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Abstract

This work proposes a hybrid deep learning framework
for multi-abnormality classification in 3D computed tomog-
raphy (CT) scans. I introduce a residual learning approach
that combines the strengths of 2D ResNet models and 3D
Vision Transformers to efficiently analyze volumetric med-
ical imaging data. The framework treats 2D representa-
tions as strong baselines with a 3D residual module that in-
tegrates across-slice information, addressing the challenge
of capturing both slice-level details and volumetric context.
In this study, I applied the hybrid approach to a subset of
the CT-RATE dataset with labels for 18 lung abnormalities.
Our results demonstrate the proposed hybrid approach im-
proves classification accuracy by capturing 3D spatial re-
lationships while maintaining computational efficiency, po-
tentially offering a practical solution for clinical CT image
analysis.

1. Introduction

More than 93 million computed tomography (CT) scans
are performed annually in the US which are critical in clin-
ical decision making [1]. These detailed three-dimensional
(3D) scans often produce hundreds of high-resolution slices
providing a comprehensive view of a patient’s condition.
CT scans are also a preferred modality for diagnostics due
to their widespread availability and speed. However, de-
tecting the presence of any abnormalities within the large
number of slices of the 3D CT volume requires significant
time-consuming interpretation from clinical experts [2]].

Deep learning has started to revolutionize our interpre-
tation of medical images [3]]. Various radiological imaging
tasks have found success using machine learning, such as
disease classification, segmentation, lesion detection, and
image reconstruction [4} |5]. Despite advances in state-of-
the-art vision language models (VLMs), their applications
to 3D imaging tasks—such as those involving high reso-
lution volumetric data—remains underexplored. Further-
more, 3D volumetric images can incur large data storage

costs and computational complexity due to their high reso-
lution captures which are necessary for radiology diagnos-
tics. Identifying strategies to build high performance mod-
els with a fraction of the compute as we utilize large foun-
dation models in healthcare will be crucial [6].

The overall goal of this project is to develop efficient
models for multi-abnormality classification in 3D chest CT
scans. The input to our algorithm is CT imaging data fol-
lowed by 2D ResNets or 3D Vision Transformers which
output predictions for 18 lung abnormalities. In this work,
I propose a hybrid framework that combines the strengths
of 2D and 3D deep learning models in a residual learning
paradigm. Our approach aims to efficiently capture both
slice-level details and volumetric context, improving the
efficiency of multi-abnormality classification in CT scans.
Key contributions of this study are: A residual learning
framework that integrates 2D ResNet and 3D Vision Trans-
former architectures for CT analysis and evaluation of this
hybrid approach on a multi-abnormality CT dataset.

2. Related Work

Given the complexity of 3D CT volumes, a common ap-
proach has been to leverage 2D convolutional neural net-
works (CNNs) for CT analysis, treating each slice as an in-
dependent image. For instance, 2D CNNs have been used
to detect different subtypes of intracranial hemorrhages in
head CT scans [7]. In addition, models to detect thoracic
abnormalities via CNNs leveraging detailed insights into
complex anatomical structures from CT scans have also per-
formed well [8]. The success of deep learning in imaging
has been driven in large part by ResNet architectures [9].
ResNets have found widespread use due to their ability to
train very deep networks effectively through residual con-
nections. While deeper models offer more representational
power due to their increased number of parameters, they
also present greater optimization challenges. The residual
blocks make deeper networks easier to optimize because
they mitigate the problem of vanishing gradients by using
shortcut connections that perform identity mapping. Rather
than learning unreferenced functions, this residual approach



enables the network to effectively skip layers that do not
contribute to improving performance. However, while 2D
approaches have shown promise, they often struggle to fully
capture the spatial relationships present in 3D CT volumes
.

To address this limitation, researchers have developed
3D architectures specifically designed for volumetric data
analysis. Vision Transformers (ViTs) are an architectural
adaptation of transformers [[11]], originally developed for
natural language processing, to address core computer vi-
sion challenges. Given their rapid success in 2D vision
tasks, ViTs have been extended to more complex modali-
ties, such as volumetric medical data [12]]. This has lead
to the recent development of architectures specifically de-
signed for 3D medical imaging, such as the CT Vision
Transformer (CTViT) which encodes 3D CT volumes
into tokens. The model was inspired by video transformers
(e.g., ViViT [14]]) and thus extracts spatiotemporal tokens
where instead of the time dimension it uses the depth di-
mension (or slice dimension) of the CT volume.

Despite the advancements of ViTs, CNNs have retained
their relevance due to their computational efficiency, lower
complexity, smaller parameter space, and competitive per-
formance on smaller datasets. Combining attention mech-
anisms with CNN architectures in various forms, has been
an active area of work to retain maximal benefits of each
model strength [16].

3. Data

The dataset I used is CT-RATE which consists of
non-contrast 3D chest CT scans from 21,304 patients to-
talling over 14.3 million 2D slices. I sampled from this
dataset approximately 3000 patients and 2 million slices.
The dataset has multi-abnormality labels for 18 lung condi-
tions (see Appendix).

3.1. Pre-processing

CT scans are loaded from NIFTI (.nii.gz) files. To stan-
dardize the CT volumes, they are either center-cropped or
padded to reach a consistent resolution of 214x214x240.
Raw pixel values are converted to Hounsfield units (HU)
with clipping to a range of [-1000,1000] HU. During train-
ing, the values are normalized to a range of -1 to 1.

A center sampling method was used to extract a subset
of slices from the middle of the volume (num_slices=100),
with a corresponding volume of 214x214x100 per CT scan.
Each volume has corresponding multi-abnormality labels.

For training, the dataset was split 70:20:10 into a train-
ing, validation, and test set using stratified sampling to en-
sure equitable distributions of the classes in each split. The
class distributions within each split can be seen in Table [I]
with example CT images shown in Figure[T]

H Class ‘ Total ‘ Train ‘ Val ‘ Test H
Medical material 425 | 285 | 97 | 43
Arterial wall calcification 909 | 604 | 198 | 107
Cardiomegaly 358 | 240 | 76 | 42
Pericardial effusion 269 | 174 | 65 | 30
Coronary arterial calcification | 793 | 541 | 163 | 89
Hiatal hernia 425 | 287 | 94 | 44
Lymphadenopathy 831 | 540 | 189 | 102
Emphysema 586 | 392 |127| 67
Atelectasis 842 | 561 |192| 89
Lung nodule 1393 | 965 |282| 146
Lung opacity 1141 | 782 |242| 117
Pulmonary fibrotic sequela 783 | 531 | 178 | 74
Pleural effusion 481 | 316 |113| 52
Mosaic attenuation pattern 268 | 176 | 62 | 30
Peribronchial thickening 324 | 214 | 77 | 33
Consolidation 569 | 374 |129| 66
Bronchiectasis 307 | 209 | 68 | 30
Interlobular septal thickening | 273 179 | 63 | 31

Table 1: Distribution of classes across data split.

Figure 1: Representative lung CT images with various lung
pathologies including lung nodule, atelectasis, lung opacity,
and consolidation.

4. Methods

Inspired by the residual learning paradigm introduced in
ResNet [9], the general framework proposed here is that
models should be able to learn as least as well as a base 2D
representation, with residual updates coming from the 3D
volumetric context. This involves (1) a hybrid framework
that treats 2D representations as strong baselines which
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Figure 2: Pipeline overview and computational framework.

will require a base 2D encoder capturing features per slice
and (2) a 3D residual module which can integrate across-
slice information to refine updates from the added volu-
metric layer (Figure [J). The implementation will be a
2D ResNet+3D ViT fusion. Training 3D models can be
compute-heavy, so by leveraging strong pretrained 2D mod-
els with lightweight or modular 3D enhancement we may
reduce the computational overhead.

4.1. 2D Models: ResNet

The 2D ResNet model serves as the baseline approach
for the CT multi-label abnormality classification task. This
2D approach processes each of the 100 slices (214x214
pixels) from our CT volumes independently, treating them
as separate grayscale images. This approach can effec-
tively give a baseline for learning patterns within individ-
ual slices. Here, we process the CT data slice-by-slice (a
2D approach), using a modified ResNet-18 architecture [9]
pre-trained on ImageNet. The model has been adapted for
this task by: 1) Modifying the input layer to accept single-
channel grayscale images (CT slices), replacing the stan-
dard RGB three-channel input. 2) Replacing the final fully
connected layer to output per-slice predictions for 18 dis-
tinct classes for the CT multi-label abnormality task. The
set of predictions per-slice indicate the likelihood of each
abnormality being present in that slice or not. The slice-
level predictions are aggregated (mean) across the entire
volume to generate a final multi-label prediction per CT
scan reflecting if the abnormality is present anywhere in the
volume.

4.2. 3D Model: ViT

ViTs work by breaking images into patches (analogous
to word tokens in language models), which can then be pro-
cessed in a series of transformer encoder blocks. Positional
encoding are incorpororated to preserve spatial information
before passing the embedded patches into the transformer
encoder stack. Each encoder block consists of a multi-head
self-attention mechanism that enables the network to focus
on different image regions simultaneously, followed by a
feedforward neural network and a LayerNorm (RMSNorm)
operation. The encoder’s output is fed into a classifica-
tion head, a multi-layer perceptron (MLP), which generates
class probability scores for the target categories.

We adapt the CT Vision Transformer (CTViT) [13]
architecture to encode the 3D CT volumes into tokens.
Our implementation of ViT accepts input volumes of size
224x224x100 (representing 100 slices of 224x224 pixels
each). The encoder network (¢ 1) processes this input to
produce embedded CT tokens, while the decoder network
(#Y*T) uses these tokens for classification tasks.

The encoder first extracts non-overlapping patches of
16x16 pixels from each slice of the CT volume. These
patches are linearly transformed into a 512-dimensional la-
tent space. For a batch of CT volumes, this results in a
tensor of shape B x T' x (H/p1) x (W/p2) x D, where B
is the batch size, T is the number of slices (100 in our case),
H and W are the height and width of the slices (224 each),
p1 and po are the spatial patch sizes (16 each), and D is the
latent dimension (512).

This tensor is then processed by two transformer net-
works in sequence. The spatial transformer operates on the
spatial dimensions, while the slice-wise transformer pro-



cesses information across slices. Both transformers use 8
attention heads with a dimension of 64 per head. The ar-
chitecture includes 4 spatial depth layers and 4 slice-wise
depth layers, allowing it to capture both intra-slice and inter-
slice relationships. While the original CTViT was designed
for volume reconstruction, our ViT version is adapted for
multi-label classification. The decoder network in our im-
plementation is modified to output classification predictions
for the 18 abnormality classes. The ViT model was trained
from scratch without utilizing any pre-trained weights.

4.3. Residual Fusion 2D+3D Model

The hybrid framework proposed here adapts the idea of
residual blocks from ResNet: H(z) = F(x)+ x as outlined
in Algorithm I] The fusion process involves the 2D ResNet
processing the input CT slices, producing a set of slice-level
feature vectors. Then, the slice-level features are aggregated
via mean pooling to obtain a single feature vector per vol-
ume. Concurrently, the 3D ViT processes the same input CT
volume, encoding the volumetric context into another set of
feature vectors. A projection layer ensures dimensionality
matching between the two feature spaces, mapping the 3D
ViT features to the same dimensionality as the 2D ResNet
features. The outputs of the 2D ResNet and 3D ViT base
models are then combined through element-wise addition.
The final fused representation, is then passed through a clas-
sification head to produce predictions for the 18 abnormal-
ity classes. This residual connection allows the ViT to learn
to correct or enhance the 2D ResNet’s predictions, rather
than being forced to learn everything from scratch.

Algorithm 1: Residual fusion from 2D & 3D inputs
Input: inputsy, inputsqy
Output: output fysion
TadResNet — ModelagresNet (Inputaq);
residualsqyir < modelsqy ;1 (inputsq);
output fusion — T2dResNet + residualzqviT;

4.4. Evaluation method

The overall task is multi-abnormality classification (18
classes). Accuracy, precision, recall, and AUROC scores
were used for evaluation metrics on the test data as imple-
mented in sklearn.metrics.

4.5. Experimental details

For this multi-label classification task, the loss function
used was binary cross entropy loss (BCEWithLogitsLoss),
as implemented in PyTorch. To easily compare the perfor-
mance of multiple models they were built using a PyTorch
training loop for experiments with the following parame-
ters kept the same to fine-tune the models and make direct
comparisons: learning_rate=5e-4, num_train_epochs=10,
optimizer=AdamW, batch_size=8, Ir_scheduler_type = Re-

duceLROnPlateau, which monitors the validation loss and
reduces the learning rate by a factor of 0.5 if no improve-
ment is seen after 2 consecutive epochs to help prevent over-
fitting. The training time was ~ 8 hours per model.

4.6. Model training environment

Training was performed on a multi-GPU system
equipped with 4 NVIDIA H100-80GB-HBM3 GPUs. Dis-
tributed data parallelism was implemented using PyTorch’s
DistributedDataParallel (DDP) module, with data split
along the batch dimension across the 4 GPUs to accelerate
training.

5. Results and Discussion

The performance of the baseline 2D method ResNetl8,
consisting of 18 layers demonstrated a reasonable starting
discrimination capability with an AUC of 0.83 and an ac-
curacy of 0.83 (Table 2. The model achieved a precision
of 0.66, meaning when it predicts a positive it is correct
about two-thirds of the time and a low recall at 0.34 indi-
cating it is missing two-thirds of the actual positives. This
means the model is good at distinguishing classes, when it
predicts positives it is often right (high precision); however,
it is conservative in predicting positives (low recall).

Next, the baseline 3D method ViT achieved a lower per-
formance compared with the ResNet with an AUC of 0.71,
accuracy of 0.75, precision of 0.44 and recall of 25. This
performance gap is likely due to two factors: the ResNet
benefits from ImageNet pre-training which provides useful
feature representations for our CT images, while our ViT
was trained from scratch. Additionally, the 3D ViT model
has more parameters to optimize with our relatively small
training dataset size.

Finally, the fusion model combining both 2D and 3D
models (ResNet+ViT) showed substantial improvement
over both individual models (Figure E]), with AUC increas-
ing to 0.87, accuracy to 0.87, precision to 0.72 and recall to
0.54. This significant enhancement in recall (0.34 ResNet
to 0.54 ResNet+ViT) while maintaining high precision indi-
cates that the 3D volumetric context is helping identify ab-
normalities that would be missed when examining the slices
in isolation.

H Model 2D 3D AUC Accuracy Precision RecallH
ResNet v 0.83 0.83 0.66 0.34
ViT v 071 0.75 0.44 0.25
ResNet+ViT v v 0.87  0.87 0.72 0.54

Table 2: Comparison of model performance.

Next, I performed experiments on the fusion model. In
the initial implementation in Table 2] equal weights were
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Figure 3: Per class AUC on unseen test data.

given to both the ResNet and the ViT. Here, I added an
« parameter to control the fusion from the 2D and 3D
sources. The update to Algorithm|[I]is as follows:

OUtPUtfusion < T2dResNet T O - TeSidUGZBdViT

Using an a = 0.0 corresponds to using only ResNet fea-
tures, while @ = 1.0 gives equal weight to both ResNet
and ViT features. Using the learned o approach allows
the model to adaptively determine the optimal contribu-
tion from the 3D ViT model component. By making the
« a learnable parameter, it allows the model to balance the
2D/3D fusion representation. Thus, the model could effec-
tively learn to set the alpha close to 0 during training (giv-
ing negligible weight to the 3D residual) if the 3D features
don’t contribute positively to the classification task. On the
other hand, if the 3D ViT features contain complementary
information to the ResNet, the alpha would be optimized to
a higher value, appropriately weighting the contribution of
both modalities.

We can observe from Table 3] that as we increase the al-
pha parameter, the overall performance increases across all
metrics. In particular, we see strong increases in the recall
(from 0.34 to 0.54), which means the model is better able to
detect true positive cases. Thus, this indicates that the com-
bined feature representation including both 2D ResNet and
3D ViT features is providing valuable complementary in-
formation. Moreover, the experiment with the learned alpha
indicates that the model is able to effectively tune contribu-
tions from both modalities, achieving similar performance

H a  AUC Accuracy Precision Recall H
0.0 0.83 0.83 0.66 0.34
0.1 0.85 0.85 0.7 0.36
0.3 0.86 0.86 0.72 0.46
0.5 0.88 0.87 0.75 0.54
1.0 0.87 0.87 0.72 0.54

learned 0.87 0.87 0.75 0.55

Table 3: Performance of the fusion models (ResNet+ViT)
with varying a parameter values.

to the experiments with the av = 0.5, 1.

Given the flexibility that comes from using a learnable
model fusion weighting, I ran a final fusion model increas-
ing to the full CT image height/width size of 480x480.
On this larger model, I examined the latent embedding
space with t-SNE (t-Distributed Stochastic Neighbor Em-
bedding), coloring by the number of abnormalities present
in the CT volume (Figure ). We can observe a cluster-
ing of abnormalities, suggesting that while the model was
utilized for multi-abnormality detection, it could also help
in prognosis/disease grading. For example, future research
could be used to project new CT scans into the latent space
of a larger trained model for better clustering of lung dis-
ease endotypes. This approach could also support retrieval
applications, enabling clinicians to input a new patient scan
and identify similar cases in a database to help inform treat-
ment decisions by referencing outcomes from patients with
comparable disease patterns.

10l . Abnormality
Count
12
54 oo R I10
o . o o 8
Z » o 0oy
01 on o o
B o %, Gk 6
§ 4
—54 .
(XN 2
10 0 10 =0
t—-SNE 1

Figure 4: The t-SNE latent space colored by the number of
abnormalities present in the CT volume.

I also visualized the cross-attention maps to better un-
derstand model interpretability examining how these mod-
els were making classification decisions. Figure [5] demon-



strates that the attention maps from the fusion model is pick-
ing up the underlying lung morphology structure. However,
the model seems to struggle with pathology where the visu-
alization shows it is more diffuse throughout the lung, such
as mosaic attenuation pattern (top right of Figure[5] In con-
trast, the lung nodule (a more localized pathology, bottom
right of Figure[5)) can be seen to have two regions in the im-
age which have higher attention weights. This suggests that
the model’s attention mechanism is more effective at identi-
fying localized abnormalities with distinct boundaries com-
pared to diffuse patterns that affect larger portions of the
lung tissue. The ViT model’s stronger visual representation
on nodules likely stems from the training class imbalance,
which provided the model with significantly more examples
of lung nodules (~ 4x) to learn the distinctive features of
compared with smaller class categories. Since the mosaic
attenuation pattern did not have worse performance at a per
class AUC level, this suggests that the ResNet features may
contribute more to performance for this class label.

Figure 5: Cross-attention maps for showing specific abnor-
malities, highlighting the ability of the model to determine
relevant regions.

6. Conclusion/Future Work

In this work, I presented a residual learning frame-
work that successfully combines 2D ResNet and 3D Vision
Transformer architectures to improve multi-abnormality
classification in 3D chest CT scans. The algorithm which
was the highest-performing was the 2DResNet+3DViT fu-
sion model. Incorporating the 3D volumetric context helps
identify abnormalities that would be missed when examin-
ing slices in isolation. This confirms our hypothesis that
the residual learning framework allows the 3D component
to effectively augment the strong 2D representation rather
than learn everything from scratch.

The underperformance of the standalone 3D ViT model
likely stems from our relatively small dataset size and lack
of pre-training, highlighting the advantage of our hybrid ap-
proach in leveraging pre-trained 2D models while still in-
corporating 3D context. Thus, I expect future iterations with
larger training sizes using the full CT-RATE dataset will im-
prove the ViT performance to learn a better representation.

Overall, I examined different architectural approaches
for leveraging the strengths of combining both 2D and 3D
models for imaging analysis. The CT-RATE dataset also
has paired radiology reports (text data), which was not an-
alyzed in the current study. Thus, in future work I would
anticipate adding in the additional text dimension which
should further increase model performance. Lastly, I would
anticipate that a learned weighting parameter for the 2D
ResNet features could be also added such that instead of
only varying the 3D update, the 2D feature contribution
could also be adaptively controlled.

7. Appendix

The CT-RATE dataset is publicly available for download
here: https://huggingface.co/datasets/ibrahimhamamci/CT-
RATE. Code which was wused to adapt our
ViT implementation can be found here:
https://github.com/ibrahimethemhamamci/CT2Rep,

The CT-RATE dataset has multi-abnormality labels for
the following 18 classes: Medical material, Arterial wall
calcification, Cardiomegaly, Pericardial effusion, Coronary
artery wall calcification, Hietal Hernia, Lymphadenopa-
thy, Emphysema, Atelectasis, Lung nodule, Lung opacity,
Pulmonary fibrotic sequela, Pleural effusion, Mosaic at-
tenuation pattern, Peribronchial thickening, Consolidation,
Bronchiectasis, Interlobular septal thickening.
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