
Aligning Text-to-Image Diffusion Models using Human Utility Optimization and
Low-Rank Adaptation

Wendy Yin
Stanford University

Department of Economics
wendyyin@stanford.edu

Yicheng Zhang
Stanford University

Department of Computer Science
yicheng4@stanford.edu

Yiwen Zhang
Stanford University

Department of Computer Science
leonardz@stanford.edu

Abstract

Text-to-image diffusion models like Stable Diffusion are
good at generating high-fidelity images but often fail to ad-
here to specific or niche artistic styles due to the limita-
tion from the broad nature of their pre-training data. This
project aims to address this style alignment gap by investi-
gating whether using parameter-efficient fine-tuning tech-
niques and human-feedback objectives can align models
to fine-grained artistic preferences. We employ Low-Rank
Adaptation (LoRA) on a Stable Diffusion checkpoint and
compare several preference-alignment strategies, including
Diffusion-DPO, Diffusion-KTO and SPIN-Diffusion. Our
results, evaluated on automated metrics like PickScore &
CLIP Score, demonstrate that advanced alignment meth-
ods significantly outperform baselines. In particular, SPIN-
Diffusion achieved the highest human preference score,
closely followed by Diffusion-KTO, highlighting the effec-
tiveness of self-play and direct utility optimization. In side-
by-side comparisons, the Diffusion-KTO model consistently
preserves finer details, such as fur texture, and maintains
more vivid, well-saturated colors across both photographic
and stylized prompts. These findings suggest that human
utility optimization is a promising and efficient pathway for
achieving high-fidelity stylistic control in generative mod-
els, enabling critical downstream applications in art and
design.

1. Introduction

Text-to-image diffusion models such as Stable Diffusion
[11] and DALL-E [10] have rapidly become the backbone
of contemporary visual-content generation. Their ability to

map arbitrary natural-language prompts onto high-fidelity
images has unlocked a wide array of applications. Yet, de-
spite impressive breadth, these models remain coarse in-
struments when users demand adherence to highly spe-
cific or niche artistic styles. Constrained by the heteroge-
neous—and often mainstream—signal in their pre-training
data, they tend to average over stylistic nuances, yielding
images that are aesthetically pleasing but misaligned with
idiosyncratic tastes. Addressing this style-specific align-
ment gap is essential for downstream domains such as
concept-art prototyping, personalized game asset creation,
and cultural-heritage preservation, where fine-grained artis-
tic fidelity is non-negotiable.

This project tackles the challenge of stylistic align-
ment through targeted, data-efficient fine-tuning. We
mainly study if parameter-efficient diffusion model can be
updated through Low-Rank Adaptation (LoRA) adapters
to be aligned to niche, fine-grained artistic preferences
using human-feedback objectives alone, and investigate
whether such alignment translates into measurable gains
over both reconstruction-only fine-tuning and existing
pairwise-preference baselines. The input to our algorithm
is a set of images representing a target artistic style, along
with text prompts. We then use a Stable Diffusion model
with LoRA adapters, which we fine-tune by directly opti-
mizing for human utility using objectives like Diffusion-
DPO, Diffusion-KTO and SPIN-Diffusion. The final output
is a model capable of generating novel images that faithfully
capture the desired artistic style from new text prompts.

Formally, given (i) a frozen text encoder and U-Net
backbone M0, (ii) a prompt distribution P , and (iii) a
preference corpus D = {(pk, I+k , I−k )}Nk=1 or binary likes
{(pk, Ik, yk)}Nk=1, we ask whether there exists a com-
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pact parameter set θ⋆ (LoRA rank r ≪ d) such that the
adapted sampler Mθ⋆ maximizes expected human util-
ity Ep∼P

[
Uhuman(Mθ⋆(p))

]
subject to a tight complex-

ity budget, and how its performance compares against (a)
the un-adapted M0, (b) supervised DreamBooth-style re-
constructions, and (c) state-of-the-art preference-alignment
methods like Diffusion-DPO. This framing unifies our em-
pirical study across binary, pairwise, and self-play objec-
tives while isolating the value of LoRA-based updates for
stylistic fidelity.

In this work, we navigate these interconnected domains
by specifically focusing on:

• Simplified Data Collection and Utility: We ex-
plore the efficacy of Kahneman-Tversky Optimization
(KTO), which promises robust alignment using only
binary feedback (e.g., likes/dislikes from a preference
corpus like the Laion Art subset with its aesthetic
scores). This potentially streamlines the often costly
and complex data collection phase (axis i) compared
to methods requiring explicit pairwise comparisons.

• Advanced Optimization Objectives: We systemati-
cally compare Diffusion-KTO against other state-of-
the-art optimization objectives like Diffusion-DPO
and a simpler BCE-based preference loss, providing
insights into their relative strengths for fine-grained
stylistic control.

• Parameter and Data Efficiency: Our entire investi-
gation is grounded in data-efficiency techniques (axis
iii), primarily Low-Rank Adaptation (LoRA). This not
only makes our approach computationally tractable but
also specifically tests the hypothesis that significant
stylistic alignment can be achieved with minimal pa-
rameter updates and focused preference data.

By focusing on the intersection of human utility optimiza-
tion and parameter-efficient tuning, we aim to demonstrate
a practical path towards achieving nuanced artistic control
in large-scale diffusion models.

2. Related Work
Recent progress in aligning text-to-image models with

human preferences can be understood across three inter-
connected domains: the creation of preference datasets,
the development of optimization objectives to leverage
this data, and the invention of techniques to improve data
efficiency. Our work is situated at the intersection of these
domains, using parameter-efficient methods and human
utility optimization to align models with niche artistic
styles.

Preference Datasets for Text-to-Image Alignment.

The foundation of preference alignment lies in the data
used to represent human aesthetic judgments. Pairwise
preference datasets have become a popular standard.
Pick-a-Pic introduced a public corpus of crowd-sourced
pairwise votes, enabling systematic comparison of model
outputs [5]. ImageRewardDB extended this idea, gath-
ering 137k expert comparisons and distilling them into
a CLIP-based reward model [19]. Human Preference
Score v2 (HPSv2) further scaled to 800 k comparisons and
established a robust automatic metric [17].
Recognizing that a single preference score can be limiting,
researchers have developed datasets with more granular
feedback. VisionReward, for example, decomposed
user judgments into interpretable sub-scores, furnishing
multi-attribute labels for both image and video generation
[18]. And there are more specialized datasets where we
describe in the Dataset section.

Optimization Objectives for Alignment. Given these
datasets, various optimization objectives have been pro-
posed to align diffusion models. Early Reward-model
pipelines, such as ReFL, tune generators directly against
the ImageReward scorer [19]. Direct Preference Optimiza-
tion (DPO) [9], adapted from language models, has become
a state-of-the-art technique. Diffusion-DPO adapts Direct
Preference Optimization to diffusion likelihoods, achieving
state-of-the-art appeal on SDXL without explicit rein-
forcement learning [16]. D3PO further reduces memory
overhead by operating in the denoising latent space [20].
Our work heavily leverages a successor to these methods,
Diffusion-KTO. Kahneman-Tversky Optimization (KTO)
[2] aims to improve the efficiency and quality of LLM
alignment while reducing the need for expensive prefer-
ence data. KTO represents a significant advancement by
eliminating the need for pairwise data entirely. Based on
KTO, Diffusion-KTO offers per-sample utility calculation
and thus it can maximize expected human utility using only
binary feedback (e.g., likes/dislikes), which dramatically
simplifies the data collection process. [6].

Data-Efficient Alignment Techniques. SPIN-Diffusion
employs a self-play strategy where the current model is
compared against a frozen, earlier checkpoint to generate
synthetic preference pairs. This allows the model to
bootstrap its own alignment signal, effectively reducing
the need for human data [22]. Moreover, FiFA proposes
automated filtering that can accelerate DPO training by two
orders of magnitude, making the alignment process faster
and more efficient [21].

Connection to historical development of utility func-
tion. Under the von-Neumann–Morgenstern axioms,
binary feedback or pairwise comparisons can be em-
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bedded in a cardinal utility function whose expectation
is the object of optimisation. Random-utility theory
interprets each observed vote as a noisy realisation of
latent utility and motivates the logistic losses used in
DPO and KTO. Indeed, Diffusion-DPO’s objective is
formally identical to maximum-likelihood estimation
in McFadden’s conditional-logit model [7]. Moreover,
Afriat’s revealed-preference theorem guarantees that,
absent preference cycles, a continuous, monotone utility
rationalizes any finite set of binary choices [1]; this justifies
the internal-consistency checks commonly applied to
feedback datasets. Viewed through this lens, reward-model
pipelines estimate a surrogate utility index, whereas
reward-free methods such as KTO maximize expected
utility directly—mirroring the distinction between indirect
and direct utility estimation in micro-econometrics.

3. Methods
Our core objective is to align a pre-trained, large-scale

diffusion model with fine-grained, niche artistic styles. To
do this efficiently, we adopt a parameter-efficient fine-
tuning (PEFT) strategy, ensuring that only a small fraction
of the model’s parameters are updated. This allows for rapid
experimentation and makes the stylistic adaptation of mas-
sive models computationally tractable. All our experiments
start from the same Stable Diffusion v1.5 check-
point. We then compare a supervised reconstruction-based
baseline against several advanced human-preference align-
ment algorithms, all implemented within a unified LoRA
framework. With this approach, we can clearly measure the
benefits of using human feedback and compare the results
with traditionally fine-tuned models.

We plan to compare four preference-alignment strate-
gies under a common parameter-efficient setting: all meth-
ods start from the same Stable Diffusion v1.5
checkpoint and update only rank-8 LoRA adapters in the
U-Net (3.1). The variants differ in how human feedback
enters the optimisation objective (3.2), yielding a clean
ablation of preference signals versus reconstruction-only
fine-tuning. Our evaluation includes automatic metrics
(PickScore, CLIP Score).

3.1. Minimal Baseline: Binary-Preference LoRA

3.1.1 Parameter-Efficient Fine-Tuning with LoRA

LoRA is a technique that enables the efficient fine-tuning
of large models by injecting trainable, low-rank matrices
into the model’s architecture while keeping the original pre-
trained weights frozen. In the attention blocks of the U-
net, we would augment each weight matrix W0 ∈Rd×d as
follows:

Wθ = W0 +AB⊤, A∈Rd×r, B∈Rd×r, r≪d,
(1)

This decomposition helps reduce the number of trainable
parameters for the layer from d2 to only 2dr [4].
In our project, we utilize a rank of r = 8 for all LoRA
adapters in order to obtain a balance between model expres-
siveness and parameter efficiency. This approach signifi-
cantly reduces the memory and computational requirements
for fine-tuning while demonstrating strong performance in
adapting the model’s behavior.

3.1.2 Diffusion Model Preliminaries

Our approach is built upon the framework of latent diffu-
sion models. The process begins by encoding a training im-
age into a lower-dimensional latent representation, z0, us-
ing a pre-trained Variational Autoencoder (VAE). The for-
ward diffusion process then gradually adds Gaussian noise
to this latent over a series of timesteps t. Following the
Denoising Diffusion Implicit Models (DDIM) formulation
[14], the noisy latent zt at any timestep t can be sampled as:

zt =
√
ᾱt z0 +

√
1− ᾱt ϵ, ϵ∼N (0, I), (2)

Here, ϵ is the noise samples from a standard normal distri-
bution N (0, I), and ᾱt is a pre-defined noise schedule pa-
rameter that controls the signal-to-noise ratio at timestep t.
The objective of the denoising model is to predict the noise
ϵ that was added to the latent, given the noisy latent zt and
a conditioning input text prompt. We apply LoRA adapters
to the cross-attention layers of the denoising model to guide
the generation process.

3.1.3 Binary-Preference LoRA

Our minimal baseline preference-based model uses a
straightforward binary cross-entropy (BCE) loss. For each
image in our preference dataset, which is labeled as y = 1
for exclusive win and 0 otherwise, the LoRA-augmented U-
Net predicts ϵ̂θ. The preference loss is formulated as:

Lpref = BCE
(
−MSE(ϵ̂θ, ϵ), y

)
, (3)

In this objective, the negated pixel-wise Mean Squared Er-
ror (MSE) between the predicted noise ϵ̂θ and the true noise
ϵ is used as a logit. This construction, echoing the one
used for the ImageReward model [19], effectively trains the
model to produce a lower reconstruction error on preferred
images and a higher error on disliked images, thus implic-
itly learning the preference distribution.

3.2. Enhanced Alignment Variants

(i) DreamBooth+LoRA. As a supervised baseline to
benchmark against non-preference methods, we fine-tune
via the reconstruction loss of DreamBooth, a popular tech-
nique for subject-driven generation. DreamBooth fine-tunes
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a text-to-image model on a few images of a specific sub-
ject or style and its objective is to accurately recreate the
VAE latents of the provided images when conditioned on
a unique identifier prompt without any human preference
data [12]. Its could help us quantify the performance gains
achievable through human utility optimization.

(ii) Diffusion-DPO. Direct Preference Optimization
(DPO) is a powerful and stable method for aligning models
with human preferences that bypasses the need for an
explicit reward model [9]. Adapted for diffusion models,
Diffusion-DPO learns directly from a dataset of preference
pairs, where each entry consists of a prompt. For each
prompt we sample a “winner” image x+ and “loser” x−.
With a temperature β, DPO minimizes

LDPO = − log σ
(
β [rθ(x

+)− rθ(x
−)]

)
, (4)

where rθ is the per-image implicit reward function parame-
terized by the diffusion model itself [16]. The loss works by
maximizing the margin between the implicit reward of the
winner image and the loser image. The temperature param-
eter β controls how strongly the loss penalizes the model
for mismatching the pair, with higher values of β leading to
a stronger level of preference enforcement.

(iii) Diffusion-KTO. Kahneman-Tversky Optimization
(KTO) further simplifies the data requirements for prefer-
ence alignment. Unlike DPO, KTO dispenses with pairwise
comparisons and can learn directly from binary labels. The
objective of KTO is to maximize the expected utility of the
images generated by the model from binary likes:

max
θ

J(θ) = Ez∼pθ

[
u(z)

]
(5)

where pθ is the image distribution and u(z) is a utility
function derived from the binary human feedback. Since
the expectation is relatively hard to control, KTO uses a
score-function estimator with baseline λ to compute the pol-
icy gradient:

∇θJ = E
[
∇θ log pθ(z)

(
u(z)− λ

)]
(6)

In the estimator, λ serves as a baseline to reduce the vari-
ance of the gradient estimates, leading to more stable train-
ing [6]. KTO’s ability to learn from simple, unpaired human
feedback makes it a highly data-efficient and more flexible
compared with other alignment methods.

(iv) SPIN-Diffusion. Self-Play fIne-tuNing (SPIN) is a
technique designed to reduce the need for large quantities
of human-annotated data by having the model generate its
own training signals. In SPIN-Diffusion, the model gen-
erates synthetic pairs by comparing the current model to

a frozen copy θ− and applying the DPO loss (4) to those
pairs. This process creates a curriculum where the model
continuously refines its own notion of model quality, boot-
straps its alignment and discovers hard negative examples
without additional human annotation. In this way SPIN-
Diffusion could help us half the data requirement [22].

3.3. Hypotheses

Building on the distinct characteristics of the alignment
strategies and our goal of achieving nuanced stylistic con-
trol via parameter-efficient means, we hypothesize (H1) that
DPO and KTO outperform the reconstruction-only Dream-
Booth baseline, (H2) that KTO matches DPO despite need-
ing only unpaired likes, and (H3) that SPIN yields further
gains by self-generating hard negatives.

4. Dataset and Features

The success of preference alignment is highly depen-
dent on the quality and nature of the underlying dataset.
Human–feedback corpora for text–to–image alignment
now fall into three principal categories. Binary prefer-
ence sets such as ImageRewardDB (136k prompt–image
pairs) [19] and Human Preference Dataset v2 (HPS v2;
800 k pairs) [17] provide high–signal supervision for
relative-quality objectives but are largely biased toward
photographic prompts. Continuous–score resources ex-
emplified by the 12 M–image LAION–Aesthetics collec-
tion [13] offer web-scale coverage, yet their scalar labels
are unsuited to pairwise–difference losses. Finally, free-
form critique corpora, notably the Reddit Photo Critique
Dataset (RPCD; 74 k images, 220 k comments) [15], deliver
nuanced textual assessments but remain too small and noisy
for primary training.

For this project we adopt the Laion Art subset as our
core training source [3]. Curated for illustrative and fantas-
tical content, it aligns perfectly with our goal of training for
niche artistic styles. For our experiments, we utilized a fil-
tered subset of high-resolution examples for training. A key
advantage of the Laion Art subset is its uniform 512× 512
resolution, which streamlines our data pipeline as it elim-
inates the need for resizing. No data augmentation tech-
niques, such as random flips or crops, were applied in our
experiments, as our main focus is on learning from the spe-
cific composition and details of the provided artistic exam-
ples. To extract image features from the dataset, we use the
a pre-trained Variational Autoencoder (VAE) to encode the
images into a low-dimensional latent space.

To train our preference-based models, we leveraged
the dataset’s built-in aesthetic scalar score for each im-
age. These scores were converted into deterministic ex-
clusive win/lose labels, allowing us to generate the bi-
nary feedback required for the Diffusion-KTO and baseline
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models without manual annotation, preserving sample effi-
ciency.

5. Experiments, Results, and Discussion
Our experimental evaluation aims to quantify the ef-

fectiveness of different preference-alignment strategies in
enhancing the stylistic fidelity of text-to-image diffusion
models. We compare our proposed methods—Diffusion-
KTO, Diffusion-DPO, and SPIN-Diffusion, all leverag-
ing LoRA for parameter-efficient fine-tuning—against the
baseline Stable Diffusion v1.5 (Base SD) and a minimal Bi-
nary Cross-Entropy LoRA fine-tuned model (BCE LoRA).

5.1. Experimental Setup

5.1.1 Training Hyperparameters

All fine-tuning variants commenced from the same
Stable Diffusion v1.5 checkpoint and exclusively
updated rank-8 LoRA adapters in the U-Net, along with
text encoder bias terms. We employed the AdamW opti-
mizer (β1 = 0.9, β2 = 0.999, weight-decay = 0.01), a
standard choice for its effectiveness in training large neu-
ral networks, with weight decay providing regularization.
A constant learning rate of 1 × 10−4 was used for LoRA
weights and 1 × 10−6 for the text encoder biases, selected
based on common practices for LoRA fine-tuning that al-
low for effective adaptation without destabilizing the pre-
trained model. A warm-up phase of 500 steps was used to
stabilize initial training. All models were trained for 10,000
steps. Due to computational constraints and the scale of
the models, an exhaustive hyperparameter search using ex-
tensive cross-validation was not performed for this phase of
the project; the chosen values are based on literature recom-
mendations and preliminary experiments aiming for stable
and effective training.

Our preliminary experiments for hyperparameter refine-
ment, while not constituting an exhaustive search, were cru-
cial for ensuring stable and effective training across all com-
pared methods. We initiated with hyperparameters such
as learning rates (LoRA: 5 × 10−4, text encoder biases:
1 × 10−5), AdamW optimizer settings (β1 = 0.9, β2 =
0.999, weight-decay = 0.05), and warm-up steps (100),
selecting values well-established in LoRA and diffusion
model fine-tuning literature. To validate these choices and
to tune method-specific parameters, such as the β tempera-
ture in Diffusion-DPO (Equation 4) and analogous sensitiv-
ity points in Diffusion-KTO, we conducted short trial runs
for each alignment strategy. These typically involved train-
ing for approximately 10-20% of the total 10,000 steps on
a random subset of the Laion Art dataset. During these tri-
als, we primarily monitored the stability of the training loss
curves and qualitatively assessed image outputs generated
from a fixed set of diverse prompts. This allowed us to

check for coherent stylistic application, semantic integrity,
and the absence of common training pathologies like mode
collapse or excessive artifacts. For instance, for Diffusion-
DPO’s β, we explored a small set of values (e.g., 0.8, 0.9,
0.99, 1.0) as guided by prior work, selecting the one that
demonstrated a good balance between effective preference
differentiation and stable learning dynamics in these initial
outputs. This pragmatic tuning process aimed to establish
a robust and equitable hyperparameter baseline for all com-
pared methods within our computational constraints, rather
than to individually optimize each method to its theoretical
peak performance.

Mini-batch sizes were optimized to maximize GPU uti-
lization on a single A100-80GB GPU, typically ranging
from 4 to 8 samples per device depending on the specific
memory footprint of the variant. Further details on minor
hyperparameter tuning are deferred to supplemental mate-
rial.

5.1.2 Evaluation Metrics

To assess model performance, we utilized two primary auto-
mated metrics prevalent in recent text-to-image generation
literature:

1. CLIP Score: This metric measures the semantic simi-
larity between a generated image and its corresponding text
prompt. It is calculated as the cosine similarity between
the image embeddings and text embeddings produced by a
pre-trained CLIP model (Contrastive Language-Image Pre-
training) [8]. Given an image I and a text prompt T , let
EI(I) be the image embedding and ET (T ) be the text em-
bedding from CLIP. The CLIP Score is:

CLIP Score = cos(EI(I), ET (T )) =
EI(I) · ET (T )

∥EI(I)∥∥ET (T )∥
Higher CLIP scores indicate better alignment between the
image content and the textual description.

2. PickScore: This metric [5] is a learned reward model
trained on a large dataset of human preferences between
pairs of images generated from the same prompt. It aims
to predict which image a human would prefer, reflecting
aspects like aesthetic quality, prompt adherence, and over-
all appeal. A higher PickScore suggests that the generated
image is more likely to be preferred by humans. Since
PickScore is itself a neural network, there isn’t a simple
equation, but it outputs a scalar value indicating preference.

These metrics were chosen to provide complemen-
tary insights: CLIP Score focuses on semantic fidelity to
the prompt, while PickScore offers a proxy for human-
perceived quality and stylistic preference alignment.

5.2. Quantitative Evaluation

The mean and standard deviation for PickScore and
CLIP Score across all evaluated models are summarized in
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Table 1 and Figure 1 and 2.
The models were evaluated on a diverse set of prompts,

exemplified in Appendix 7.1 (general photographic) and
Appendix 7.2 (stylized counterparts). This set was designed
to cover varied subjects and styles, allowing for assess-
ment of both general artistic rendering and adherence to
specific stylistic keywords (e.g., “watercolor painting,” “im-
pressionist style”).

Model PickScore CLIP Score
Base SD v1.5 21.25 (±0.88) 19.80 (±2.54)
BCE LoRA 20.74 (±0.86) 19.59 (±2.56)
Diffusion-DPO 21.34 (±1.14) 19.82 (±2.57)
Diffusion-KTO 21.80 (±1.27) 19.76 (±2.55)
SPIN-Diffusion 21.95 (±1.30) 19.65 (±2.63)

Table 1: Quantitative Comparison of Different Models.

(a) CLIP Score Comparison

(b) PickScore Comparison

Figure 1: Side-by-side comparison of PickScore and CLIP
Score

(a) CLIP Score Distribution

(b) PickScore Distribution

Figure 2: Side-by-side comparison of PickScore and CLIP
Score distributions

5.2.1 PickScore Analysis

The PickScore results indicate significant differences
in human preference alignment across the models.
Notably, SPIN-Diffusion achieved the highest mean
PickScore (21.95±1.30), closely followed by Diffusion-
KTO (21.80±1.27) These scores represent a substantial im-
provement over the un-adapted Base SD v1.5 (21.25±0.88).
Diffusion-DPO also showed a slight improvement over the
Base SD (21.34±1.14). Interestingly, the minimal BCE
LoRA model (20.74±0.86) performed worse than the Base
SD model, suggesting that a naive application of preference
learning with a simple BCE loss on reconstruction error log-
its may not be sufficient or could even be detrimental to per-
ceived quality if not carefully tuned.

5.2.2 CLIP Score Analysis

Regarding CLIP Scores, all models performed comparably,
with mean scores clustered around 19.6 to 19.8. Diffusion-
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DPO (19.82±2.57) and the Base SD v1.5 (19.80±2.54)
achieved marginally higher scores, though the differences
between all models are small relative to their standard devi-
ations. This suggests that while the preference-alignment
techniques significantly impact the stylistic qualities fa-
vored by PickScore, they largely preserve the fundamen-
tal text-to-image semantic alignment. The slight variations
might indicate that models focusing more on specific stylis-
tic nuances (as encouraged by preference tuning) might
sometimes make minor trade-offs in literal semantic inter-
pretation compared to the base model.

5.3. Qualitative Evaluation

As illustrated in Figure 3, the qualitative differences
are striking. The Diffusion-KTO model, for instance,
consistently demonstrated an enhanced ability to preserve
finer details (e.g., fur texture) and maintain more vivid,
well-saturated colors across both photographic and stylized
prompts compared to the Base SD v1.5 and the BCE LoRA
model. The BCE LoRA model often exhibited oversmooth-
ing, particularly in low-contrast regions. These visual as-
sessments corroborate the quantitative PickScore findings,
where Diffusion-KTO substantially outperformed these two
models.

5.4. Discussion

The results provide valuable insights into the effective-
ness of human utility optimization and parameter-efficient
fine-tuning for aligning diffusion models to niche artistic
preferences.

Our findings directly address the hypotheses outlined in
Section 3.4:

H1 (DPO and KTO outperform reconstruction-only
DreamBooth baseline): Both Diffusion-KTO (PickScore:
21.80) and Diffusion-DPO (PickScore: 21.34) significantly
outperformed the minimal BCE LoRA preference baseline
(20.74) and the Base SD v1.5 (21.25). The qualitative
improvements shown by KTO (Figure 3) also suggest a
marked enhancement in stylistic fidelity, which is the pri-
mary goal of DreamBooth-style fine-tuning.

H2 (KTO matches DPO despite needing only un-
paired likes): Our results suggest that Diffusion-KTO not
only matches but outperforms Diffusion-DPO in terms of
PickScore (21.80 for KTO vs. 21.34 for DPO) with the
current dataset and experimental setup. This is a signif-
icant finding, as KTO’s simpler data requirement (binary
likes/dislikes) compared to DPO’s pairwise preference pairs
makes it a more data-efficient and potentially more scalable
approach for preference alignment. The comparable CLIP
scores indicate this improved preference alignment does not
come at a cost to semantic coherence.

H3 (SPIN yields further gains by self-generating hard
negatives): This hypothesis is strongly supported by our

(a) Normal prompt: “A photo of a cat with blue eyes”

(b) Stylised prompt: “A watercolor painting of a cat with blue
eyes”

(c) Normal prompt: “A small cottage in the countryside”

(d) Stylised prompt: “An oil painting of a cozy cottage in im-
pressionist style”

Figure 3: Side-by-side comparison of generation results
for two scenes under normal and stylised prompts. Each
sub-figure itself juxtaposes outputs from the base Stable
Diffusion v1.5, a LoRA fine-tuned model, and the Diffu-
sion KTO model.

results. SPIN-Diffusion achieved the highest PickScore
(21.95), surpassing both DPO and KTO. This indicates that
the self-play strategy, where the model generates its own
training signals by comparing against an earlier version of
itself, is highly effective in refining alignment and discov-
ering aspects that contribute to preferred image generation
without requiring additional human-annotated data beyond
the initial preference corpus (if any is used to kickstart the
process, or if it’s built upon a KTO/DPO-like objective in-
ternally).
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5.5. Implications of Findings

The superior performance of KTO and SPIN-Diffusion,
both of which leverage human utility optimization princi-
ples, underscores the potential of these methods for achiev-
ing nuanced artistic control. The success of KTO is particu-
larly promising due to its reduced reliance on complex pair-
wise preference data. The fact that the parameter-efficient
LoRA framework enabled these improvements makes these
techniques practical for adapting large-scale diffusion mod-
els.

The underperformance of the BCE LoRA model high-
lights that the choice of optimization objective is critical.
Simply encouraging lower reconstruction error on ”liked”
images and higher error on ”disliked” images via a BCE
loss on MSE logits does not robustly translate to improved
stylistic alignment as measured by PickScore, and may even
degrade general quality if it leads to overly conservative or
biased outputs. More sophisticated objectives like those in
DPO and KTO, which directly model preference probabili-
ties or utility, are clearly more effective.

The consistent CLIP scores across models are reassur-
ing, suggesting that the alignment process primarily refines
stylistic aspects without catastrophically forgetting core se-
mantic understanding. However, the subtle trade-offs ob-
served warrant further investigation, particularly in scenar-
ios demanding extremely high fidelity to complex prompts.

6. Conclusion and Future Work

This project investigated the alignment of text-to-image
diffusion models with fine-grained artistic preferences us-
ing parameter-efficient fine-tuning and human utility op-
timization. By employing Low-Rank Adaptation (LoRA)
on a Stable Diffusion v1.5 checkpoint, we compared sev-
eral preference-alignment strategies, including a baseline
BCE LoRA, Diffusion-DPO, Diffusion-KTO, and SPIN-
Diffusion. Our quantitative results, primarily driven by
PickScore, demonstrate that advanced alignment techniques
leveraging human utility optimization principles signifi-
cantly enhance stylistic fidelity. Notably, SPIN-Diffusion
and Diffusion-KTO emerged as the highest-performing
methods, substantially improving perceived image quality
over the base model and simpler fine-tuning approaches.
Diffusion-KTO’s success is particularly compelling as it
achieves strong results using only binary preference data,
simplifying data collection. SPIN-Diffusion’s leading per-
formance highlights the efficacy of self-play mechanisms in
generating challenging training examples and continuously
refining the model. In contrast, the BCE LoRA model un-
derperformed, suggesting that naive preference objectives
are insufficient for capturing nuanced stylistic preferences.
All methods largely maintained semantic consistency as per
their CLIP scores.

The promising performance of Diffusion-KTO and
SPIN-Diffusion underscores the value of directly optimiz-
ing for human utility and the potential of self-supervised
preference generation. We believe these methods worked
better due to their more sophisticated modeling of prefer-
ences: KTO by directly maximizing expected utility from
simpler feedback, and SPIN by creating an internal curricu-
lum of increasingly difficult preference pairs. These ap-
proaches are more robust and aligned with the complex na-
ture of aesthetic judgment than the indirect signal provided
by the BCE LoRA baseline.

For future work, several further exploration can be made.
An immediate priority is to conduct the planned 1,000-
sample A/B human study to definitively validate our auto-
mated metric findings and gain richer qualitative insights
into user preferences. Furthermore, a direct quantitative
comparison against a robust reconstruction-based method
like DreamBooth+LoRA, using the same evaluation met-
rics, will provide a clearer benchmark for the gains achieved
through preference-based alignment. Statistical signifi-
cance of these comparisons will be rigorously assessed us-
ing Wilcoxon signed-rank tests.

Looking further ahead, with more resources, we would
expand the evaluation to diverse artistic styles beyond the
Laion Art subset and test our methods on different base
diffusion models to assess generalizability. Incorporating
multi-attribute and multimodal preference datasets, such as
VisionReward or RLAIF-V as discussed in Section 4, could
allow for more disentangled stylistic control and richer su-
pervision. We also plan to explore more advanced human
utility functions and sophisticated self-play mechanisms.
Finally, a more exhaustive hyperparameter search and in-
vestigation into the impact of LoRA rank and training dura-
tion could yield further improvements, paving the way for
highly controllable and personalized generative models for
critical downstream applications in art and design.

7. Appendices

7.1. Text Prompts

No. Prompt
1. A photo of a cat with blue eyes
2. A small cottage in the countryside
3. A glass of water on a wooden table
4. Portrait of a woman with flowers in her hair
5. A futuristic city skyline at sunset
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7.2. Stylized Prompts

No. Prompt
1. A watercolor painting of a cat with blue eyes,

artistic, dreamy, soft brushstrokes
2. An oil painting of a cozy cottage in impressionist

style, vibrant colors, thick impasto
3. A still life oil painting of a glass of water, Dutch

Golden Age style, dramatic lighting
4. A Renaissance portrait of a woman with flowers

in her hair, ornate details, sfumato technique
5. A cyberpunk digital art of a city skyline at sunset,

neon colors, volumetric lighting
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