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Abstract

This project aims to generate RGBD point clouds from
specific objects in unlabeled 2D images using zero-shot,
prompt-based methods. By integrating advanced machine
learning models for object detection, image segmentation,
and depth estimation, it creates accurate 3D models from
2D data. Leveraging the recent advancements in computer
vision, this approach utilizes textual prompts to perform
tasks without prior explicit training. The model inputs a 2D
image and outputs a partial RGBD point cloud, effectively
transforming 2D images into 3D representations.

The primary goal is to demonstrate the feasibility and ef-
fectiveness of this zero-shot framework. Objectives include
achieving effective detection in prompt-based object detec-
tion, high accuracy in segmentation, and creating high-
quality depth maps. The integration of these technologies
aims to produce detailed and reliable 3D outputs suitable
for various real-world applications. The generated 3D
models have significant potential to enhance virtual real-
ity environments, build new 3D print models, and expand
training datasets in areas where data is limited - by synthet-
ically generating data with 3D models of underrepresented
objects, thereby reducing bias in machine learning applica-
tions.

1. Introduction

Transforming two-dimensional images into three-
dimensional point clouds presents a significant challenge.
Traditionally, 3D models have been derived from depth
data obtained through LiDAR, and converting these data
points into refined 3D models often involves extensive
manual intervention due to the complexity of cleaning up
3D point clouds.

Recent advancements in deep learning for computer vi-
sion have enabled effective monocular depth estimation,
which deduces depth from a single image. Furthermore,

the integration of vision-language models leverages contex-
tual information from textual prompts to facilitate zero-shot
learning—allowing models to perform tasks without prior
explicit training. This capability is complemented by mod-
ern zero-shot segmentation models, which accurately iso-
late specific parts of an image, representing a significant
step forward in computer vision technology.

This project capitalizes on these innovations by integrat-
ing advanced models for object detection, segmentation,
and depth estimation to create 3D point clouds for specified
objects from unlabeled 2D images, driven solely by textual
prompts.

1.1. Problem Statement

This project aims to employ a combination of zero-shot
learning models that do object detection, segmentation, and
depth estimation from single, unlabeled 2D images to cre-
ate accurate 3D point clouds. The input to the model during
inference is one 2D image and the output of the model dur-
ing inference is one partial RGBD point cloud of the object
in the scene. The input to the model during fine-tuning is a
small set of image and depth pairs. This is used to reduce
scale variancy of the depth output and the actual depth.

1.2. Goals

The primary goal of this project is to demonstrate the
feasibility and effectiveness of a zero-shot framework for
generating 3D point clouds. The specific objectives include:

• Achieving effective detection in prompt-based object
detection from general 2D images.

• Attaining high accuracy in segmentation using the
bounding box generated from object detection.

• Creating high-quality depth maps using monocular
depth estimation models.

• Integrating these technologies to produce detailed and
reliable 3D outputs suitable for various real-world ap-
plications.
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2. Related Work
Recent developments in computer vision have greatly

enhanced our ability to interpret and reconstruct complex
scenes from 2D images. Historically, techniques such as
stereo vision and structure from motion were prevalent for
depth estimation [4]. With the advent of deep learning,
the focus has shifted toward monocular depth estimation.
Methods like those developed by Godard et al. [3] employ
convolutional neural networks to generate depth maps from
single images. The Depth Anything model [9] represents
the current state-of-the-art in monocular depth estimation
and has been trained on an extensive dataset, including 1.5
million labeled depth images and over 62 million unlabeled
images, providing it with significant reliability in depth es-
timation.

In parallel, advancements in Open Vocabulary Object
Detection [10] have bridged textual and visual data, enhanc-
ing zero-shot learning capabilities. The YOLO (You Only
Look Once) World model [2] represents the forefront of this
technology.

Furthermore, Meta’s Segment Anything [5] model marks
foundational progress in image segmentation using self-
supervised learning. The Segment Anything model (SAM)
operates under a zero-shot framework, which means it can
segment objects it has not seen during training. Although
faster models such as Fast SAM [12] and Mobile SAM [11]
exist, they rely on a CNN encoder and generally exhibit
lower performance compared to the original SAM.

Despite these advancements, the development of a uni-
fied framework for 3D reconstruction of objects from single
images remains underexplored. This project builds upon
these technologies to craft a more integrated and efficient
approach to 3D modeling from 2D images.

Notably, while ZeroNVS by Sargent et al. [8] focuses
on reconstructing entire 3D scenes, this project distinctively
concentrates on prompt-based 3D object reconstruction, of-
fering a more targeted and accurate 3D reconstruction.

3. Methods
3.1. Object Detection and Refinement

The YOLO (You Only Look Once) World is utilized as
the primary mechanism for object detection in this project.
This model is chosen for its effectiveness in detecting ob-
jects based on a prompt like ”sitting person”, ”floor lamp”,
”chair”, etc. At this moment, the model is limited to one de-
tection per image, so there is only one 3D model generated
per image. To ensure precision in detection, the algorithm
controlling the model selects the detection with the highest
confidence and only considers that detection for subsequent
operations. If there are no detections within the image, the
operation is skipped for that image. Consequently, the con-
fidence threshold of the model is set low, as all non-prime

detections are discarded.

3.2. Segmentation with Segment Anything Model

Following successful detection, the bounding box is
passed to the Segment Anything Model (SAM). The bound-
ing box from the YOLO model is used by SAM to segment
the image into two parts: the object within the box and the
image outside it. This workflow is critical for maintain-
ing the accuracy and efficiency of the process, paving the
way for the subsequent depth estimation and 3D modeling
stages. This approach ensures that each part of the system
contributes effectively to the overall goal of transforming
2D images into detailed 3D point clouds.

3.3. Depth Estimation and Enhancement

The Depth Anything model [9], a monocular depth esti-
mation model, is utilized to determine the depth information
of the scene, although it outputs relative depth. To refine
these depth outputs and align them with the NYU Depth
v2 dataset, the Depth Anything model is fine-tuned using
the NYU Depth v2 dataset. For this purpose, we use the
toolkit from ZoeDepth [1]. This step aims to calibrate the
model’s depth perception to better match the standardized
depth values provided in this dataset. All the model training
and evaluations are done with PyTorch [7].

3.4. Integration and 3D Reconstruction

The segmented image and the depth map are merged
to produce a segmented depth map. This map explicitly
highlights the depth of the detected object while minimiz-
ing background interference. Using the camera calibration
data, this segmented depth map is converted into a 3D point
cloud using the transformations described below.

Given a depth image where each pixel (u, v) contains a
depth value Z, and the camera’s intrinsic parameters includ-
ing the focal lengths fx, fy along the x and y axes, and the
optical center (cx, cy), the conversion to 3D point cloud co-
ordinates can be performed using the following equations:

1. Convert pixel coordinates to camera coordinates:

Xc =
(u− cx) · Z

fx
, (1)

Yc =
(v − cy) · Z

fy
, (2)

Zc = Z. (3)

2. Transform camera coordinates to world coordinates:
Using the extrinsic parameters (rotation matrix R and
translation vector t), the coordinates in the world co-
ordinate system can be computed as:Xw

Yw

Zw

 = R ·

Xc

Yc

Zc

+ t. (4)
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This results in a partial set of points representing the
point cloud based on the information available in the orig-
inal image. These point clouds are exported into a point
cloud file. All the visualizations and 3D model exports are
done with Open3D [13].

3.5. Project Contributions

This project leverages existing methods for prompt-
based object detection, image segmentation, and depth esti-
mation. It also leverages an existing method for fine-tuning
the depth estimation. This project contributes in the follow-
ing ways:

1. Created a new dataset from the NYU Depth v2 dataset,
featuring manually labeled binary segmentation and
associated prompts while preserving the original depth
and image information.

2. Combined object detection and semantic segmentation
to achieve accurate pixel-level segmentation for the
prompted objects.

3. Integrated the resulting segmentation with monocular
depth estimation and fine-tuned the depth estimation to
produce clean RGB depth maps.

4. Applied computer vision techniques to convert RGB
depth maps into RGB point clouds.

5. Performed several experiments to evaluate the viability
and effectiveness of this approach.

4. Dataset
This project creates a new dataset from the NYU Depth

Dataset V2 [6], a comprehensive collection of RGB and
depth images captured from indoor scenes. NYU Depth v2
features approximately 1,400 labeled pairs from various in-
door environments, with around 600 labeled pairs in the test
dataset. We created a new dataset consisting of 331 images
from the test portion, along with associated prompts, seg-
mentation, and depth. The segmentation is a binary mask
of the object and the object alone. The dataset prompts are
highly diverse, featuring 142 different prompts describing
objects across the 331 images. We used the test dataset to
ensure minimal bias in the results, as some models have
been trained on the NYU Depth v2 training dataset. Addi-
tionally, the prompts are crafted to be part of natural lan-
guage rather than curated to work well with word embed-
dings.

To build this dataset, an annotation tool was developed
to specify the prompt and select the associated binary seg-
mentation of that object. For example, if a guitar is selected
in the image, the same pixel location is used to read the
segmentation value from the segmented image data. Then,

a connected-component analysis is performed on the im-
age using that pixel value until all pixels representing that
segmentation are selected. The segmented pixels are saved
as a binary mask image, and the prompt is saved as a text
file. Figure 1 shows some samples of the dataset, with the
prompt for each image displayed below it as a caption.

(a) Prompt: Yoga mat on Table (b) Prompt: Guitar

(c) Yoga mat on Table Seg (d) Guitar Segmentation

(e) Yoga mat on Table Depth GT (f) Guitar Depth GT

Figure 1: Custom Dataset from NYU Depth v2 Test dataset

5. Results

The dataset we created includes an image, the ground-
truth segmentation, and the ground-truth depth. Figure 2
shows results for a test sample. The image in (a) is pro-
cessed with the prompt ”taller bin.” We first estimate the
bounding box using YOLO World, as shown in (b). To ob-
tain the predicted segmentation, we pass the bounding box
to the Segment Anything model, resulting in (c). This pre-
dicted segmentation can be compared with the ground-truth
segmentation shown in (d).

Upon closely comparing (c) and (d), we observe that the
quality of segmentation in the prediction seems slightly bet-
ter than the ground truth. For instance, the bottom of the bin
is clipped off in a straight line in (d), while it closely follows
the actual boundary in (c).
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Next, we perform monocular depth estimation on the
original image, shown in (e), and obtain the predicted rela-
tive depth, shown in (f). The depth in (f) might not reveal
detailed features of the bin due to the reduced resolution for
visualization (int8), whereas the real depth from the model
is in float32 format, providing a higher resolution. After
fine-tuning the model, the predicted depth, as seen in (g),
appears similar to the ground-truth depth in (h).

Comparing (g) and (h) closely, we notice that the depth
in (g) appears smoother than in the ground truth (h). For
example, the overhead lights near the ceiling have better
detail in (g) compared to (h). This difference is likely be-
cause the ground-truth depth is collected from a Microsoft
Kinect sensor for NYU Depth v2, which typically has lower
resolution and some noise due to its structured light sensor.

Finally, we combine the image, depth, and mask to gen-
erate a partial 3D point cloud, shown in (i) and (j). The 3D
point clouds are purposefully turned to a slightly isomet-
ric view to better understand the 3D object. The result in (i)
combines the image, predicted segmentation mask, and pre-
dicted fine-tuned depth, while the result in (j) combines the
image, ground-truth segmentation mask, and ground-truth
depth.

Looking closely at (i) and (j), we observe much smoother
surfaces on the predicted 3D model compared to the ground
truth. Additionally, the lid of the bin in the predicted model
has a smooth curved contour, whereas the ground truth
shows several distorted points around the lid.

5.1. Quantitative results

Confidence TP FP FN P R mIOU
0.01 156 16 175 0.906 0.471 0.829

0.001 255 23 76 0.917 0.770 0.830
0.0001 298 28 33 0.914 0.900 0.829

Table 1: Object Detection Results on Custom Dataset

Table 1 shows the results of the object detection task,
presenting True Positives (TP), False Positives (FP), and
False Negatives (FN). We observe that as the confidence
threshold decreases, the number of false negatives drops
significantly. While the number of false positives increases
with the lower confidence threshold, the increase in true
positives maintains overall precision, even though recall de-
creases. Precision and recall are defined as follows:

Precision = TP
TP+FP

Recall = TP
TP+FN

This results in a trend where the best results are ob-
served at the lowest confidence levels. It is important to

(a) Prompt: taller bin (b) Predicted Bounding Box

(c) Predicted Segmentation (d) Ground Truth Segmentation

(e) Depth Reference (f) Predicted Relative Depth

(g) Predicted Finetuned Depth (h) Ground Truth Depth

(i) Predicted 3D Model (j) Ground Truth 3D Model

Figure 2: Detailed results on a sample image

note that the problem of low confidence is not as severe in
our use case, as we only consider one detection with the
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highest confidence. Therefore, we will continue evaluating
all downstream tasks with a confidence level of 0.0001.

Confidence mIOU Dice Coeff. Pix. Acc.
0.0001 0.829 0.898 0.992

Table 2: Segmentation Results on Custom Dataset

In table 2, we present the results of the segmentation
task, evaluated using mean Intersection over Union (mIoU),
Dice Coefficient, and Pixel Accuracy. These metrics are de-
fined as follows:

mIoU = 1
N

∑N
i=1

|Ai∩Bi|
|Ai∪Bi|

Dice = 2|A∩B|
|A|+|B|

PixelAccuracy = Number of correctly predicted pixels
Total number of pixels

These metrics are calculated where there is a minimum
overlap between the two bounding boxes. If there is no
overlap, false positive and false negative counts are in-
creased, indicating a bad detection. We observe a strong
performance with the Segment Anything model, suggesting
its effectiveness. However, it is important to note that the
images in the NYU Depth Dataset often have borders be-
tween segments, which do not perfectly cover edges. This
leads to issues like those observed in Figure 2 parts (c) and
(d). This is likely why we observe such high pixel accuracy
in the model.

Model MAE RMSE SILog
Finetuned 0.236 0.383 0.130

Table 3: Despth Estimation Results on Custom Dataset

In table 3, we observe strong depth performance with the
Depth Anything model across Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), and Scale-Invariant Log-
arithmic Error (SILog). They are defined as follows:

MAE = 1
n

∑n
i=1 |d

pred
i − dgt

i

RMSE =
√

1
n

∑n
i=1(d

pred
i − dgt

i )
2

SILog =

√
1
n

∑n
i=1 (δi)

2 −
(
1
n

∑n
i=1 δi

)2
where δi = log dpred

i − log dgt
i

The evaluations are performed with the unit being me-
ters, so an MAE of 0.236 means the error in depth across

all scenes is approximately 0.236 meters. Additionally, a
higher RMSE suggests that some outliers in the dataset are
exponentially increasing the error. SILog is a metric that is
particularly useful when the absolute scale of the depths is
not as important as the relative differences between them.
This metric represents the relative shape between ground
truth depth and predicted depth.

5.2. Qualitative Results

Figure 3 illustrates the previously shown qualitative re-
sults of object detection, segmentation, and depth estima-
tion performed on the NYU Depth v2 dataset, alongside the
related ground truth (GT) and associated prompts. Here, the
results of the fine-tuned model are also shared in the origi-
nal JET colorspace.

Here we observe similar facts as the first test sample. The
segmentation (seg) shown in (e) and (f) are the segmenta-
tions directly from the dataset. There are substantial gaps in
the segmentation and it does not appear to be pixel accurate.
We observe a similar pattern in depth where the ground truth
(GT) depth seems a bit rougher than the fine-tuned depth,
but some features are lost in the fine-tuned depth - for ex-
ample, the whiteboard in the image (j). Next, we’ll look at
the generated 3D shapes for qualitative analysis.

5.3. 3D objects

Figure 4 shows some of the 3D models extracted from
the NYU Depth v2 Dataset. All the 3D models are rotated
to display a slightly isometric view. Here, we can observe
that 3D shape extraction works well for objects that occupy
a significant number of pixels or are distinct from other ob-
jects. The NYU Depth v2 dataset is particularly challenging
in this case because the images within the dataset are only
640x480 pixels. Convex objects like toys tend to perform
better than concave objects such as a ’kitchen sink.’ Al-
though there are noticeable gaps in the models, resulting in
partial point clouds, this information is still valuable. It can
be utilized to create complete 3D models since these 3D ob-
jects convey significant information about shape and color.

Figure 5 presents a comparison between sample 3D
models and their corresponding ground truth representa-
tions. Since the dataset does not include actual 3D models,
the ground truth 3D structures are derived similarly to the
predicted 3D objects. However, they utilize the segmenta-
tion and depth information directly from the dataset. Here,
you can observe that in the first three examples, the model’s
predictions appear cleaner than the ground truth. However,
in the fourth example, there are noticeable gaps in the pre-
dicted 3D model of the range hood. These gaps are likely
due to segmentation errors caused by lighting conditions on
the range hood in the image.

Note: You can find almost 300 3D models generated
from the prompt dataset and their ground truth from the
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(a) Prompt: Sitting person (b) Prompt: Chair

(c) SP Segmentation (d) Chair Segmentation

(e) SP Seg GT (f) Chair Seg GT

(g) SP Depth Estimation (h) Chair Depth Estimation

(i) SP Depth Finetuned (j) Chair Depth Finetuned

(k) Sitting Person Depth GT (l) Chair Depth GT

Figure 3: Results on NYU Depth v2 Test dataset

dataset at the Google Drive link shared below.

(a) Prompt: left toy (b) 3D model

(c) Prompt: red sofa (d) 3D model

(e) Prompt: towel (f) 3D model

(g) Prompt: chair (h) 3D model

(i) Prompt: trash can (j) 3D model

Figure 4: Generated 3D Objects with Source Images

5.4. Challenges

There are multiple types of challenges in the current ap-
proach. Let’s review each of them:

1. No detections with YOLO World: In Figure 6, we see
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(a) Pred 3D model: horns (b) GT 3D model: horns

(c) Pred 3D model: chair (d) GT 3D model: chair

(e) Pred 3D model: sofa (f) GT 3D model: sofa

(g) Pred 3D model: range hood (h) GT 3D model: range hood

Figure 5: Generated 3D Objects vs. Ground Truth

images and prompts where the model has failed to generate
a detection. It can be assumed that some of the prompts,
such as ’pillar’ and ’door knob,’ may be outside the vo-
cabulary of the model. Additionally, if there are too many
objects in the scene (as seen in the ’pink shirt’ and ’table’
images) and/or the object is not clearly visible, the model
tends to perform worse.

2. Incorrect detection leading to incorrect segmentation:
Figure 7 shows some sample cases where the object detec-
tion model makes incorrect detections. In the image (a), the
model identifies the ’close left table’ as the ’far left table,’
indicating that the model has limited spatial understanding
with respect to the text embeddings. In the image (b), the
model selects a blue shirt that is farther away rather than
the one nearby, suggesting a gap in the dataset where the
prompt could be refined to specify a ’light blue shirt.’ In the
image (c), the model identifies a person in a pink shirt sit-

(a) Prompt: pink shirt (b) Prompt: pillar

(c) Prompt: table (d) Prompt: door knob

Figure 6: Cases with no detection

(a) Prompt: far left table (b) Prompt: blue shirt

(c) Prompt: person in black (d) Prompt: blue chair

Figure 7: Cases with failed detection

ting on a dark-brown chair as the ’person in black,’ whereas
the person next to him, who is wearing a black shirt and sit-
ting in a black chair, is the correct match. For image (d), the
red chair is selected instead of the blue one, which might be
partially due to the challenging lighting conditions causing
the chair to appear black.

3. Incorrect 3D models: Figure 8 shows failure cases for
the 3D models. Here, we observe that the 3D model for the
keyboard shown in (b) extracted from (a) is too sparse to be
usable. In image (d), we observe a plant extracted from (c)
that is mired in noise and raises questions on the usability
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(a) Prompt: keyboard (b) 3D model of keyboard

(c) Prompt: plant (d) 3D model of plant

Figure 8: Cases with failed 3D models

of the same.
4. Extracting only one 3D shape per image: This is an

artificially imposed limit within the code to allow users to
precisely describe the 3D shape they are looking for in the
image. This restriction can be lifted in a future iteration to
allow for multiple 3D shape extractions when needed.

5.5. Code, Dataset, and Implementations

All the implementations, dataset, and all supplementary
tools are available at: Google Drive Link

Note to TAs: You can view the entire process,
including the final 3D model of the object, without run-
ning anything in zero_shot_prompt_3d.ipynb.
To run the notebook on a single sample, use
zero_shot_prompt_3d.ipynb, or to process
the entire dataset, use process_dataset.ipynb.
Please mount the shared Google Drive link in the notebook
to access the relevant models and data. If you have any
questions, please reach out to sagarm@stanford.edu or
manglanisagar@gmail.com.

6. Conclusion
The results of this project demonstrate the viability of

extracting 3D shapes using the model’s zero-shot capabil-
ity. This indicates significant potential for generating de-
tailed 3D representations from 2D images. The next ob-
jective over the summer is to develop this capability into a
complete 3D model generator through several key steps.

First, we will build a comprehensive dataset that includes
prompts, images, segmentation masks, depth information,
and 3D point clouds. This dataset will serve as the founda-

tion for training and validating our model. The prompts will
be diverse and descriptive, and the images will be carefully
curated to correspond to these prompts. Accurate segmen-
tation masks will be annotated for each image, and depth
information will be included to provide spatial context. Ad-
ditionally, accurate 3D point clouds will be generated for
the objects in the images, serving as ground truth for the
training process.

Next, we will integrate the detection, segmentation, and
depth estimation pipelines into a single, unified multi-task
network. This integration will enhance the efficiency and
accuracy of the model, allowing it to process inputs and pro-
duce comprehensive outputs more effectively. We will then
train this unified network using the compiled dataset. The
training process will focus on optimizing the network to ac-
curately predict segmentation and depth information based
on the given prompts and images.

Furthermore, we aim to expand the network’s capabili-
ties to predict full 3D RGBD point clouds. This involves
expanding the multi-task network and training it with im-
ages, prompts, and 3D objects. This involves adding a gen-
erative aspect to the model to generate the unseen parts of
the RGBD point cloud that are consistent in shape as well as
accurate in color. This additional training will also ensure
that the network can generate high-fidelity 3D models that
accurately reflect the input data.

By following these steps, we aim to develop a robust and
efficient 3D model generator that leverages the zero-shot
capabilities of the current model. This will significantly en-
hance our ability to create detailed and accurate 3D repre-
sentations from 2D images.
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4. Segment Anything Model is used for image segmenta-
tion.
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6. ZoeDepth is used for fine-tuning depth estimation.
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