconstruction via PGD on activations signif-
icantly improves classification of corrupted images. Fig-
ure 5 shows an example of reconstruction with patched ac-
tivations.

Recall that GoogLeNet achieves 74.22% accuracy on our
clean inputs, and 0% accuracy on the corrupted inputs. Af-
ter reconstruction, GoogLeNet correctly classifies 21.86%
of inputs. In particular, 22.66% of images are classified
with the same label in both the clean and reconstructed

6



(a) “zebra,” 99.44% confidence (b) “tiger,” 99.93% confidence (c) “zebra,” 98.08% confidence

Figure 5: Reconstructing ‘clean’ images from adversarial examples, using PGD on patched activations. Image (a) shows the
original clean input, (b) shows the corrupted adversarial example, and (c) shows the reconstructed input, with GoogLeNet
classifications and confidence.

cases, whereas only 7.03% of corrupt images are classified
the same after reconstruction. This means that modulating
for only a single activation is enough to re-construct an im-
age that is tagged with the correct label.

5. Conclusion
We investigated how GoogLeNet processes adversar-

ial examples, through the framework of mechanistic inter-
pretability. In particular, we isolated localized components
that are responsible for the misclassification of adversarial
inputs, using the causal mechanism of activation patching.
Overall, we find that mechanistic interpretability provides a
useful framework within which to study adversarial attacks,
since it allows us to explicitly test causal hypotheses about
localization.

We find that indeed, when GoogLeNet parses adversarial
inputs, the ‘adversarial effect’ is localized to a single neu-
ron or a small, sparse circuit. However, we do not find evi-
dence suggesting that there is a ‘universal’ component that
is responsible for the misclassification of adversarial exam-
ples. This makes intuitive sense: these inputs are unique
and depend on both the original ‘clean’ input and the new
‘corrupted’ label, so there is no one component that parses
them. This cuts against one of the central goals and claims
of mechanistic interpretability work, that neural networks
can be completely linearly decomposed into components in-
dependent of input.

On the other hand, it is possible (and likely) that there
is another explainable underlying mechanism behind which
neurons and circuits are important given a clean and cor-
rupt input pair. Future work would benefit from examining
potential sources of this mechanism, such as specific visual
features of the input (e.g. after applying filters). In addition,

due to compute limitations, we were restricted to just 256
images, so future work would also benefit from perform-
ing these interventions on a greater number of examples, as
well as a greater variety of data. Further, smaller models
are easier to decompose, so running similar experiments on
a smaller model with a simpler dataset (e.g. MNIST) could
help inform this work.

Contributions
Neil led the work on activation patching, and the meth-

ods and experiments sections of the writeup. Katherine led
the work on constructing adversarial examples, as well as
the literature review section of the writeup.

References
[1] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesiz-

ing robust adversarial examples, 2018.
[2] A. Conmy, A. Mavor-Parker, A. Lynch, S. Heimersheim, and

A. Garriga-Alonso. Towards automated circuit discovery for
mechanistic interpretability. Advances in Neural Information
Processing Systems, 36:16318–16352, 2023.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[4] D. Gabor. Theory of communication. part 1: The analy-
sis of information. Journal of the Institution of Electrical
Engineers-part III: radio and communication engineering,
93(26):429–441, 1946.

[5] A. Geiger, H. Lu, T. Icard, and C. Potts. Causal abstrac-
tions of neural networks. Advances in Neural Information
Processing Systems, 34:9574–9586, 2021.

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and
harnessing adversarial examples, 2015.

7



[7] S. Han, C. Lin, C. Shen, Q. Wang, and X. Guan. Interpret-
ing adversarial examples in deep learning: A review. ACM
Comput. Surv., 55(14s), jul 2023.

[8] H. Kim. Torchattacks: A pytorch repository for adversarial
attacks, 2021.

[9] S. Kullback and R. A. Leibler. On information and suffi-
ciency. The annals of mathematical statistics, 22(1):79–86,
1951.

[10] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial ma-
chine learning at scale, 2017.

[11] A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao,
M. Liang, T. Pang, J. Zhu, X. Hu, C. Xie, J. Wang, Z. Zhang,
Z. Ren, A. Yuille, S. Huang, Y. Zhao, Y. Zhao, Z. Han,
J. Long, Y. Berdibekov, T. Akiba, S. Tokui, and M. Abe.
Adversarial attacks and defences competition, 2018.

[12] S. Lundberg and S.-I. Lee. A unified approach to interpreting
model predictions, 2017.

[13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu. Towards deep learning models resistant to adver-
sarial attacks, 2019.

[14] K. Meng, D. Bau, A. Andonian, and Y. Belinkov. Locating
and editing factual associations in gpt, 2023.

[15] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going
deeper into neural networks. https://research.goo
gle/blog/inceptionism-going-deeper-int
o-neural-networks/, 2015.

[16] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov, and
S. Carter. An overview of early vision in inceptionv1. Distill,
5(4):e00024–002, 2020.

[17] C. Olah, N. Cammarata, L. Schubert, G. Goh, M. Petrov,
and S. Carter. Zoom in: An introduction to circuits. Distill,
5(3):e00024–001, 2020.

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing
systems, 32, 2019.

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1–9, 2015.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks, 2014.

[21] G. Tao, S. Ma, Y. Liu, and X. Zhang. Attacks meet inter-
pretability: Attribute-steered detection of adversarial sam-
ples, 2018.

[22] TorchVision maintainers and contributors. Torchvision: Py-
torch’s computer vision library. https://github.com
/pytorch/vision, 2016.

[23] K. Wang, A. Variengien, A. Conmy, B. Shlegeris, and
J. Steinhardt. Interpretability in the wild: a circuit for in-
direct object identification in gpt-2 small. arXiv preprint
arXiv:2211.00593, 2022.

[24] F. Zhang and N. Nanda. Towards best practices of activation
patching in language models: Metrics and methods, 2024.

8

https://research.google/blog/inceptionism-going-deeper-into-neural-networks/
https://research.google/blog/inceptionism-going-deeper-into-neural-networks/
https://research.google/blog/inceptionism-going-deeper-into-neural-networks/
https://github.com/pytorch/vision
https://github.com/pytorch/vision

