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Abstract

Lip reading, also known as visual speech recognition,
involves transcribing text from videos. This is an ability to
recognize what is being said from visual information alone.
Lip reading is inherently ambiguous as different characters
could produce exactly the same lip sequence (e.g. ‘p’ and
‘b’) and different people could say the same word but have
different lip movements.

In this study, we developed three models aimed at ad-
vancing lip reading technology. The first model focused
on being able to detect if the subject was speaking using a
3d-CNN without any addition for handling long-range tem-
poral dependencies. This first model successfully predicts
whether a person is speaking with an accuracy of 77.63%,
serving as a strong foundation for our project. The second
model used this CNN network to produce characters and
forming the words being spoken. It handled short and long
term dependencies utilizing an LSTM. It is focused on the
LRW dataset and achieves a promising accuracy of 52.19%,
indicating the potential to accurately predict spoken words
without audio input. Our third model used the previous ar-
chitectures with an Encoder-Decoder Transformer layer on
top in order to handle the word dependencies and able to es-
tablish word and sentence structure. This third model, de-
signed to predict entire spoken sentences, requires further
improvement as it currently struggles with local minima is-
sues. Although the first two models showed commendable
performance, the complexities of sentence prediction neces-
sitate continued experimentation. Due to time constraints,
we were unable to fully address these challenges within this
project, but we are committed to refining our approach and
enhancing the model’s performance in future work.

1. Introduction

Lip reading is a task to generate text transcriptions from
videos. It can facilitate various applications, such as un-
derstanding surveillance videos when only visual signals
are available, enabling video conferences in silent environ-
ments and transcribing archival silent films. Lip reading
is challenging as it’s influenced by angle, light, and back-
ground [5].

The team decided to pursue an end-to-end model to pre-
dict text from silent videos. This end-to-end model would
ingest video frames and output the sentences being spo-
ken in the video. Designing a lip reading model requires
both a visual component to identify mouth movements and
a temporal sequence modeling component, which typically
involves learning a language model[22]. Most modern deep
lip reading architecture can be divided into two parts: 1) the
frontend part to capture spatiotemporal features and short-
term dynamics of the mouth region [27]; 2) the backend part
to emphasize on sequence-level patterns, learning the tem-
poral dynamics of the sequence based on the features ex-
tracted by the frontend module. For our lip reading model,
we choose spatiotemporal CNNs to process video frame and
extract features. Spatiotemporal CNNs consisting of multi-
ple 3D convolutional layers[2], where both spatial (height
and width) and temporal (time) dimensions are considered.
Spatiotemporal convolutional layers have been proven to ef-
fectively capture the short-term dynamics of the mouth re-
gion [27]. In the backend, we leverage the Bidirectional
Long Short-Term Memory (Bi-LSTM) to capture the tem-
poral dynamics and encoder-decoder transformer layers to
produce the resulting sentence.

In this work, we performed three stages of studies: 1)
predict if person in the video is speaking; 2) predict 1 word
from the video; 3) predict the entire sentence. All the mod-
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els use CNNs as their backbone with different heads on top.
The 1 word (LRW) and speaking models proved the most
successful as they did not have to handle the word depen-
dency complexity.

2. Related Work
The lip reading system was first proposed in [20] by ex-

tracting visual features of the lip region and using Hidden
Markov Models (HMMs) for classification. The strength of
this approach lied in its simplicity and the interpretability
of HMMs. However, it was limited by its reliance on hand-
crafted features and the inability to capture complex visual
patterns. With the development of deep learning, instead of
hand-crafted features, CNNs was commonly used to extract
features from the lip region. LipNet[2] was the first end-
to-end sentence-level model to predict character sequences
for lip reading task. This model combined spatiotempo-
ral convolutions with Long Short-Term Memory (LSTMs)
and was trained using the CTC loss function. Our model
leverage a similar concept. The difference is that we use a
layer of 3D CNN instead of multiple 2D CNNs (STCNN
used by LipNet). [27] prove that 3D achieve better perfor-
mance than 2D in terms of capturing the short-term dynam-
ics of the mouth region. One trend in recent work is moving
to Transformer-based architectures [1], leveraging the self-
attention mechanism to model long-range dependencies in
video sequences.

2.1. Transformer

The Vision Transformer (ViT) [7] integrates a trans-
former architecture into visual recognition, leveraging large
datasets. It divides each input image into non-overlapping
patches, creating fixed-length tokens. These tokens are then
processed by several standard transformer layers. The ViT
model uses only transformers and achieves good perfor-
mance, but it requires large datasets. The state-of-art model
use AV-HuBERT, which is a self-supervised learning ap-
proach that integrates both audio and visual data for robust
speech recognition. It builds on the HuBERT (Hidden-Unit
BERT) model [24][25]. The strength of this model could
be that it does not rely on CNNs for their backbone and the
information is passed directly to the transformer as opposed
to the VTP [21] model where CNN logits are passed to the
transformer layers.

2.2. Temporal modeling

A temporal model is the next essential component after
vision encoder in the lip reading pipeline. The two popular
choices are Bi-GRU (or Bi-LSTM) or Temporal Convolu-
tional Networks (TCN) [18]. TCN is a type of convolutional
neural network designed for sequential data. TCN use 1D
convolutions along the temporal dimension to capture de-
pendencies over time. It’s able to capture long-range de-

pendencies efficiently. GRU or LSTM is more interpretable
due to its hidden states. There are conflicting conclusion
about their performance, which could be due to the limita-
tions of 1D CNNs. MS-TCN perform better than GRU in
[18] but not in [8].

3. Data
We utilized two distinct datasets and conducted three

separate tasks. The first task involved the LRS2 dataset,
where we aimed to predict whether a person was speaking
or not. The second task employed the LRW dataset to pre-
dict the specific word a person was saying. The final task
again utilized the LRS2 dataset to predict the entire sentence
spoken by a person in the input video.

Unfortunately, due to the licensing of the data, we cannot
include any examples. The clips were snippets of British
television shows that focused and centered the speaker on
the frame. Examples can be found in the Lip Reading in
the Wild [4] and Lip Reading Sentences 2 [1] papers. For
both datasets, we discretized the temporal dimension by the
number of frames per second.

3.1. LRW

The Lip Reading in the Wild (LRW)[4] datasets consist
of short 112x112 videos (1.16 seconds) from BBC program,
mainly news and talk show. There are more than 1,000
speakers and a large variation in head pose and illumination
and as a consequence is a challenging dataset. The number
of words, 500. All videos are 29 frames in length, and the
word occurs in the middle of the video. The training set
consists of up to 1,000 occurrences per target word, while
the validation and test sets both consist of 50 occurrences
per word. It is worth mentioning that the target word is part
of whole utterances rather than isolated.

3.2. LSR2

The Lip Reading Sentences 2 (LRS2-BBC) audio-visual
datasets [1] consists of 224.1 hours with 144,482 video clips
from BBC programs. Each video has 160×160 pixel reso-
lution and 25 fps. The dataset is divided into development
(train/val) and test sets according to broadcast date. The
dataset also has a “pretrain” partition that includes exten-
sive head tracks including word boundaries that have been
produced by force-aligning subtitles to the audio. There are
96,318 utterances for pre-training (195 hours), 45,839 for
training (28 hours), 1,082 for validation (0.6 hours), and
1,243 for testing (0.5 hours).

3.3. Data Preprocessing

The LRS2 dataset used for this research consists of short
video clips, each of which paired with a corresponding tran-
script. Each video was processed to extract frames at a rate
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of 25 frames per second. The extraction was performed
on all mp4 files, ensuring a uniform frame rate across all
samples, being that this consistent framing is crucial for the
temporal alignment necessary in the subsequent stages of
the model. The RGB frames were normalized to have a
mean of 0 and a standard deviation of 1 per channel.

4. Methods
We performed three distinct tasks in our research. The

first task focused on predicting whether a person was speak-
ing. The second task aimed to predict the specific word a
person was saying. The final task involved predicting the
entire sentence spoken by a person in the video. All the
models developed for these tasks utilized Pytorch [19] as
their deep learning framework.

4.1. Data Loading

To accommodate the needs of batch processing during
training, we developed a custom data loader. This loader
efficiently retrieves data and handles the necessary padding
and encoding for both video and text data. It can re-scale
the images and add random horizontal flips for data aug-
mentation. For video frames, padding ensures that all input
sequences (frames) match the longest sequence in a batch,
maintaining consistent tensor dimensions across batches.
For the textual data, we utilized a pretrained tokenizer based
on ’distilbert-base-uncased’ to pad and encode the tran-
scripts, which has a vocabulary of 30,522 tokens. This en-
coding converts text into a numerical format that is opti-
mized for natural language understanding, utilizing the pre-
existing knowledge embedded within the BERT architec-
ture, which ultimately enhances the model’s ability to pro-
cess and interpret the text associated with the video frames
[6].

4.2. Speaking model

The speak model architecture is composed of 11 3D
CNN layers with residuals and Relu Activation in between
the blocks. This architecture was inspired by a portion of
the VTP model architecture [21] and it served as a baseline
for building a new model layer by layer. The model ingests
a video of dimension [1, 3, 125, 160, 160], where each
dimension is the batch size, channels, number of frames,
height, and width. The first layer of the model utilizes a
kernel size of 5 with a stride of (1, 2, 2). Each subsequent
filter is of size (1,3,3). Each layer utilizes the same stride as
we want to keep the temporal dimension the same. For each
layer where we want to use residuals, we keep the same
number of input and output filters and change the stride to
1. The resulting logits after passing through all the 3D CNN
layers are [1, 512, 125, 3, 3]. This serves as the backbone
of the model and different permutations of linear layers on
top were studied.

4.3. LRW model

See Figure 1 for a depiction of the full architecture.

4.3.1 Architecture

The LRW model, is designed for predicting a single word
based on video input. The inputs to the network are ten-
sors of shape [16, 3, 29, 96, 96], where each dimension
corresponds to the batch size, channels, number of frames,
height, and width, respectively. The video frames are then
processed through a 3D convolutional neural network with
64 kernels of 5×7×7 size (frames/height/width), followed
by Batch Normalization [12] and Rectified Linear Units
(ReLU). After the 3D CNN, the shape becomes [16, 64,
29, 48, 48]. The extracted feature maps are then passed
through a max pooling layer, which is used to downsample
the feature maps, reducing their spatial dimensions while
preserving the temporal aspect. The output from the max
pooling layer is then fed into a Long Short-Term Memory
(LSTM) sequence-to-sequence [3], which is adept at cap-
turing temporal dependencies and maintaining a memory of
past frame information. Finally, the sequential output from
the LSTM is passed through a fully connected (FC) layer
and softmax to produce the final output.

We also experiment using the model to predict single
word as a classification task with the Cross-Entropy loss. In
this case, the sequence output from LSTM is labeled based
on the average feature representation of the entire sequence.

We begin with the simple model described previously.
We then added ResNet after 3D CNN inspired by [27],
which verified the effectiveness of ResNet.

4.3.2 CTC loss

p(Y |X) =
∑

A∈A(X,Y )

T∏
t=1

pt(at|X) (1)

In our lip-reading project, implementing Connectionist
Temporal Classification (CTC) loss offers great advantages.
The CTC objective for a single X, Y pair is shown in Equa-
tion 1, where A is given by the Alignment vector and at is
given by the alignment step. CTC loss provides alignment
flexibility by considering all possible alignments between
input sequences (video frames) and output sequences (text),
making it particularly suitable for tasks with uncertain tem-
poral correspondence. It handles variable-length output
sequences effectively, which is crucial given the varying
lengths of spoken sentences. Additionally, CTC loss re-
duces the effort needed for detailed frame-level labeling, as
it allows training with only sequence-level labels.

4.3.3 Beam search

ykt = argsortP (y|yk1 , . . . , ykt−1) (2)
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To enhance the accuracy and coherence of our lip-reading
model’s predictions, we employed beam search decoding.
Beam search, given by Equation 2, explores multiple can-
didate sequences simultaneously, maintaining a top-k set
of the most likely hypotheses at each step. This approach
improves accuracy by considering several possible out-
puts, helps handle ambiguities in lip movements, and bal-
ances exploration and exploitation. During inference, beam
search generates a probability distribution over possible
words and keeps the top-k sequences with the highest prob-
abilities at each time step. When we reach time step T, we
select the most likely sequence as the final prediction.

4.4. LRS2 model

See Figure 2 for a depiction of the full architecture.

4.4.1 Convolutional Neural Network (CNN)

Initially, the video frames are processed in batches through
a CNN to extract features from each frame. We employed
a ResNet-18 architecture, for its efficacy in feature repre-
sentation [10]. However, we modified this architecture by
removing the final classification layer, allowing us to use the
network as a feature extractor rather than for classification.
ResNet-18 is designed for the ImageNet Dataset with 1000
categories. We use the pretrained weights from ImageNet
in our model.

In addition to the 2D CNN, we also experimented with
the implementation of a 3D CNN architecture, instead of a
2D CNN, to capture spatiotemporal features from the video
frames. This architecture included three main components:
the first 3D convolutional layer with ReLU activation and
max pooling, a second 3D convolutional layer also followed
by ReLU activation and max pooling, and finally a global
average pooling layer that reduces the spatial dimensions.

4.4.2 Long Short-Term Memory (LSTM)

The sequential output from the CNN then feeds into an
LSTM network. The LSTM used is crucial for capturing
temporal relationships between frames, an important con-
cept with lip reading across the entirety of a video [11].
It processes the sequence of feature vectors, maintaining
a memory of past frame information. Bidirectionality was
added to the LSTM to be able to capture long-range depen-
dencies before and after the current word in order to help
with sentence structure.

4.4.3 Transformer Encoder/Decoder

The combined CNN and LSTM outputs provide a detailed
representation of both the individual frames and their tem-
poral dynamics. To enhance these representations, we

added positional encodings to the LSTM output. This en-
riched output was then passed through an encoder. The en-
coder’s output, along with the target sentence, was fed into
a Transformer decoder. By using the target sentence as in-
put to the decoder, we employed a popular method known
as teacher forcing. The decoder’s role is to generate the text
corresponding to the lip movements depicted in the video
frames. The Transformer architecture is particularly suited
for this task due to its ability to handle sequences of data
and its effectiveness in translation tasks [28].

4.4.4 GPT2 Decoder

We also experimented with the GPT2LMHeadModel as a
decoder to generate text based on the input embeddings
from LSTM. We experimented with this decoder to assess
its potential to enhance our model’s performance, leverag-
ing the benefits of a pretrained language model. The GPT-
2 decoder, with its robust language generation capabilities,
provided an alternative approach to improve the accuracy
and fluency of the predicted text.

4.4.5 Final Model Architecture

Our approach to solving the problem of predicting spoken
text from video input is based on a comprehensive model
architecture inspired by [21]. Our model begins by process-
ing video frames through a 3D CNN to capture spatiotem-
poral features. These features are then passed to a bidirec-
tional LSTM network to capture temporal dependencies and
maintain memory of past frame information. We enhanced
the LSTM output with positional encodings and passed it
through a Transformer encoder.

The Transformer’s output, along with the target sentence,
is fed into a Transformer decoder, using teacher forcing to
improve performance. This multi-layered approach allows
us to effectively handle the complexity of lip reading, com-
bining the strengths of convolutional, recurrent, and trans-
former networks.

We considered alternative approaches, such as using
purely convolutional or recurrent networks, but found that
the hybrid model incorporating transformers provided su-
perior performance in handling the sequence-to-sequence
nature of the task. The decision to use a 3D CNN, LSTM,
and Transformer combination is justified by their respec-
tive strengths in feature extraction, temporal modeling, and
sequence translation. Notably, we chose opt out of using
the GPT2 decoder because it did not seem to improve per-
formance, however, we may revisit the implementation in
future work.
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Figure 1. LRW model architecture. Note: Light blue sections in-
dicate the difference between the LRS2 model.

Figure 2. LRS2 model architecture.

5. Experiments

5.1. Speaking Model

Given the difficulties with word prediction, the team de-
veloped a model to predict if the person in the video frame
was speaking with the idea that if the model can detect if
they are speaking, it serves as a good backbone for predict-
ing words. This model was also used as a heuristic to de-
termine what changes to the CNN backbone could improve
general performance of the other models. In order to reduce
memory problems, the videos were truncated to 5 seconds.
The videos are 25 frames per second, therefore each sample
contained 125 frames. The model objective is to classify
each frame correctly as speaking or not speaking.

The train data was composed of 77% of the frames where
the person was speaking and 23% where they were not. A
weighted cross entropy loss function was used to predict if
they were speaking or not. Due to the data skew, the team
weighted the cross entropy to match the distribution of the
data 77/23. AdamW was used as the optimizer with a learn-
ing rate (lr) of 5e-5, weight decay of 1%, beta1 of 0.99 and
beta2 of 0.95 with a batch size of 48. Originally, a batch size
of 16 and 32 were used for the first few experiments, but the
model exhibited better performance with a batch size of 48.

This unfortunately was the biggest batch size that our hard-
ware allowed. A larger batch size might be ideal. The 5e-5
lr was determined the best, after performing a lr sensitivity
study for convergence within one epoch on a small dataset.
A cosine scheduler was used with 5% of the steps of the first
epoch used as warm-up steps. The train data was split with
a fixed seed into a 90/10 split for validation. This model
is able to obtain an 80% accuracy with the validation split
containing 4,602 video samples. The model performed bet-
ter than predicting only one case (speaking / not speaking)
or random.

This model was then evaluated against the pretrain data.
The pretrain data was sampled with a fixed seed and 10%
of the data was used as the test set. This data contained
9,632 samples and 1,204,000 words. It obtained a 77.63%
accuracy. From this test split, 75% of the data were frames
where the person was speaking and 25% where they were
not.

5.1.1 Error Analysis

The top 10 videos with the lowest accuracy’s were studied
to get an understanding of what the limitations of the model
are. Most of the videos where the model performed poorly,
only 16% - 27.2% of the frames were classified correctly,
contained a person that had asymmetric lips or they were
tilting their head while talking. Including -15 to 15 degree
random rotation transformations could help the model be
able to overcome the need for the subject to have symmetric
lips and be more robust when the subject is talking while
tilting their head.

5.1.2 Removing Layers of the Trained Model

In order to get insights into what matters most in the model,
three of the 3D CNN layers were removed. The model was
not retrained after removing the layers as the initial moti-
vation was to see the performance decrement by removing
intermediate 3d convolution layers. The video resolution re-
mained the same at 160x160. Experiments were conducted
in down-sampling the last layer with 3d average pooling and
3d max pooling in order to make the dimensions match.

These experiments were able to provide qualitative in-
formation about the importance between the temporal and
video dimensions. The base model present in Table 1 is
the base performance, 77.64% without removing any layers.
After removing three layers, various pooling strategies were
used. The base comparison for these pool layers would be
pooling all dimensions equally. By average pooling equally,
the model performance was 51.58% a 26.05 point decre-
ment. The initial hypothesis was that the temporal dimen-
sion would be more important than resolution, but in reality
the video resolution is the most important. Maintaining the
most information possible for the resolution and reducing
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Model Pooling Final Dimension Accuracy
Base None [512, 125, 3, 3] 77.63%

All dimensions Avg Pool AvgPool3d(2) [512, 45, 5, 5] 51.58%
Temporal fixed AvgPool3d((1,2,2)) [512, 125, 3, 3] 48.09%

Resolution Fixed AvgPool3d((2,1,1)) [512, 45, 5, 5] 57.90%
All dimensions Max Pool MaxPool3d(2) [512, 45, 5, 5] 47.94%

Resolution Fixed Max Pool AvgPool3d((2,1,1)) [512, 45, 5, 5] 57.90%
Table 1. Speak Model Removed Layers Study

the temporal dimension by 64% resulted in an accuracy of
57.90% only a 19.73 point decrement, while maintaining
the temporal dimension as high as possible and matching
the resolution of the base model with all the layer, results
in the worse performance with an accuracy of 48.09% or a
29.54 point decrement. Table 1 shows there was no major
difference between using max and average pooling. Note
that if the final dimensions didn’t match, the closest highest
dimension for the variable being explored was used and the
others were truncated or padded.

5.2. Speaking Words Model

The team then utilized the pretrained 3d convolution lay-
ers of the speak model to be able to predict words. Two lin-
ear layers were added on top and a Gelu activation layer in
between the linear layers. The team explored both freezing
the base speak model and training only the linear layers and
training all the layers at once. Training all the layers at once
resulted in faster convergence.

5.3. LRW Model

We first try to overfit the model with 102 samples from
the training. The model is able to get loss = 0.0092 (see
Figure 3) and accuracy = 92%.

Figure 3. LRW model overfitting with small data size.

We trained the LRW model end-to-end for 20 epochs
with batch size 16 (we also tried batch size 32, but it re-
sulted in out of memory errors). We use the AdamW op-
timizer [15] with initial learning rate of 3e-4, and cosine
scheduler[14].

5.4. LRS2 Model

5.4.1 Training and Optimization

To optimize the training process, we used the Adam opti-
mizer due to its adaptive learning rate capabilities, which
helps in converging faster and more effectively than tra-
ditional stochastic gradient descent [13]. The model was
trained using cross-entropy loss as the loss function, which
is particularly effective for classification tasks with multiple
classes, such as our case where each word in the output se-
quence can be considered a separate class [23]. This setup
ensures that the model’s predictions are tightly aligned with
the actual sequence of spoken words, ultimately improving
the accuracy of the lip-read text.

During training, we encountered issues with exploding
gradients. To mitigate this, we implemented gradient clip-
ping, limiting the gradients to a range, ultimately preventing
the gradients from growing too large. Due to memory con-
straints we also employed loss accumulation, which involve
accumulating the gradients over mini-batches and updating
the model weights less frequently. This has the downside
that when performing backpropagation, additional compute
and memory are required, but it is a net positive. We were
having an issue where the computation graph kept grow-
ing leading to out-of-memory errors, which was solved by
deleting the accumulated loss when it was no longer needed.
Simply replacing it with a primitive, i.e., 0, was not enough.
Additionally, to enhance the adaptability of the learning
process, we incorporated a learning rate scheduler.

Accuracy =
Total Correct words

Total Words on the Evaluation Dataset
(3)

All models and results contained herein utilize accuracy as
the main metric. The metric is used on a per-frame basis,
where on each frame we determine if the predicted word
is correct, We defined our accuracy as shown in Equation 3.
We do not take credit for words that are off by one character.

6. Results

6.1. Speaking Words Model

Figure 4 shows the model loss stagnating even with the
cosine scheduler after 11 epochs, purple line, at a lr of 5e-5.
The model was stopped at epoch 11 since the final iteration
of the cosine scheduler lr was close to zero and was subse-
quently restarted with a reduced max lr of 1e-5 and 6 more
epochs were conducted. Figure 5 shows performance im-
proved slowly but again stagnated with a final validation ac-
curacy of about 1% for sentence prediction. The total train-
ing time for this model was around 30 hours on an A100
GPU. Special care was taken to keep everything in the 40gb
HBM memory so that the model did not suffer from the
Ram to HBM I/O compute performance decrements.
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Figure 4. Speak Word Model Trained for 17 Epochs. Note: The
lower loss line is for the higher lr stagnated model. The upper loss
line is interrupted due to tensorboard logging issues, but it is the
same training run with an adjusted lr after epoch 11.

Figure 5. Validation Accuracy Plot of the Speak Model for the
Aforementioned Runs.

Figure 4 also illustrates a run with a higher lr of 5e-4,
shown as pink, where the model learned quickly but also
stagnated earlier on. This model also obtained lower ac-
curacy after being trained for a longer amount of time as
shown in Figure 5. The smaller lr 5e-5 model, purple line,
continued to learn, but also stagnated. It was later restarted
with a lower lr of 1e-5. When using a small dataset of
10 videos the model was able to overfit and predict all the
words correctly. Due to the compressed timeline, the team
did not perform an error analysis on the model as the accu-
racy was low and instead allocated additional resources to
the LRW model.

6.2. LRW Model

Table 2 shows the result of using Connectionist Temporal
Classification (CTC) loss [9] or Cross-Entropy loss.

By comparing CTC and Cross-Entropy, we observe

Method Accuracy
LRW + CTC 50.04%

LRW + Cross-Entropy 52.19%
Table 2. Comparison of performance based on word accuracy.

Cross-Entropy yields improved performance. Since CTC
performs on a character-level, we think the model needs
to train longer to achieve better performance (e.g. LipNet
takes 5 - 7 days).

The team explored mismatched word pair errors, for
example, THERE and THEIR, POWER and POWERS,
WANTED and WANTS. Most of the word pairs are pho-
netically and ”visemically” similar to each other. The team
then investigated the corresponding video clips and found
that facial movements or gestures can interfere with the clar-
ity of the lip movements and could be the cause of these
incorrect predictions.

6.3. LRS2 Model

Our model shows signs of underperformance despite
successfully converging during training (see Figure 6). Ini-
tially, it produces reasonable predictions, but after a few it-
erations, it tends to predict only the SEP token. After re-
moving special tokens, the model shifted to repetitively pre-
dicting a neutral token such as ”the,” indicating it was still
unable to generalize effectively. This is further illustrated
in Figure 7 and Figure 8, where the frequency of the SEP
token and ”the” is prominently high. Figure 7 shows the
top 20 words, including special tokens, with SEP and ”the”
being among the most frequent, suggesting the model’s bias
towards these tokens. Figure 8 extends this analysis to the
top 100 words, revealing a similar pattern of over-reliance
on these common tokens. Notably, these issues were ob-
served during training, and the model was never validated.
This further suggests that the model has not seen enough
varied training examples to generalize well.

We hypothesize that the model might be getting stuck
in a local minima, causing it to settle on repetitive token
outputs such as SEP or a common word like ”the.” This
indicates a lack of generalization, finding the most com-
mon word to be the most important. Despite experiment-
ing with several adjustments, including reducing the learn-
ing rate, using different schedulers and regularization tech-
niques, experimenting with loss functions, and trying vari-
ous optimizers, the issue persisted.

It is important to note that the dataset had a pretrain sec-
tion, which may indicate that the model has not seen enough
varied training examples to generalize well. That paired
with the complexity of a task like lip-reading, may be the
main reason our model in underperforming. Increasing the
amount of training data or extending the training period
could provide the model with more exposure to different
examples, potentially improving its performance.
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Figure 6. LRS2 model converging during training.

Figure 7. Probability of the Top 20 Words Including Special To-
kens.

Figure 8. Qualitative Plot of the Top 100 Words Including Special
Tokens. Note: X label was omitted as it is meant to be qualitative
and show the drastic difference of frequency even on the top 100
words.

7. Conclusion
In summary, we developed two commendable models

and one model that has significant room for improvement.
Our model that predicts whether a person is speaking or not
achieved an accuracy of 77.63%, successfully kickstarting
our project. The LRW model also yielded promising results
with an accuracy of 52.19%, demonstrating the feasibility
of predicting spoken words without any audio input. How-
ever, our more challenging model, which attempts to predict
spoken sentences, still requires substantial improvement as
it appears to be getting stuck in a local minima.

While we are proud of our initial two models, we remain

determined to enhance the performance of the sentence pre-
diction model. Given the limited time allocated for this
project, we were unable to fully resolve its issues within
the current timeframe. We plan to continue experimenting
and refining our approach in future work, incorporating the
insights and enhancements we have identified.

8. Future Work

After reviewing some of the benchmark models on the
LRS2 dataset, we identified several enhancements for future
implementation.

First, regarding preprocessing, we observed that top-
performing models often crop and scale input images to fo-
cus more on the mouth region of the person in the video
and apply various transformations to the images. We in-
tend to adopt these preprocessing techniques to improve our
model’s focus and accuracy. Some other data augmenta-
tion techniques also prove to be effective, including mixup
(linearly interpolating between pairs of samples and their
corresponding labels [16]), time masking (mask N consec-
utive frames with the mean frame of the sequence). [17]
conclude Time Masking is the most effective augmentation
method followed by mixup and Densely-Connected Tem-
poral Convolutional Networks (DC-TCN) are the best tem-
poral model for lip-reading of isolated words.

Secondly, for training, we plan to utilize both the train
and pretrain data splits for training. The pretrain data split
contains over 2 million word instances compared to the
300,000 in the train split and more than twice the vocabu-
lary size. This provides a much richer dataset, allowing the
model to be exposed to a greater variety of words and con-
texts, which is crucial for improving its generalization capa-
bilities. Word boundary indicators are also useful in train-
ing. [26] show that concatenating word boundaries with the
extracted features yields substantial improvement. Given
our error analysis of the speak model, including a -15 to
15 degree rotation might help create a more robust model
where it is not affected by the speaker tilting their head.
We would limit the rotation to this bound since beyond that
would be an unnatural pose for a speaker.

We also plan to extend the training duration. Many top-
performing models are trained for 1 - 3 weeks, which allows
the model to learn the necessary information to handle the
complexity of the lip reading task. Using pretrained model
or pretraining on different objective such as self-supervised
learning could also help with performance. [18] pretrain on
a subset of the 10% hardest words, which are 50 classes for
LRW2 and prove such initialization allows for faster train-
ing, and performance improvement.

By incorporating these enhancements, we aim to greatly
improve our model’s performance and accuracy in predict-
ing spoken text from lip movements.
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