Distributed 3D Reconstruction of Aerial Footage

Ihor Barakaiev
Stanford University
igorb@stanford.edu

Abstract

Reconstructing detailed 3D models from small-scale im-
agery is well-established via methods such as COLMAP,
DUSt3R, and MASt3R. Extending these approaches to ex-
tensive aerial surveys, however, remains challenging due to
their high computational and memory demands. We present
a pipeline that (1) partitions long drone videos into coher-
ent chunks of consecutive frames using a novel LightGlue-
based temporal matcher, (2) processes each chunk inde-
pendently with DUSt3R and MASt3R to obtain dense point
maps, and (3) merges the per-chunk reconstructions by
computing pairwise relative transforms. This modular
strategy enables scalable, high-fidelity 3D reconstruction
over potentially thousands of frames, requiring only RGB
frames as input. Our system introduces significant improve-
ments in runtime and modularity over baseline methods.

In battlefield zones, disaster areas, and other time-critical
environments, there is a growing need for fast, accurate 3D
reconstructions of large-scale terrain. Drone footage pro-
vides a rich source of visual data, but existing pipelines of-
ten require hours to process—or fail entirely due to GPU
memory limits and computational bottlenecks, especially
when dealing with thousands of high-resolution frames. In
such scenarios, teams need updated 3D maps within min-
utes, using only lightweight equipment and standard RGB
video. This pressing need for scalable, near real-time re-
construction motivates our work: a modular, distributed
pipeline that transforms long drone videos into coherent 3D
scenes efficiently and reliably, without sacrificing fidelity.

Traditional 3D reconstruction pipelines work well for
short image collections but scale poorly to long aerial
drone surveys, where pairwise comparisons grow quadrat-
ically with the number of frames. A single 60-minute
flight can yield over 3,600 frames at 1 FPS, making naive
approaches both computationally infeasible and memory-
intensive. Even state-of-the-art learning-based systems
such as MASt3R and DUSt3R exhaust GPU memory af-
ter a few dozen images if building a dense scene graph with
pairwise matches.

However, aerial footage is highly redundant: frames far
apart in time rarely overlap, and matching all pairs is both
wasteful and unnecessary. MASt3R addresses this with a
“sliding window” strategy that approximates linear runtime
by limiting the number of pairwise comparisons. How-
ever, this window is slid in a fixed, somewhat arbitrary
manner and still requires keeping the entire scene in mem-
ory—making distribution across machines impossible and
eventually hitting memory limits again. This motivates our
key idea: instead of sliding an arbitrary window, we (a)
pre-process long videos into overlapping, visually coherent
chunks, (b) process each chunk independently with an off-
the-shelf 3D reconstructor, and (c) merge the resulting local
scenes using frame-level alignment.

Our pipeline consists of three main stages:

* We design a LightGlue-based temporal matching mod-
ule to extract overlapping chunks from a video (up to
24 frames in a chunk).

e We apply classic pairwise MASt3R to reconstruct the
scene in local coordinate frame.

* We align individual chunk reconstructions in global
frame based on camera poses of overlapping frames.

In summary, we (1) develop a scalable, chunk-based re-
construction framework that distributes MASt3R/DUSt3R
across coherent subsets of video, and (2) demonstrate that
our method achieves similar quality to baseline methods
while significantly improving runtime and modularity.

Abandoned Approach: Real-Time Gaussian Splatting.
The original goal of this project was to support real-time
rendering from novel angles using 3D Gaussian Splatting
instead of point clouds. This method offers continuous radi-
ance field rendering with efficient memory usage. However,
the official implementation [1]] only supports rendering on
Linux or Windows platforms. As a macOS user without ac-
cess to GUI-supported Linux instances (e.g., via AWS head-
less VM), this path proved impractical.

We attempted to use OpenSplat [9]], a cross-platform im-
plementation with macOS support, but its rendering speeds

were significantly below real-time. We further investigated
DroneSplat [8]], which uses Gaussian Splatting enhanced by
voxel-guided optimization and dynamic masking. Unfor-
tunately, DroneSplat did not scale well to our large aerial
datasets. Moreover, global alignment of multiple Gaussian
scenes turned out to be a significantly harder research prob-
lem compared to point cloud merging. In light of these tech-
nical and scalability limitations, we opted for a simpler and
more robust point cloud-based approach. After all, the pri-
mary goal of the paper was 3D reconstruction, not necessar-
ily realtime 3D rendering from novel angles. Additionally,
our pipeline provides sufficient improvement for 3D point
cloud reconstruction which would be very useful as input to
3D gaussian splatting as well.

1. Related Work

COLMAP [6]. COLMAP is a feature-rich Structure-
from-Motion (SfM) and Multi-View Stereo (MVS) system
that has become a de facto standard for offline 3D recon-
struction from unordered image collections. It supports in-
cremental, global, and hierarchical SfM pipelines, combin-
ing SIFT-based feature extraction with exhaustive match-
ing, geometric verification, and bundle adjustment. De-
spite its robustness and completeness, COLMAP struggles
to scale to very long image sequences due to quadratic
growth in image pair evaluations and memory-heavy bundle
adjustment. Our pipeline addresses these scalability issues
by chunking videos into coherent segments and processing
each independently, which avoids COLMAP’s global opti-
mization bottlenecks.

SuperGlue [S]. SuperGlue reframes local feature match-
ing as a graph optimization problem using a transformer-
like architecture with self- and cross-attention. It achieves
strong performance under extreme viewpoint and illumina-
tion changes and introduces optimal transport for partial
assignment matching. However, it is computationally de-
manding and memory-intensive, making it less practical for
long video sequences or real-time applications. Our use
of LightGlue retains the matching robustness of SuperGlue
while improving efficiency and scalability.

LoFTR [7]. LoFTR proposes a detector-free dense
matching architecture that directly correlates dense image
grids, bypassing keypoint detection. It achieves state-of-
the-art performance in low-texture regions and under sig-
nificant appearance changes. Nonetheless, the dense nature
of its architecture imposes a high memory and runtime cost,
limiting its viability for high-resolution or large-scale ap-
plications like aerial video. In contrast, our approach uses
sparse, adaptable matchers (e.g., LightGlue) to maintain ef-
ficiency across long footage.

LightGlue [3]. LightGlue builds on SuperGlue’s
transformer-based architecture but introduces adaptive
computation and early pruning of unmatchable points,
drastically improving speed and scalability. It replaces
Sinkhorn normalization with faster partial assignment logic
and is lightweight enough for deployment in real-time
or large-scale scenarios. We leverage LightGlue as the
backbone of our chunk discovery module, enabling us to
efficiently identify overlapping sequences of frames in long
drone videos.

DUSt3R [10]. DUSt3R is a transformer-based pipeline
for dense stereo matching that can infer camera poses, pixel
correspondences, and depth maps from unposed images.
Its geometry-aware architecture learns dense 3D represen-
tations directly from image pairs. DUSt3R’s strengths lie
in producing accurate pointmaps from limited data without
explicit calibration. However, it is memory-bound and does
not scale well to thousands of frames. We use DUSt3R and
its successor MASt3R within individual chunks to produce
dense reconstructions where their memory constraints are
manageable.

MASt3R [2]. MASt3R extends DUSt3R with a dual-head
architecture that regresses both 3D pointmaps and dense de-
scriptors per image. It introduces a matching-aware train-
ing loss to improve pose accuracy and robustness. While
MASt3R achieves strong results on benchmark scenes, it
is not designed for long-form input and fails under mem-
ory constraints when reconstructing dense pairwise matches
across large datasets. By applying MASt3R within small,
coherent chunks, our method preserves reconstruction fi-
delity while enabling distributed and scalable inference.

DINOv2 [4]. DINOV2 is a self-supervised vision trans-
former trained for general-purpose feature extraction across
downstream tasks like classification and segmentation. Its
embeddings are resilient to texture and appearance changes,
making it suitable for tasks like scene clustering. We exper-
imented with using DINOV2 to cluster drone frames by ap-
pearance, but found that its emphasis on semantic similarity
(e.g., sky vs. ground) did not reliably correspond to spatial
continuity—an essential factor for StM. Thus, we opted for
overlap-aware chunking based on feature matches.

3D Gaussian Splatting [1]. Gaussian Splatting offers
real-time rendering of radiance fields by representing scenes
with anisotropic Gaussians rather than explicit geometry.
This enables continuous view synthesis with impressive vi-
sual fidelity and interactive framerates. However, existing
pipelines assume a single, coherent scene and lack tools
for globally aligning splats across disconnected chunks or

s 12 ’ -
*;\@:GRMA‘YStgnfpr
omputer, {Req

¥
s

: 9
Lol gf.LakeL'ag'ﬂn'ﬁa e,

-l ; _ .l A ¥ e ‘
Figure 1. GPS trajectories for all flights over Lake Lagunita.

flights. Our attempt to use Gaussian Splatting revealed that
even small stitching errors lead to visual artifacts, limiting
its usability in large-scale multi-chunk reconstruction tasks.

DroneSplat [8]. DroneSplat adapts Gaussian Splatting
for drone imagery by integrating voxel-guided stereo pri-
ors and masking out dynamic elements. It performs well in
short, continuous drone sequences, but assumes consistent
forward motion and global trajectory coherence. When ap-
plied to our distributed chunk-based pipeline, DroneSplat
exhibited stitching artifacts and performance degradation,
highlighting its limitations in fragmented or multi-session
drone footage.

OpenSplat [9]. OpenSplat is a macOS-compatible Gaus-
sian Splatting viewer that offers lower hardware require-
ments compared to the Linux-only reference implementa-
tion. While it allowed us to test splatting on macOS, its ren-
dering performance was significantly below real-time, es-
pecially on high-resolution aerial reconstructions. We ul-
timately abandoned splatting-based rendering in favor of
point cloud fusion due to both computational and alignment
challenges.

2. Data

We conducted several 30-120 second flights over Lake
Lagunita using a single DJI Mini 3 Pro, alternating between
forward-facing (at different angles) and downward orienta-
tions. Each video was recorded at 4K 30 fps. From each
video, we sampled one frame per second and parsed syn-
chronized telemetry captions to recover GPS (latitude, lon-
gitude, altitude) and camera parameters (ISO, shutter speed,
aperture, focal length, etc.). This yields a chronologically
ordered set of geo-tagged frames, each paired with its meta-
data, which serves as the input to our chunking and recon-
struction stages. There were a total of 237 resulting frames.

Figure 2. Sample frames from several separate flights.

Figure 3. MASt3R reconstruction of a circular flight over Lake
Lagunita using "logwin” mode.

3. Methods

3.1. Baseline: MASt3R on Full Sequence Without
Chunking

For a particular flight over Lake Lagunita (displayed in
red in Figure [I)), we collected 110 frames (sampled at 1
FPS). Given N = 110 sampled frames, a full pairwise run
requires approximately 2(%) ~ 12,000 MASt3R compar-
isons. Each pair invokes binocular reconstruction to regress
dense point maps and descriptors. On a single H100 GPU,
this is estimated to take 45 minutes but results in crash-
ing due to memory exhaustion. To mitigate this, we ran
MASt3R with "logwin” mode, which works by sliding a dy-
namic window. This approach took 10 minutes and yielded
the 3D reconstruction in Figure 3]

Lower-FPS Baseline. We also evaluated a downsampled
version of the same video at 0.5 FPS (55 frames) to assess
whether reducing input density could alleviate MASt3R’s
runtime and memory limitations. When run in “logwin”
mode, the reconstruction failed entirely due to sparse key-
points and weak matches across wide baselines, producing
a fragmented and unusable point cloud (Figure).

We then reran MASt3R at 0.5 FPS using full pairwise
matching. This completed in 8 minutes and produced a
denser point cloud (Figure [3), but the final reconstruction
suffered from poor stitching between camera poses, result-

1

e -
A S-,-i s
= x

Figure 4. Failed reconstruction using MASt3R “logwin” mode at
0.5 FPS. Low keypoint density caused collapse.

Figure 5. Accurate reconstruction using MASt3R with full pair-
wise mode at 0.5 FPS. Runtime: 8 minutes.

Figure 6. Alternate view of the 0.5 FPS MASt3R pairwise re-
construction. Misaligned camera poses reveal poor global con-
sistency.

ing in inconsistent global structure (Figure [6). The issues
were especially visible from wider viewing angles.

Limitations.

* Quadratic growth. Cost grows as O(N?) in time and
memory. In “logwin” mode, cost grows at approxi-
mately O(N) but is not parallelizable and will eventu-
ally hit memory limitations for long footages.

* Redundant comparisons. Most image pairs are non-
overlapping and produce no useful matches when us-
ing pairwise comparison. This is partially mitigated
with the sliding window approach, but some compar-
isons may still be redundant.

* Quality: "logwin” mode works at the expense of accu-
racy, which failed to produce a coherent global scene
for the downsampled 0.5 FPS baseline.

3.2. Chunked Reconstruction Pipeline

To overcome these limits, we first partition videos into
overlapping, temporally coherent chunks, each processed
independently. Chunks reduce pairwise explosion and en-
able distributed computation.

Chunking offers two core benefits:

¢ Locality. Within each chunk of size m < N, the cost
is O(m?).

* Parallelism. Chunks can be processed independently
and merged downstream.

3.3. LightGlue-Based Chunk Discovery

To partition long videos into coherent sequences for
independent 3D reconstruction, we developed a custom
LightGlue-based chunking algorithm.

Given a chronologically ordered list of video frames,
our method iteratively selects a base frame I, then
adaptively determines the longest subsequent sequence
{Iy, Ips1, ..., Ip+¢} such that all frames in the chunk share
sufficient visual overlap with the base. This is determined
via feature matching.

To find this length ¢, we use a three-stage search:

1. Initial probe: We attempt to match frame I, with a
probe frame Iy, where k& = 4 initially. If the num-
ber of matches exceeds a threshold (200), the probe is
considered successful.

2. Exponential search: We then double & until the num-
ber of matches falls below the threshold or a maximum
offset is reached, identifying the upper bound of coher-
ent chunk length.

3. Binary search: A final binary search is conducted in
the valid interval to pinpoint the longest viable chunk
{=Fk"+1.

We resize all images to 720p before matching, and use
SuperPoint + LightGlue for efficient feature extraction and
matching. The entire chunking process runs on a single
GPU in less than 30 seconds for 100+ frames.

Once a chunk is identified, we slide the base index for-
ward by |0.75-£] to ensure 25% overlap between successive
chunks. This guarantees that shared frames can be used for
alignment during the stitching stage.

Alternative methods. We also experimented with using
LoFTR and SuperGlue instead of LightGlue. While they
produced valid matches, they were significantly slower in

frame_00000.png frame_00029.png

Figure 7. Matching features between two consecutive frames in a
chunk.

frame_00000.png frame_00435.png

o 250 500 750 1000 1250 1500 1750 o 250 500 750 1000 1250 1500 1750

Figure 8. Matching features between first and last frames in a
chunk.

both inference time and memory usage, making them im-
practical for long videos. We additionally tested DINOv2
embeddings for unsupervised clustering of frames, aiming
to identify scene similarity without temporal constraints.
However, this approach often grouped frames based on
superficial cues (e.g., dominant sky pixels, camera angle)
rather than shared scene content. More critically, DINOv2-
based clusters lacked frame-to-frame overlap, which is es-
sential for reliable alignment in downstream stitching.

3.4. Per-Chunk 3D Reconstruction

Each chunk is processed using the MASt3R pipeline
without modification with full pairwise scene reconstruc-
tion. This yields one point cloud and set of inferred camera
poses per chunk.

3.5. Scene Stitching and Alignment

Once each chunk has been reconstructed into its own
scene with inferred camera poses and point cloud, we align
and merge them pairwise. Chunks that share overlapping
frames are identified, and their common frames are used as
anchors to compute a relative transform between the two
coordinate systems.

Given camera-to-world matrices {Cgl)} from chunk 1

and {ng)} from chunk 2 for the same image filenames, we
estimate a rigid transform T5_,; such that:
cM ~ Ty, -c?
The transform is computed using averaged relative cam-
era poses with rotation averaging to maintain orthogonality.
This procedure works well for flat terrains and stable cam-
era orientations.
Limitations. This merging algorithm is not globally op-
timal. It assumes roughly planar terrain and limited cam-
era tilt variation. In uneven terrain or with large viewpoint

changes, stitching accuracy may degrade. A more princi-
pled approach would involve estimating a global similar-
ity transform using algorithms like Umeyama’s method for
rigid alignment. Additionally, MASt3R estimates camera
intrinsics to be slightly different across scenes, so an addi-
tional rescaling step is needed for better accuracy and align-
ment. With the current approach, we observed some minor
spatial gaps for parts of the scene that were stitched.

This entire process is implemented in our provided
stitching script (see Appendix).

4. Experiments

We evaluated our pipeline on two variants of a circular
drone flight over Lake Lagunita: one sampled at 1 FPS (110
frames), and a downsampled version at 0.5 FPS (55 frames).
These experiments demonstrate both the scalability and ro-
bustness of our chunked reconstruction approach.

110-frame reconstruction. On the full-resolution se-
quence (110 frames at 1 FPS), we used LightGlue to par-
tition the video into 9 overlapping chunks, each containing
10-23 frames. The chunking step completed in approxi-
mately 20 seconds. Each chunk was then processed inde-
pendently using full pairwise MASt3R reconstruction. On
a single H100 GPU, the entire reconstruction took approxi-
mately 6 minutes, and would take just under 3 minutes when
parallelized across 8 GPUs. The stitched final reconstruc-
tion is shown in Figure 9]

55-frame reconstruction (0.5 FPS). To assess whether
our pipeline performs reliably under reduced frame density,
we repeated the process on a downsampled version of the
same video. MASt3R failed to reconstruct this sequence in
“logwin” mode due to sparse keypoints and wide baselines
(Figure). Even with full pairwise matching, while the
reconstruction ran in 8 minutes and yielded a dense point
cloud, it suffered from poor stitching and global misalign-
ment across camera poses (Figures 5 and [)).

In contrast, our chunked pipeline completed the same
task in 4 minutes and 40 seconds (or roughly est. 2 min-
utes with parallelization) and produced a clean, coherent re-
construction with no noticeable drop in quality (Figure [I0).
These results suggest that chunked reconstruction is not
only more efficient, but also more stable than baseline meth-
ods when operating on sparse inputs.

Scalability. The benefits of chunked reconstruction scale
significantly with input size. For a hypothetical 3-hour
drone video sampled at 1 FPS (10,000 frames), MASt3R
would be unable to process the full sequence even using
“logwin” mode due to memory constraints. Our pipeline,
however, would complete in under one hour (20 minutes to

Figure 9. Final merged reconstruction of the circular drone flight
using chunked reconstruction and scene alignment.

Figure 10. Reconstruction of the circular drone flight using our
pipeline at 0.5 FPS (55 frames). Note no noticeable drop in quality.

Method FPS Frames 1GPU 8 GPUs
MASt3R (pairwise) 1.0 110 - -
MASt3R (logwin) 1.0 110 10 min -
Ours 1.0 110 6 min ~ 3 min
MASt3R (pairwise) 0.5 55 8 min -

MASER (logwin) 0.5 55 -

4:40 min ~ 2 min

Ours 0.5 55

MASt3R (pairwise) 1.0 10,000 - -
MASt3R (logwin) 1.0 10,000 - -
Ours 1.0 10,000 ~75hr =1.75hr

Table 1. Runtime comparison between MASt3R with sliding win-
dow ("logwin”) and our chunked reconstruction method. Our
pipeline supports parallelization and scales efficiently. The met-
rics for 10000 frames and for 8 GPUs are estimated.

chunk, 75 minutes to reconstruct in parallel, and 1-3 min-
utes to stitch).

We also tested our pipeline on a linear trajectory con-
sisting of six chunks spanning a path from the BBQ pit to
the Jerry house. Each chunk was reconstructed indepen-
dently and then merged using overlapping frames. Results
are shown in Figures[TT]and [T2}

Figure 12. Merged 3D reconstruction from six chunks, stitched
using shared camera poses.

5. Discussion

Our experimental results support the hypothesis that
chunk-based 3D reconstruction provides a scalable and ef-
ficient alternative to traditional monolithic approaches like
MASt3R’s “logwin” mode. By decoupling the reconstruc-
tion problem into smaller, coherent subsets of frames and
applying dense stereo methods locally, we drastically re-
duce memory usage, improve runtime, and enable paral-
lelism across machines—without significant loss in accu-
racy.

An important insight from our work is that temporal
overlap is a reliable proxy for spatial continuity in stable
aerial footage. LightGlue, as a fast and lightweight match-
ing backbone, proved essential for efficiently discovering
these temporal chunks without exhaustively computing all
pairwise comparisons. While our method currently uses vi-

sual overlap to segment chunks, it opens the door to hybrid
strategies that leverage additional priors (e.g., GPS prox-
imity, motion estimation, or learned similarity) for more
general-purpose chunking in the future.

We also found that merging reconstructions from dif-
ferent chunks—while practical and effective in many
cases—introduces slight stitching artifacts, especially when
camera motion is unstable or terrain varies significantly in
elevation. This limitation suggests the need for future global
optimization techniques, such as bundle adjustment across
chunk boundaries or similarity transform refinement using
both visual and geometric cues.

Additionally, while our pipeline is currently optimized
for point cloud outputs, the same chunk-based decompo-
sition could be used as preprocessing for more advanced
3D representations such as Gaussian Splatting or neural
radiance fields (NeRFs). We believe this modularity is a
strength of the approach: it decouples scene partitioning
and reconstruction from downstream rendering or visual-
ization techniques. Gaussian Splatting, however, would re-
quire significant new contributions to be able to “stitch”
multiple scenes together.

Finally, our current evaluation was conducted on footage
collected under relatively stable conditions—forward or
downward-facing drone paths with consistent altitude and
camera parameters. Applying our system to more chaotic
or FPV-style videos remains a challenge due to erratic mo-
tion and lack of consistent visual overlap, which can disrupt
both chunk discovery and reconstruction. Addressing these
failure cases would require more sophisticated motion esti-
mation, dynamic frame selection, or learned models robust
to viewpoint discontinuities.

Overall, our system demonstrates strong empirical per-
formance and lays the groundwork for future work in scal-
able, real-time 3D mapping from aerial video.

6. Conclusion

We propose a scalable, modular framework for recon-
structing large-scale 3D scenes from long drone videos. By
partitioning data into geometrically coherent chunks and re-
constructing each chunk independently with MASt3R, we
achieve near-linear runtime and memory scaling. Further-
more, unlike the ”logwin” mode in MASt3R, this approach
is highly parallelizable.

Our method enables efficient processing of large-scale,
high-resolution aerial datasets using only RGB frames. Re-
construction quality is preserved while drastically improv-
ing runtime and modularity. We show that even for rel-
atively small datasets, our chunk-based strategy achieves
comparable accuracy with substantial efficiency gains.

Limitations. Our pipeline assumes smooth camera mo-
tion and continuous visual overlap. It performs best on sta-
ble cinematic drone footage. Aggressive FPV footage with

flips, sudden turns, or sky-dominated frames may result in
failed matching and incoherent chunks. Similarly, stitching
relies on shared frames and can degrade with large baselines
or inconsistent intrinsics.

Future work. One direction is to incorporate GPS, IMU,
and altitude priors to guide chunk merging. These priors
could enable clustering chunks by spatial proximity with-
out relying solely on overlapping frames. Camera poses
could be coarsely initialized using telemetry, and chunks
could be projected onto the ground plane to identify over-
laps. Another direction is to perform global bundle adjust-
ment across all merged chunks to improve alignment accu-
racy. We also plan to explore learning-based pose align-
ment methods and the integration of real-time chunking on
embedded systems.

Moreover, chunking and stitching could both be fur-
ther accelerated via divide-and-conquer parallelism. Since
chunks are processed independently, they can be distributed
across cores or GPUs in a tree-based fashion. Similarly,
the stitching step—currently sequential—could be imple-
mented as a parallel reduction over chunk pairs, allowing
end-to-end distributed reconstruction at even larger scales.

Acknowledgements

We gratefully acknowledge the open-source implemen-
tations that served as the foundation for this work: MASt3R
and LightGlue Our pipeline uses adapted versions
of these models for chunk-wise dense stereo and feature
matching.

References

[1] B. Kerbl, G. Kopanas, T. Leimkiihler, and G. Drettakis.
3d gaussian splatting for real-time radiance field rendering.
arXiv preprint arXiv:2308.04079, 2023.

[2] V. Leroy, Y. Cabon, and J. Revaud. Grounding image match-
ing in 3d with mast3r. arXiv preprint arXiv:2406.09756,
2024.

[3] P. Lindenberger, P-E. Sarlin, and M. Pollefeys. Light-
glue: Local feature matching at light speed. arXiv preprint
arXiv:2306.13643, 2023.

[4] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo,
M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba,
R. Howes, P.-Y. Huang, S.-W. Li, I. Misra, M. Rabbat,
V. Sharma, G. Synnaeve, H. Xu, H. Jégou, J. Mairal, P. La-
batut, A. Joulin, and P. Bojanowski. DINOv2: Learning
robust visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

[5] P-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich.
Superglue: Learning feature matching with graph neural net-
works. In CVPR, 2020.

Uhttps://github.com/naver/mast3r
Zhttps://github.com/cvg/LightGlue

(6]

(7]

(8]

(9]

(10]

J. L. Schonberger and J.-M. Frahm. Structure-from-Motion
Revisited. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou. Loftr:
Detector-free local feature matching with transformers. In
CVPR, 2021.

J. Tang, Y. Gao, D. Yang, L. Yan, Y. Yue, and Y. Yang.
Dronesplat: 3d gaussian splatting for robust 3d recon-
struction from in-the-wild drone imagery. arXiv preprint
arXiv:2503.16964, 2024.

P. Toffanin. Opensplat. GitHub, 2023.
https://github.com/pierotofy/OpenSplat.

S. Wang, V. Leroy, Y. Cabon, B. Chidlovskii, and J. Revaud.
DUSt3R: Geometric 3d vision made easy. arXiv preprint
arXiv:2312.14132, 2023.

