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Abstract

Diffusion-based generative models have significantly ad-
vanced the field of text-to-image generation, yet achieving
fine-grained semantic alignment between textual prompts
and generated images remains challenging. In this project,
we present a systematic evaluation of several indepen-
dent strategies designed to enhance semantic alignment
within the Stable Diffusion pipeline. Our study examines
template-based prompt engineering, CLIP-based output fil-
tering, LoRA fine-tuning, CLIP-guided latent optimization,
and DiffusionCLIP fine-tuning, using the 2014 MS-COCO
Captions dataset and Stable Diffusion vi.4.

Evaluated quantitatively by CLIPScore, our experiments
show that the average CLIPScore improves from 0.162
(baseline) to 0.165 (+0.003) with prompt engineering,
0.173 (+0.011) with output filtering, 0.196 (+0.034) after
LoRA tuning, and 0.203 (+0.041) using CLIP-guided la-
tent optimization. For DiffusionCLIP, the qualitative visual
analyses demonstrate clearer alignment after fine-tuning.
Our findings validate the effectiveness of modular improve-
ments across training and inference stages, providing ac-
tionable insights for future research and practical applica-
tions of text-to-image diffusion models.

1. Introduction

Text-to-image generation is a core task in computer vi-
sion, with extensive applications in creative media, auto-
mated content generation, assistive technologies, and in-
teractive systems. Recent latent diffusion models, such as
Stable Diffusion, have significantly improved image quality
and realism. Despite these developments, challenges persist
in achieving precise semantic alignment, visual coherence,
and effective controllability of generated outputs. Address-
ing these issues is crucial not only for enhancing the usabil-
ity and reliability of generated content but also for ensuring
broader applicability in real-world scenarios.
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This project systematically implements and evaluates
multiple independent strategies to enhance semantic align-
ment within the Stable Diffusion pipeline, leveraging the
rich textual annotations of the 2014 MS-COCO Captions
dataset. Specifically, we independently implement and eval-
uate five distinct strategies: (1) template-based prompt en-
gineering to provide clearer textual context; (2) CLIP-based
output filtering to select the best semantic matches from
multiple generated outputs; (3) lightweight LoRA fine-
tuning of the Stable Diffusion model for improved seman-
tic understanding; (4) CLIP-guided latent optimization dur-
ing the inference phase to dynamically adjust generation to-
wards higher semantic fidelity; (5) DiffusionCLIP and the
corresponding fine-tuning to enhance semantic coherence.

The inputs to our methods are textual prompts randomly
selected from the 2014 MS-COCO dataset, 10, 000 for fine-
tuning and additional 100 for evaluation. Our outputs are
synthesized images with a resolution of 512 x 512 pixels.
To rigorously evaluate these strategies, we use CLIPScore
as a quantitative metric, complemented by qualitative visual
assessments. By systematically isolating and comparing the
effectiveness of each enhancement strategy, we provide a
comprehensive understanding of their individual and rela-
tive impacts.

Our experimental results demonstrate incremental im-
provements in semantic alignment from a baseline average
CLIPScore of 0.1622 to 0.1649 (+0.0027) with prompt en-
gineering, 0.1734 (40.0112) with output filtering, 0.1958
(4+0.0336) after LoRA fine-tuning, and 0.2034 (+0.0412)
using CLIP-guided latent optimization. Qualitative assess-
ments further validate these findings, particularly highlight-
ing the visual coherence improvements achieved through
DiffusionCLIP fine-tuning.

This project performs a structured and extensive compar-
ative analysis of modular strategies for improving seman-
tic alignment in text-to-image diffusion models, providing
clear insights and guidelines for future research directions
and practical applications of text-to-image generation tech-
nologies.



2. Related Work

This project builds on several recent works in text-to-
image generation, image-text alignment evaluation, and ef-
ficient model adaptation:

Rombach et al. (2022)[9] introduce the Latent Diffusion
Model, which performs diffusion in a compressed latent
space rather than pixel space to drastically improve mem-
ory efficiency and resolution. This foundational idea under-
pins the design of Stable Diffusion v1.4 which we adopt.
While its efficiency allows democratized high-quality im-
age generation, the reliance on CLIP’s fixed pre-trained em-
beddings can limit semantic precision. This motivates sev-
eral of our modular improvements that target controllability
and alignment without sacrificing model compactness.

Saharia et al. (2022)[10] present Imagen, a photoreal-
istic diffusion model that integrates large language models
like TS for prompt understanding. Imagen emphasizes the
importance of language-model-conditioned synthesis and
deep cross-modal integration. Its reliance on powerful pro-
prietary models also highlights the trade-off between per-
formance and reproducibility in academic settings.

Hessel et al. (2021)[5]] propose CLIPScore, a reference-
free metric that uses CLIP embeddings to quantify how well
an image aligns semantically with a given prompt. Unlike
BLEU or CIDEr, CLIPScore captures perceptual similarity
grounded in joint vision-language space. While highly in-
formative, CLIPScore has limitations in edge cases, such
as unusual phrasing or abstract scenes, which necessitate
complementary visual inspection. It remains our primary
quantitative metric, offering a convenient and reproducible
benchmark to evaluate semantic alighment improvements
across various methods. Additionally, we provide image
comparisons in our project.

Hertz et al. (2023)[4] introduce Prompt-to-Prompt, a
method that manipulates cross-attention weights to enable
attribute-specific control in image generation. Though com-
putationally involved, their work underscores the power of
prompt-level control. Our use of templated prompt engi-
neering stems from similar goals but is executed without
modifying model internals, showing that even simple lin-
guistic interventions can lead to measurable semantic gains.
Compared to attention manipulation techniques, our ap-
proach trades off granular control for simplicity and scal-
ability.

Hao et al. (2023)[3] explore prompt optimization
through automated search and alignment models, proposing
methods that automatically refine prompts for better gen-
eration quality. Their work confirms that textual design
is a crucial and underexploited lever for improving diffu-
sion model outputs. While their framework is automated
and leverages gradient-based updates, our handcrafted tem-
plates represent a practical and lightweight alternative, es-
pecially suitable in low-resource or prototyping settings.

Hu et al. (2022)[6] propose LoRA, a method for low-
rank adaptation of pre-trained transformers and diffusion
networks. By injecting rank-constrained updates, LoRA
drastically reduces the parameter count for fine-tuning. This
approach enables us to selectively fine-tune Stable Diffu-
sion’s Unet layers using limited compute, making experi-
mentation feasible and efficient while maintaining general-
ization. LoRA exemplifies a broader trend in efficient fine-
tuning, striking a balance between flexibility, accessibility,
and performance.

Gal et al. (2023)[2] present Textual Inversion, a tech-
nique for learning new concepts as special tokens through
few-shot tuning. Though not directly applied in our project,
it informs the broader context of fine-tuning approaches.
Unlike LoRA, which tunes model weights, Textual Inver-
sion updates token embeddings, making it ideal for per-
sonalization but less suited for broad semantic enhance-
ments like those required in MS-COCO. Nonetheless, it
opens avenues for integrating learned prompts into broader
pipelines.

Kim et al. (2022)[7] introduce DiffusionCLIP, which
incorporates CLIP-based loss during diffusion model fine-
tuning to enhance semantic fidelity. Their method supports
controlled editing and alignment, demonstrating the effec-
tiveness of CLIP supervision. We draw from their ideas in
our own fine-tuning branch, using CLIP loss to iteratively
refine outputs and enable more coherent visual represen-
tations. This approach reflects a hybrid of inference-time
guidance and training-time supervision, bridging two com-
mon enhancement paradigms.

Liu et al. (2022)[8] present Composable Diffusion Mod-
els, allowing the user to generate images from multiple
prompts in a modular way, leveraging CLIP to guide and
combine latent trajectories. This idea of latent refinement
closely parallels our inference-time CLIP-guided genera-
tion, reinforcing the utility of CLIP in post-generation se-
mantic corrections without retraining the model. Com-
positionality also highlights how fine-grained control can
emerge from inference techniques rather than architectural
changes.

Crowson et al. (2022)[1] propose VOGAN-CLIP, one
of the earliest models to use CLIP for open-domain text-to-
image synthesis by optimizing latent codes through gradi-
ent ascent. Though replaced by more advanced diffusion-
based techniques, it remains historically important and con-
ceptually foundational to our use of CLIP-based filtering
and guidance at inference. It also demonstrates how opti-
mization in the latent space serves as a powerful method for
aligning generation in the absence of retraining.

These works form the theoretical scaffolding. By syn-
thesizing insights, our approach is distinguished by its mod-
ularity, offering practical contributions to the ongoing dis-
course on the text-to-image synthesis.



3. Methods

Our approach integrates a series of modular enhance-
ments to the Stable Diffusion framework to improve the se-
mantic fidelity and controllability of generated images. The
pipeline is composed of five key components: prompt en-
gineering, output filtering, LoRA-based fine-tuning, CLIP-
guided inference, and DifussionCLIP fine-tuning. Each
module contributes independently to the generation qual-
ity while remaining compatible with the overall diffusion
architecture.

3.1. Baseline Setup

The baseline is defined by a vanilla Stable Diffusion v1.4
model, released by CompVis and accessed through the Hug-
ging Face diffusers library. Stable Diffusion v1.4 model
is pre-trained on LAION-2B, generating images from raw
prompts without any post-processing or tuning.

Although utilized the model from Hugging Face, we
would like to discuss the computational graph. Stable Diffu-
sion operates as a Latent Diffusion Model (LDM), in which
the denoising process occurs in a compressed latent space
z rather than directly in pixel space. This significantly re-
duces memory and computation requirements while pre-
serving semantic structure.

3.1.1 Forward Process

Starting from a clean latent image z(, noise is added over
T steps using a fixed variance schedule /3, thl. The latent at
step t is:

q(zt | 20) = N (25 V@20, (1 — ay)I) (1)

where at = [[s = 1'agsand ay = 1 — f3;.

3.1.2 Reverse Process

A neural network €g(z¢,t) is trained to predict the added
noise, minimizing the simplified loss:

Lsimple = Ezg, €, ¢ Ue —eg(2t, t)|2] )

3.1.3 Classifier-Free Guidance

To incorporate conditioning information ¢ (such as a text
prompt), classifier-free guidance interpolates between con-
ditional and unconditional predictions:

€quided = (1 +w) - €9(24,t,¢) —w - €9(24,1,0)  (3)

where w is the guidance scale (7.5 in our baseline), and
denotes the null condition.

3.1.4 DDIM Sampling

For efficiency, we employ Deterministic DDIM sampling.
Given predicted noise €0 and current latent z;, the next la-
tent 2zt — 1 is estimated as:

z1=Vat—1zg+V1i—at—1-¢ 4)

This allows high-quality generation in significantly fewer
steps.

In this project, each textual prompt generates a single
image of resolution 512 x 512 using DDIM sampling with
50 steps and a guidance scale of 7.5.

Quantitative evaluation is conducted using CLIPScore,
as introduced by [5]], which computes cosine similarity be-
tween CLIP-encoded image and text embeddings:

CLIPScore(,T) = cos (¢image(1), Prext(T)) (5)
where @image and ¢Prex; are the respective CLIP encoders.

3.2. Prompt Engineering

We apply template-based prompt engineering to enhance
the specificity and expressiveness of input prompts, thereby
guiding the model toward more semantically faithful and vi-
sually coherent outputs. Inspired by [4] but applied without
architectural modification, we modified the input text rather
than the generation process.

Specifically, we define three stylistic prompt templates:
photorealistic, cinematic, and nature-oriented. To select the
appropriate template, we implement a lightweight keyword-
based classification: each input caption is scanned for terms
associated with animals, food, or natural environments, and
matched to the corresponding style.

Formally, let ¢; be the raw caption and P the template,
then the engineered prompt ¢, = P(c;). The model then
performs:

I; = SDf(c}) (6)

where SD@ denotes the Stable Diffusion model. We eval-
uate semantic gains by comparing CLIPScore before and
after prompt engineering.

3.3. Output Filtering

Instead of altering the generation pipeline, output fil-
tering improves alignment by re-ranking multiple candi-
date images. For each caption, we sample k = 5 outputs

I},...,IF and compute their CLIPScores s}, ..., s¥. The
final image is selected via:
I = arg max CLIPScore(I/, ¢;) (7)
J

This zero-cost method directly leverages the stochasticity
of diffusion outputs to choose more semantically aligned
results.



3.4. LoRA Fine-Tuning
3.4.1 Architecture and Parameters

To efficiently adapt the model to our specific dataset, we
adopt the Low-Rank Adaptation (LoRA) technique [6],
which injects trainable low-rank matrices (A, B) into ex-
isting linear layers W as:

W' =W + aAB (8)

where A € R¥", B € R"™*?, and r < d. We apply LoRA
modules to attention layers in the Unet component of Stable
Diffusion, enabling parameter-efficient fine-tuning that pre-
serves the core generative capacity of the pre-trained model.

3.4.2 Training Configuration

To adapt the model toward better semantic alignment, we
fine-tune on 10,000 image-caption pairs from the MS-
COCO 2014 dataset using batch size 8, learning rate 5e — 5,
rank r = 4, scaling factor « = 16, and 10 epochs. Only
the attention weights in the Unet are updated; the VAE and
CLIP encoders remain frozen. Training is on RTX 3080.

3.5. CLIP-Guided Generation
3.5.1 Inference-Time Reranking

To optimize semantic consistency at inference time, we in-
corporate CLIP-guided reranking into the latent sampling
stage. For each prompt ¢;, we generate multiple latent sam-
ples 2}, ...,z and decode each to its image I! using the
VAE. CLIPScores s] = CLIPScore(I},¢;) are computed
and used to select the image [, f with the highest alignment

Score:

I = arg max CLIPScore(I7, ¢;) )
J

This method guides sampling toward optimal semantic out-
puts without modifying the model weights.

3.5.2 CLIP-Guided Latent Optimization

Beyond post-hoc selection, we integrate CLIP feedback di-
rectly into the denoising trajectory to optimize latent codes
during generation. Following approaches inspired by CLIP
guidance in prior works [1], we decode the latent z; every
n steps (e.g., every 25 iterations) into an image [;, compute
its CLIP similarity score sim(Iy, ¢;) with the input caption
¢;, and use its gradient to update the latent.

Let fimg(I¢) and fiex(c;) be the normalized CLIP image
and text embeddings. The CLIP-based alignment loss is:

LCLIP = —\ - cos (fimg(1), fiexi(ci)) (10)

where ) is the guidance scale. The gradient V,, Lcppp is
computed and used to nudge z; toward a direction that im-
proves semantic consistency. This yields an updated latent:

2t < 2z =1 VLo (1)
where 7 is an implicit learning rate. This technique en-

ables fine-grained, inference-time control without modify-
ing model weights or requiring additional training.

3.6. DiffusionCLIP
3.6.1 Computational Graph

DiffusionCLIP’s computational graph extends that of the
standard Stable Diffusion model by incorporating a differ-
entiable loop over the entire denoising trajectory. Unlike
traditional inference-only pipelines, gradients flow through
UNet during both forward and reverse diffusion steps.

* Encoding reference image I, to latent 2z via the VAE
* Performing reverse noising to obtain z; from zy:

z=Vatzg+V1—at-e, e~N(01I (12)

» Using UNet to predict noise at each ¢, producing 2z ;:

¢0 = UNetf(z, t, condition = () (13)

zt — 1 = Scheduler(ég, 2, t) (14)

* Reconstructing intermediate outputs and comparing
them to textual semantics using directional CLIP loss.

» Backpropagating gradients through CLIP, UNet, and
diffusion scheduler.

This structure allows the optimization process to refine
generative trajectories such that semantic shifts in the latent
space mirror the desired changes in text.

3.6.2 Loss Function and Finetune Iterations

We adopt DiffusionCLIP [7] to further improve semantic
alignment by injecting CLIP-based gradients into the dif-
fusion training loop. DiffusionCLIP aligns text and image
semantics by optimizing a directional CLIP loss within the
diffusion framework. Let fimg(-) and fiex(-) denote CLIP
encoders. Given reference image I..f, generated image Igen,
reference caption cq.t, and target caption c,,, we define the
directional loss as:

LCLIP = 1 — cos (AI,AT) (15)
Al = fimg(jgen) - fimg(Iref) (16)
AT = ftext(ctar) - ftext(cref) (17)

This loss encourages the direction of change in image
space to align with the intended direction of change in se-
mantic space.

Due to hardware and time constraints, we fine-tune on
5 image-caption pairs using to = 30, ft;ters = 10 and
lr = 3e — 4 on RTX 3080.



4. Dataset and Evaluation Metrics
4.1. Dataset: MS-COCO Captions Subset

Our experiments are based on the MS-COCO 2014 Cap-
tions datase a widely adopted benchmark for tasks in-
volving image-text alignment. The dataset contains over
120,000 natural images, each annotated with five human-
generated captions describing salient objects and scenes.
To balance computational feasibility and diversity, we ran-
domly sample 10, 000 image-caption pairs from the training
split for fine-tuning, and reserve an additional 1,000 dis-
tinct samples for evaluating inference-time strategies. For
DiffusionCLIP, which involves gradient-based optimization
through multiple denoising steps, we select 5 images from
the fine-tuning subset and 10 samples from the evaluation
subset, due to its significantly higher computational cost.

Before model input, each image is resized to a fixed reso-
lution of 512 x 512 pixels using bicubic interpolation, align-
ing with the latent resolution expectations of Stable Diffu-
sion v1.4. Pixel values are normalized to the [—1, 1] range,
matching the input domain of the VAE encoder. For cap-
tions, we employ the CLIP tokenizer (from ViT-L/14) to to-
kenize each sentence, truncating or padding to a uniform se-
quence length of 77 tokens as required by the text encoder.
We also remove invalid samples such as corrupted images,
empty captions, or samples containing special characters in-
compatible with the tokenizer.

No explicit data augmentation or external features (e.g.,
HOG, PCA, etc.) are applied, as the primary objective is
to evaluate prompt-based and latent-space alignment strate-
gies rather than train large vision-language models from
scratch. Nonetheless, the inherent linguistic variability and
visual richness in MS-COCO provide sufficient complexity
to stress-test our semantic enhancement modules. Repre-
sentative examples from the dataset span common scenes
such as “a dog running through a grassy field,” “a bowl of
soup placed on a wooden table,” and “people walking down
a busy city street,” allowing us to examine how well various
interventions improve fine-grained visual grounding.

4.2. Evaluation Metric: CLIPScore (ViT-L/14)

We use CLIPScore [5] as the primary metric to evaluate
semantic alignment between generated images and textual
prompts. CLIPScore is defined as the cosine similarity be-
tween CLIP-encoded image and text representations. All
evaluations are conducted using the CLIP ViT-L/14 model
to ensure consistency and sensitivity to fine-grained align-
ment. Higher CLIPScores indicate better semantic coher-
ence between the image and its caption. For each genera-
tion method, we report mean CLIPScore across the evalua-
tion set, and visualize score distributions using boxplots and
histograms to facilitate comparative analysis.

Thttp://cocodataset.org

5. Experiments / Results / Discussions

We present a comprehensive analysis of our experi-
mental results, evaluating each enhancement strategy us-
ing both quantitative metrics and qualitative image com-
parisons. The discussion proceeds through baseline perfor-
mance, incremental improvements across our pipeline, and
final outcomes from fine-tuning-based methods.

5.1. Experimental Setup

All experiments are conducted on RTX 3080. We evalu-
ate methods on a consistent set of 100 image-caption pairs
sampled from the MS-COCO 2014 validation split. Each
method—including Prompt Engineering, Output Filter-
ing, CLIP-Guided Reranking, and LoRA Fine-Tuning—is
tested in isolation against the baseline Stable Diffusion v1.4
model. DiffusionCLIP is evaluated by the step-by-step im-
age comparison qualitatively.

We apply consistent hyperparameters across methods
where applicable:

¢ For Baseline Stable Diffusion v1.4 model, we use 50
inference steps and a guidance scale of 7.5;

» For Prompt Engineering, fixed templates are applied
without stochastic variation;

e Output Filtering generates 5 candidate images per
caption and selects the one with the highest CLIP-
Score, with hyperparameters the same to the baseline’s
default values;

* LoRA Fine-Tuning is performed over 10 epochs with
learning rate 5 x 1075, batch size 8, rank = 4, and
scaling factor « = 16. The fine-tuning is based on
10, 000 samples;

¢ CLIP-Guided Generation uses CLIP ViT-L/14, with

the latent height and width as %2 = 64, inference
steps as 50, guidance scale as 0.5 and guidance interval
as 25;

* DiffusionCLIP applies 10 iterations of directional
fine-tuning using CLIP loss, with learning rate 3e — 4
and DDIM inversion over 30 steps. The fine-tuning is
based on 5 images.

Our primary quantitative evaluation metric is CLIP-
Score [5]], computed using the CLIP ViT-L/14 model. This
metric measures the cosine similarity between the image
and text embeddings in the CLIP latent space, providing
an effective proxy for semantic alignment. We report mean
scores, standard deviation, and statistical distribution sum-
maries. We also include side-by-side image comparisons to
highlight perceptual differences.



5.2. CLIPScore Results

Figure 1 summarize the improvements in mean CLIP-
Score across all methods. As a baseline, images gener-
ated by Stable Diffusion v1.4 achieve a mean CLIPScore of
0.1622. Structured Prompt Engineering slightly improves
alignment, yielding an average score of 0.1649 (+0.0027).
Output Filtering, which selects the best among five can-
didate images per caption, increases the average score to
0.1734 (40.0112), reflecting the effectiveness of selection-
based inference.

CLIPScore Boxplot Comparison
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Figure 1. CLIP Score Comparison by Boxplot

We observe further gains from training-time methods.
LoRA fine-tuning on 10,000 samples improves the aver-
age CLIPScore to 0.1958 (4+0.0336), confirming that adapt-
ing attention layers, even with low-rank updates, leads
to stronger semantic encoding. CLIP-guided generation,
which applies latent-space optimization using CLIP simi-
larity gradients during inference, achieves the highest score
of 0.2034—an improvement of +0.0412 over the baseline.

To provide a more granular view of model perfor-
mance, we report both aggregate and per-sample CLIP-
Score statistics. Figure 1 presents a boxplot comparison
across all methods, clearly showing the progressive shift to-
ward higher scores and tighter distributions as enhancement
strategies become more advanced. Notably, CLIP-guided
generation and LoRA fine-tuning not only exhibit the high-
est medians but also the smallest interquartile ranges, sug-
gesting strong consistency in semantic alignment.

Methodology Distributuons
Method Mean Median STD 25% 75%
Baseline 01622 01647 0.0212 01493 0.1750
Prompt Eng. 01649 01645 0.0182 01507 0.1773
Qutput Filter 01734 0.1740 0.0190 0.1609 0.1830
LoRA FT 01958 01932 0.0191 0.1837 0.2082
Clip-guided 0.2034 0.2024 0.0185 0.1895 0.2156

Figure 2. Methodology Distribution

Figure 2 summarizes the full statistical breakdown in-
cluding mean, median, standard deviation, and interquar-
tile range (25% and 75%). These values confirm the vi-
sual trend: all enhancement strategies yield measurable im-
provements over the baseline. Prompt engineering and out-
put filtering offer meaningful gains with relatively low vari-
ance, lifting median scores while maintaining tight distribu-
tions. LoRA and CLIP-guided methods further consolidate
these trends, achieving both superior average performance
and high distributional robustness across diverse prompts.

To assess the consistency of improvements across indi-
vidual samples, we present a per-sample CLIPScore gap
analysis in Figure 3. For each method, we compute the
proportion of samples that achieve better CLIPScores com-
pared to the baseline, along with the mean and median
improvement magnitudes. Prompt engineering improves
CLIPScore in 59% of the samples, with a modest mean
gain of +0.003 and median gain of +0.002. Output filter-
ing proves more robust, showing 87% improvement with a
mean gain of +0.01 and median gain of 4-0.008. LoRA and
CLIP-guided generation exhibit the strongest consistency,
both achieving 100% sample-wise improvement rates with
substantial mean gains (40.03 and +0.04 respectively),
highlighting their reliability across diverse caption-image
scenarios.

CLIPScore Gap, by each sample
Prompt Eng. Output Filter LoRA FT Clip-guided
%Imprv. Mean Median | %Imprv Mean Median | % Imprv Mean Median | % Imprv. Mean  Median
59% 0.003 0.002; 87% 0.01 0.008, 100% 0.03 0.03 100% 0.04 0.04

Figure 3. Improvement Stats by Methodologies

Finally, we visualize the training process of LoRA fine-
tuning in Figure 4. The plot shows mean squared error
(MSE) loss over 10 epochs, revealing rapid convergence in
the early stages followed by stable refinement, suggesting
effective learning without overfitting.

LoRA Fine-Tuning: Epoch Avg Loss
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Figure 4. LoRA Training Loss by Epoch



5.3. Image Comparison

We provide direct visual comparisons to qualitatively as-
sess the impact of each enhancement method. We select two
representative examples (ID: Caption) to illustrate the evo-
lution of image quality and semantic alignment across our
enhancement pipeline.

* 91257: A seagull sitting on the pier with the light
house behind him.

* 31757: A man putting on gloves standing with people
going skiing and snowboarding.

5.3.1 Baseline and Improvements

Figures 5 and 6 show side-by-side comparisons of the base-
line with successive improvement stages. In Figure 5, we
observe that the baseline output for sample 91257 lacks
spatial coherence: the red-roofed lighthouse is misaligned
and blurry, the pier is warped and partially occluded, and
the seagull’s features are distorted with unnatural edges.
Prompt engineering shows partial improvement—while the
seagull and lighthouse are now more semantically aligned
and the lighting is more photorealistic, the background
structure (e.g., the buildings) is missing, reducing contex-
tual richness. Output filtering yields sharper textures on the
bird and improved ocean rendering, but introduces a flipped
seagull orientation and omits the pier entirely, indicating a
trade-off between object clarity and scene completeness.

Original Baseline

Prompt Eng. Output Filter

Figure 5. Baseline, w/ Prompt and Filter

For sample 31757, the baseline output introduces visual
inconsistencies: although the snowy setting is preserved,
the background cabin is entirely missing, the human figures
are stiffly rendered, and the snowboard in the foreground
is barely distinguishable. Prompt engineering improves hu-
man pose naturalness and adds detail to winter gear such as
jackets and helmets, yet the snowboard remains absent and
the background building is still missing, limiting contextual
depth. Output filtering yields clearer body outlines and fa-
cial features, and the snowboard becomes visibly integrated
into the foreground. However, the building backdrop con-
tinues to be omitted, suggesting limitations in background
fidelity across methods.

In Figure 6, LoRA fine-tuning offers substantial im-
provements in both samples. For sample 91257, the method
restores the pier structure, brings the lighthouse into sharper
focus, and improves ocean texture. However, the seagull’s
orientation is incorrect, facing away from the camera rather
than matching the original image, and the background
building appears overly reduced in scale. For sample 31757,
LoRA generates more coherent human poses and clearly
presents the snowboard in the foreground. The snowy ter-
rain and mountainous backdrop are well-preserved, but the
faces of the figures remain undetailed, and the background
cabin is still missing, indicating that while LoRA enhances
salient objects, it may overlook finer contextual elements.

Original Baseline LoRAFT CLIP-Guided
TR i r—

ptiia

Figure 6. Baseline, w/ LoRA and CLIP-Guided

CLIP-guided generation, in contrast, pushes semantic
specificity further but occasionally introduces artifacts. For
sample 91257, although the seagull and harbor setting are
sharply defined, the bird’s body is exaggerated, the light-
house is missing, and the region near the seagull’s tail be-
comes blurry and incoherent. For 31757, the generation in-
cludes skis and poles and captures the mountainous terrain
well, but suffers from extreme warping, visual clutter, and
distorted geometry—Ilikely due to over-optimization on lo-
cal CLIP features at the cost of spatial coherence and global
structure.

5.3.2 DiffusionCLIP

Figure 7 illustrates the results of applying DiffusionCLIP
on the same examples, showing the progression from non-
finetuned to 1-step and 5-step fine-tuning.

Original Non-finetuned Finetune x1

Finetune x5

Figure 7. DifussionCLIP Image Comparison



Compared to previous methods, DiffusionCLIP offers a
qualitatively different effect. Rather than altering prompt
formulations or tuning layers globally, it attempts to se-
mantically steer the output toward a known reference im-
age through iterative guidance, effectively reproducing the
original photograph.

For sample 91257, the non-finetuned result is heavily
distorted, with vague color blobs and no recognizable ob-
ject boundaries. After a single round of fine-tuning, we ob-
serve significant improvements: the seagull becomes dis-
cernible, the red-roofed lighthouse begins to emerge, and
wave textures gain structure. However, some details such as
the pier remain ambiguous, and the seagull is not perfectly
integrated into the scene. After five rounds, image coher-
ence improves dramatically—the seagull exhibits sharper
contour definition and more realistic texture, the lighthouse
is centered and recognizable, and the overall composition
matches the original photograph. One minor flaw persists:
the direction of the seagull is slightly misaligned from the
original, and the background building remains undersized.

For sample 31757, the non-finetuned output is similarly
noisy and fragmented, with no visible characters or win-
ter landscape elements. After one round of fine-tuning, the
snowy environment and basic human silhouettes start to ap-
pear, along with a rough outline of the foreground snow-
board. The surrounding structure remains underdeveloped.
After five rounds of fine-tuning, the scene becomes sub-
stantially clearer: the snowboard is correctly positioned and
colored, the figures are fully visible with appropriate skiing
posture, and the snowy backdrop, including trees and sky,
matches the semantic expectations of the caption. Notably,
the background cabin becomes identifiable, which was ab-
sent from all previous methods, suggesting that directional
fine-tuning aids in retrieving global contextual features as
well as local object fidelity.

5.4. Discussions

We briefly compare methods’ strengths and limitations.

¢ Prompt Eng. and Output Filter are low-cost tech-
niques, improving output without changing the model.
Prompt templates guide generation style, while filter-
ing selects better candidates. However, both lack in-
ternal model adaptation and struggle with structural fi-
delity.

* LoRA Fine-Tuning improves core alignment and ob-
ject fidelity with limited updates, but often misses
background details and fine textures.

¢ CLIP-Guided Generation improves semantic preci-
sion, by injecting CLIP-based gradients during infer-
ence. However, it risks introducing artifacts due to lo-
cal over-optimization and requires careful tuning.

* DiffusionCLIP best reproduces reference images via
iterative, CLIP-guided fine-tuning. It excels in align-
ment but is slow, memory-intensive, and less flexible
for diverse generation.

To summarize, simpler methods scale well; fine-tuning
and CLIP-based methods yield higher fidelity. The best
results may come from hybrid approaches that combine
strengths across strategies.

6. Conclusion and Future Work

In this project, we systematically explored multiple
strategies to improve text-to-image generation using Sta-
ble Diffusion. Starting from a vanilla baseline, we im-
plemented and evaluated five distinct enhancement tech-
niques: prompt engineering, output filtering, LoRA fine-
tuning, CLIP-guided generation, and DiffusionCLIP.

Our experiments demonstrate that while simple meth-
ods like prompt engineering and output filtering offer quick
wins with low computational cost, they are ultimately lim-
ited in correcting deep semantic or structural flaws. LoRA
fine-tuning achieves substantial gains in alignment and vi-
sual fidelity by modifying a small number of model pa-
rameters, making it an efficient and scalable solution.
CLIP-guided generation pushes semantic alignment further
through inference-time optimization, albeit with trade-offs
in artifact risk and stability. DiffusionCLIP delivers the
most faithful reconstructions of target concepts and images,
confirming its strength in reference-guided scenarios, but
also highlighting its high computational demands.

Looking ahead, there are several promising directions
for future work. First, combining multiple methods—such
as integrating LoRA fine-tuning with inference-time CLIP
guidance—may yield complementary benefits. Second, im-
proving memory and speed efficiency of CLIP-guided opti-
mization could enable its deployment in real-time systems.
Third, developing more interpretable metrics beyond CLIP-
Score would help better assess alignment quality. Lastly,
expanding our evaluation to include human preference stud-
ies could provide more holistic insights into perceived im-
age quality.

Together, our findings provide a comprehensive roadmap
for enhancing diffusion-based generation systems and of-
fer actionable guidance for selecting the appropriate method
based on application-specific constraints and objectives.
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