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Abstract

Deep learning models have demonstrated significant po-
tential in improving chest X-ray diagnosis. However, these
models may exacerbate healthcare disparities. Addressing
the inherent biases of deep learning models is essential to
ensure their safe and reliable deployment in clinical prac-
tice. We extend a recent method that combines embeddings
extracted by a convolutional neural network (CNN) with an
eXtreme Gradient Boosting (XGBoost) classifier to effec-
tively mitigate bias across the sex, age, and race subgroups.
We first demonstrate the generalizability of our method
across multiple medical conditions. Then, we show that
retraining the CNN head with XGBoost achieves greater
bias reduction compared to alternative classifiers. We fur-
ther explore the adaptability of our lightweight approach by
applying it to image-feature extraction models, including
foundation models based on Contrastive Language-Image
Pre-Training and Distillation with No Labels architectures,
noting weaker results compared to the CNN. Moreover, we
show that our lightweight bias mitigation technique outper-
forms existing bias mitigation techniques, such as data aug-
mentation, active learning, and adversarial attacks, that re-
quire the full model retraining. Finally, we show that com-
bining our XGBoost head retraining with active learning
leads to the optimal balance, significantly reducing bias
without compromising overall model performance.

1. Introduction

Deep Learning (DL) models have the potential to trans-
form healthcare by increasing diagnostic accuracy, per-
sonalizing treatment, and improving patient outcomes[!].
However, these technologies risk exacerbating healthcare
disparities if their performance varies across different sub-
groups of patients, for example according to sex, age,
and race [14]. These biases may arise from training data
that underrepresents certain populations, algorithm designs

that overlook the unique characteristics of different groups,
or disparities in healthcare access[5]. Biases are among
the many barriers that prevent the deployment of these
models in clinical practice, where equitable outcomes are
crucial[12]. Current bias mitigation methods involve trade-
offs between fairness and accuracy. Techniques such as re-
balancing training datasets or modifying algorithms often
require extensive model retraining[ 1 3] and are thus imprac-
tical in healthcare due to data scarcity and resource con-
straints. To address these limitations, we propose an effi-
cient and lightweight method that significantly reduces bias
without retraining the full model, offering a practical solu-
tion for resource-constrained clinical settings.

2. Related Work

This project is based on the extension of a recent study
[3]. It proposes a lightweight model adaptation strategy to
mitigate biases related to sex, age, and race in Chest X-ray
(CXR) diagnosis by replacing the final classification layer
of a CNN with an XGBoost model which is then retrained
on a curated subset of data. However, this study is lim-
ited to one disease, does not compare the use of XGBoost
with other models, is limited to only one model architecture,
does not combine it with existing bias mitigation strategies,
and does not compare it with existing work. Our research
aims to tackle these limitations.

Similar work has been done on last layer retraining to tackle
spurious correlations[8]. This paper demonstrate that sim-
ple last layer retraining can match or outperform state-of-
the-art approaches on spurious correlation benchmarks, but
with profoundly lower complexity and computational ex-
penses. However, they only retrain the head with a linear
classifier and don’t explore other models.

Some research involves combining a CNN with an XG-
Boost classifier head to improve the model’s performance|[6,

], but they explore this combination as a way to mitigate
bias.
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Figure 1: Dataset information

3. Data

We evaluate our method on the two largest CXR publicly
available datasets to ensure the robustness and generaliza-
tion of our model across different clinical environments.

e CheXpert Plus[2?], a dataset consisting of 224,316
CXRs obtained at Stanford Health Care.

e Medical Information Mart for Intensive Care
(MIMIC)[7] comprising 377,110 CXRs performed at
the Beth Israel Deaconess Medical Center.

Both of these datasets contain demographic information
such as sex, age, and race for each patient. For sex, we fo-
cused on the difference in performance between males and
females; for age, we used a threshold of 70 years old; for
race, we focused our analysis on White, Black, and Asian.
The splits used, as well as the class imbalance information
are in Fig.1. We don’t provide Train and Valid splits for
MIMIC since we will only train our models on CheXpert.
We will then test them on both CheXpert and MIMIC to en-
sure the consistency of our results in distribution (ID) and
Out-Of-Distribution (OOD). We had to do some data pre-
processing. First, we only kept posterio anterior and an-
terio posterior images by removing all the lateral images,
resulting in 112,105 CXR for CheXpert and 139,508 for
MIMIC. Then, we resized the images to 224x224 since the
DenseNet121 model takes as input 224x224 images.

4. Method
4.1. Metrics:

First of all, there is no universal definition of bias. It
is actually hard to define clinical bias. There is always a
trade-off between fairness and other important metric such
as overall performance. In this paper, we state that if we
decrease the bias, we should at least keep the same over-
all performance that we had before reducing the bias. This
might disadvantage some subgroup, but it is the fairer ap-
proach we could think about.

For the metrics, we want to:

* Have a good overall performance: AUPRC provide a
good trade-off between precision and recall and is ef-
fective when dealing with imbalanced datasets.

e Have similar performance across subgroups: A
AUPRC. If we have more than one subgroup (for race
for example we are studying White, Black, and Asian,
we take the maximum of the A AUPRC.

4.2. Models:

We extract embeddings from the CXR images using pre-
trained models to leverage the extensive feature learning
these models have acquire.

* DenseNet-121 from TorchXray Vision, the same model
used in the original paper presenting the new hybrid
method. This choice ensures a fair comparison with
prior work. DenseNet-121 is a well-established archi-
tecture for medical image analysis, known for its dense
connectivity, which promotes feature reuse and gradi-
ent flow, making it highly effective for extracting nu-
anced medical features.

e MedImagelnsight from Microsoft, employs a
dual-encoder architecture inspired by Contrastive
Language-Image Pre-Training (CLIP), using separate
encoders for images and text. Both encoders are
trained using contrastive learning to map inputs into
a shared embedding space, facilitating tasks like
image-text matching and zero-shot classification. It
is trained on a vast and diverse dataset of text-image
pairs.

¢ RAD-DINO from Microsoft, based on the Distilla-
tion with No Labels (DINO) self-supervised learn-
ing framework, using a vision transformer (ViT) ar-
chitecture. It employs a teacher-student setup where
both networks process different augmented views of
the same image, enabling the model to learn meaning-
ful representations without labeled data. It is specifi-
cally designed for extracting embeddings from medi-
cal imaging.

For the second part of our experiments, we retrain our
own CNN DenseNet-121 model from scratch. This allow
us to have control on the splits we use and on the number of
outputs (only outputting the medical conditions we want to
study). This is more fair. We initialize the weights with the
ones from CheXNet [9], a DenseNet121 model trained to
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Figure 2: Overall pipeline of the proposed experiments. Top: Extending the CNN-XGboost hybrid bias mitigation method
to other model architectures, other models to retrain the head, and more medical conditions. Bottom: Train our own
DenseNet121 model to integrate existing bias mitigation techniques and compare the results when inegrating the same tech-
niques when only retraining the head with a XGBoost or a LR model.

predict pneumonia from CXR (note that we our study does
not involve pneumonia). The parameters used in training
are similar to the ones used by TorchXrayVision [4]: Learn-
ing rate: le-4, Num epochs: 10, Batch size: 16, Criterion:
BCEWithLogitsLoss, Optimizer: Adam, Scheduler: Re-
duceLROnPlateau, Training transformation: RandomRo-
tation(10), ColorJitter(brightness=0.1, contrast=0.1), Ran-
domHorizontalFlip(). We train it with early stopping.

4.3. Pipeline

The pipeline is presented in Figure 2.

1. To extend the current method to more than one med-
ical condition, we changed the final XGBoost classi-
fier to a multi-head classifier of the size of the number
of medical conditions we want to study. This number
is determined by the original model performance. We
select medical conditions that can be predicted by the
model with a performance above a certain threshold.
Indeed, it does not make sense to study the bias if the
original disease classification performance is low for
every subgroup.

2. To retrain the head of the CNN with different models,

we replace the XGBoost model of the MultiOutput-
Classifier by Linear Regression (LR), Decision Tree
(DT), Random Forest (RF), Neural Networks (NN),
K Nearest Neighbors (KNN), and Balanced Random
Forest (BRF). For each model, we run some hyperpa-
rameter tuning on the validation set to select the best
parameters.

. To extend the current CNN-XGBoost method to other

models than can extract features from images such as
the CLIP based and Dino based FM, we extract em-
beddings from these pretrained models and retrain the
head of the models using an XGBoost multi-head clas-
sifier. We then compare the performance and bias in
the original full model with our retrained new version.

To compare existing bias mitigation strategies with the
XGBoost head retraining, we first retrain a CNN from
scratch, to have more control on the model. Then we
retrain it with existing bias mitigation techniques and
compare the results with our XGBoost head retrain-
ing results. Existing bias mitigation techniques in-
clude weighted sampling (we re-weight the subgroups
according to their proportion in training data); adver-



sarial training (we add a secondary adversarial branch
that tries to predict the sensitive attribute sex, race, age
and train the main network to be ”demographically ag-
nostic” by minimizing this branch’s accuracy), data
augmentation (on subgroups that don’t perform well
on validation data), and active learning (we use un-
certainty sampling or diversity-based selection to pref-
erentially add underrepresented samples during model
training).

. Finally, we combine these exiting bias mitigation
strategies with the XGBoost head retraining and com-
pare this computationally efficient results with using
these exiting bias mitigation on the full model retrain-

ing.

5. Experiments, results, and discussion

1. First, we extended the current method to more than one

output. Instead of only focusing on Pleural Effusion as
in the initial paper [3], we integrated Cardiomegaly,
Lung Opacity, and Edema in the analysis. The studied
medical conditions were chosen based on their perfor-
mance: their AUPRC should be greater than 50% to
be integrated in the analysis. Results 3 show that the
method adapts well to multiple outputs: overall per-
formance increases will bias according to the sex, age,
and race subgroups decreases, ID on CheXpert and
OOD on MIMIC.

. Then, we retrained the head of the CNN with differ-
ent models such as LR, DT, RF, NN, KNN, and BRF.
Results 4 show that XGBoost has the best trade-off be-
tween performance and bias, closely followed by LR.
It is not surprising that LR is working well since the
last layer of a DenseNet121 is usually a linear layer.
Therefore, the extracted embeddings are trained to be
combined with a linear layer. Moreover, last layer re-
training has been proven to improve performance and
reduce bias, even ID[8]. DT and RF, being as good
as random answers, were not included in the results.
BRF is also working well, certainly due to its nature at
handling imbalance datasets, which can be beneficial
in handling bias. One interesting observation is that
the different models don’t have the same bias reduc-
tion pattern across the subgroups. For example, LR is
working well in reducing bias for sex and age but not
for race, while XGBoost and BRF are more consistent
across the subgroups. This can be due to the data im-
balanced: races are much more imbalanced than sex
and age. LR, by its simple nature, might not be able to
handle that as well as other models that are known to
work well at handling imbalance datasets.

3. We then tried to generalize the hybrid CNN-XGBoost

model to other model architectures. Since FM are
more and more studied, we chose two FM with differ-
ent architectures: CLIP, and RAD-DINO. Since XG-
Boost and LR models to retrain the head of the network
seem to work the best, we only studied bias mitiga-
tion using these two models. The RAD-DINO model
has no baseline, since it was trained to extract embed-
dings. Thus, we can only compare the difference be-
tween training the head of the model using a LR or
a XGBoost model. Results, as shown in Figure ??
are a bit surprising. Indeed, there is no clear pattern.
First, in most cases, retraining the head of the models
improve the overall performance, with no major dif-
ferences between retraining with XGBoost or retrain-
ing with LR. On embeddings extracted by DenseNet,
retraining the head with XGBoost reduces the bias,
both ID and OOD, for sex, age, and race (except for
race OOD). XGBoost is a bit better than LR but re-
sults are not significant. On embeddings extracted by
MedImagelnsight, results are very different on the two
datasets. Bias is decreasing for age on both datasets.
On CheXpert bias is increasing for race and sex, and
on MIMIC, bias is decreasing for sex and not changing
for race. Again, there is no major difference between
LR and XGBoost. On embeddings extracted by RAD-
DINO, results are also different on the two datasets.
Bias is smaller when training with LR for race, similar
for LR and XGBoost for age and sex on CheXpert, and
smaller when training with XGBoost on MIMIC. We
cannot draw any conclusion from these results, no sta-
tistically significant pattern emerges. To better under-
stand these differences, we explored the differences in
the embeddings extracted by the three different mod-
els using Principal Component Analysis (PCA) density
and (t-distributed Stochastic Neighbor Embedding[ ! 1]
(t-SNE) plots. We can see that MedImagelnsight and
RAD-DINO embeddings have more distinctions ac-
cording to the different subgroups 5. We also com-
pared the performance of a RF classifier to predict the
subgroups. Results 5 show that it is easier to predict
subgroups using the RAD-DINO embeddings, closely
followed by MedImagelnsight embeddings. CNN sub-
group predictions always result in the lowest perfor-
mance. We compared these results with the bias of
the three models those heads have been retrained using
XGBoost. We hypothesized that embeddings that can
easily predict some subgroups would ne more biased
related to these subgroups. We cannot conclude that
from the results, since again, there is not clear pattern.

. Then, we retrained a CNN DenseNet121 from scratch.

We then reassessed the overall performance and bias
ID and OOD, with and without the XGBoost head re-
training. Results match previous results with the pre-
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Figure 4: Differences in performance and bias when retraining the head of the DenseNet121 with different models on CheX-

pert.

trained TorchXRayVision model. We notice an in-
crease in the overall performance, and a decrease in
bias when retraining the head with an XGBoost model
in comparison to the baseline. Then we compare the
XGBoost head retraining computational efficient way
of mitigating bias, with the existing bias mitigation
that require the full model retraining. We can see in
Fig 6 that both ID and ODD, XGBoost head retraining
is as good (and even better) than existing bias mitiga-
tion techniques that require the full model retraining.
Moreover, it has a lower computational cost since it
only requires to retrain a single layer.

5. Finally, we combined existing bias mitigation methods
with the XGBoost head retraining and compare that
with retraining the full model. We can see in Fig 7 that
combining existing bias mitigation techniques with the
XGBoost head is better than retraining the full model.
And again, it has a much lower computational cost.

The final results show that combining active learning
with XGBoost head retraining leads to the highest de-
crease in bias among sex, age, and race, ID and OOD.

6. Conclusion and Future Work

In this study, we presented a lightweight bias mitigation
approach for DL models in CXR analysis. By retraining
the final classification layer with an XGBoost model, our
method effectively reduced biases related to sex, age, and
race without requiring full model retraining. Our approach
demonstrated robustness across multiple medical conditions
and datasets, maintaining performance both ID (CheX-
pert) and OOD (MIMIC). Additionally, our method out-
performed traditional bias mitigation techniques, including
data augmentation, active learning, and adversarial training.
Combining our XGBoost head retraining with active learn-
ing resulted in an optimal balance between fairness and di-
agnostic accuracy.

Future work includes focusing on interpretability. We
want to find out why do we observe these results. We will
focus more on where does the bias come from. Experi-
mental ideas include studying linear probing from previous
CNN layers to find out at which step the model captures in-
formation linked to the specific medical conditions and the
demographic subgroups; studying why the different classifi-
cation heads have different bias reduction across subgroups;
studying the impact of different subgroup balancing in the
data on the bias.
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