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Abstract

This project aims to generates high-fidelity scanning-
electron-microscope (SEM) detail from lower-resolution
micro-CT slices of rock. Using two co-registered images
from a public North Sea sandstone dataset, we build a
large paired training set via image augmentation. Our solu-
tion is a conditional denoising-diffusion probabilistic model
(DDPM) in which only the SEM channel is noised, while the
micro-CT slice remains as a fixed condition. We test our ap-
proach against a standard conditional GAN baseline.

1. Introduction

High-resolution imaging of geological materials is cru-
cial for understanding pore-scale features that govern
fluid flow, mechanical strength, and reactive transport in
subsurface formations. =~ While SEM can resolve sub-
micron textures and fine-grained mineral phases, obtain-
ing large-area or volumetric datasets is prohibitively time-
consuming. Sample preparation—cutting, polishing, coat-
ing, and mounting—can take hours per sample, and acqui-
sition requires careful tuning of beam parameters, working
distance adjustments, and iterative focusing. Consequently,
mapping an entire surface at SEM resolution can demand
days of continuous instrument operation, significantly slow-
ing both exploratory studies and high-throughput analysis.

Micro—computed tomography (micro-CT) offers non-
destructive 3-D imaging at voxel sizes of a few microme-
ters, enabling rapid scanning of centimeter-scale cores with
minimal preparation. However, its spatial resolution is in-
sufficient to resolve sub-micron structural details—such as
nanopores, grain boundaries, and micro-cracks—that con-
trol processes like capillary trapping, mineral dissolution,
and cement phase redistribution. Researchers therefore face
a trade-off between field of view (with micro-CT) and fine-
scale detail (with SEM), leaving a gap in comprehensive
volumetric characterization.
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Image super-resolution (SR)[11] seeks a mapping
F : Xiow — Xhigh

that reconstructs plausible high-resolution content from
coarse measurements. In our context, SR enables genera-
tion of SEM-quality textures from micro-CT slices without
the need for exhaustive SEM acquisition. This accelerated
approach reduces instrument time, minimizes repetitive
sample handling and tuning, and facilitates high-throughput
workflows where large sample sets must be characterized
consistently.

Classical SR techniques—interpolation, sparse coding,
or shallow CNNs—struggle with the highly non-linear re-
lationship between X-ray attenuation and electron back-
scatter. Denoising-diffusion probabilistic models (DDPMs)
offer a principled alternative: by learning to reverse a
gradual noising process, they excel at synthesizing high-
frequency detail while preserving global conditioning cues.
We therefore cast micro-CT — SEM SR as a conditional
diffusion task, injecting noise only into the SEM channel
and guiding the reverse process with the aligned micro-CT
slice.

Problem statement

The input to our algorithm during training is a paired
micro-CT and SEM slice. We then use a denoising-
diffusion probabilistic model to output a predicted SEM-
quality image conditioned on the micro-CT input.

Given paired images

xMCT7 SEM c R1X512X512

X

)

where 2MCT s a 512 x 512 micro—CT slice and zSEM

the corresponding SEM slice, learn a conditional generative
model

Do (xSEM | xMCT)
that produces SEM-quality textures consistent with unseen
micro—CT inputs. Generated outputs are evaluated against
the ground-truth images using PSNR, SSIM, and additional
similarity metrics to assess accuracy.



2. Related Work

Below, we review existing methods for image super-
resolution (SR) in the context of micro-CT and SEM imag-
ing, grouping approaches into CNN-based methods, GAN-
based frameworks, and cross-modal applications specific
to geological materials. We highlight strengths and weak-
nesses of representative works and identify gaps that moti-
vate our diffusion-based approach.

2.1. CNN-Based Super-Resolution for Micro-CT
and Digital Rocks

With the development of deep learning, convolutional
neural networks (CNNs) became one of the dominant ap-
proach for SR tasks. The seminal Super-Resolution Con-
volutional Neural Network (SRCNN) proposed by Dong
et al. [4] demonstrates that an end-to-end CNN can learn
the mapping from low- to high-resolution images, outper-
forming traditional sparse-coding methods on natural im-
ages [4,[10]. Inspired by SRCNN, Zhang et al. [[13] devel-
oped a multi-scale fusion residual U-Net (MS-ResUnet) to
enhance rock micro-CT images, achieving significant gains
over bicubic interpolation by leveraging hierarchical fea-
ture learning [13| [2]. These CNN-based methods excel at
capturing local textures through hierarchical feature extrac-
tion and deliver substantial quantitative improvements over
classical baselines. However, they often struggle to main-
tain global consistency across large fields of view, produc-
ing blocky or tiled artifacts when applied to regions out-
side their training distribution. Furthermore, their reliance
on substantial paired training data limits robustness when
applied to novel lithologies or datasets with limited co-
registered micro-CT/SEM pairs.

2.2. GAN-Based Frameworks for 3D Micro-CT
Super-Resolution

Generative adversarial networks (GANs) have been ex-
tended to volumetric micro-CT SR to enhance perceptual
quality and segmentation accuracy. For example, Ugolkov
et al. [14] proposed a memory-efficient 3D octree-based
WGAN-GP that achieves 16 x resolution enhancement and
corrects segmentation inaccuracies caused by overlapping
X-ray attenuation in micro-CT measurements [14} [15]]. By
embedding an octree structure, this approach overcomes the
memory bottleneck inherent in 3D convolutions, enabling
super-resolution from 7 pm to 0.44 um per voxel. Prior
to this, the same group introduced a 3D DC WGAN-GP
for eightfold SR on Berea sandstone, which similarly im-
proved segmentation accuracy for minerals and pore space
but still required large unpaired training sets to cover di-
verse lithologies [15]. Wang et al. [3] developed EDSR-
GAN—an enhanced deep SR GAN for digital rock im-
ages—that demonstrated a 50-70% reduction in relative er-
ror compared to interpolation and recovered sub-resolution
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features such as dissolved minerals and fractures [3, [8].
Together, these GAN-based frameworks produce perceptu-
ally realistic outputs and sharpen fine details, aiding down-
stream tasks like segmentation. However, their high mem-
ory requirements and architectural complexity make them
challenging to train and deploy, and they depend heavily
on sizable, accurately labeled paired datasets. Additionally,
GANs may suffer from training instabilities such as mode
collapse, which limits their reliability for large-scale volu-
metric applications.

2.3. Cross-Modal
Resolution

and SEM-Specific Super-

Cross-modal SR methods synthesize SEM-quality tex-
tures from micro-CT inputs, demonstrating that inferred
sub-resolution features such as micro-porosity align with
actual pore-scale geometry. For example, Wang et al. [3]]
validated EDSRGAN outputs against SEM images, show-
ing substantial reductions in relative error and realistic re-
covery of fine details like dissolved minerals and fractures
[3, 18]. Similarly, Armstrong et al. [[12] applied CNNs to
denoise and deblur micro-CT data to improve segmenta-
tion accuracy, though they did not explicitly target SEM-
like texture synthesis [12} [2]. In parallel, SEM-specific SR
approaches in materials science—for instance, Berzins et al.
[S] super-resolved SEM images of Li-ion cathode materials
to enhance crack segmentation—highlight the downstream
benefits of improved 2D SEM quality for defect detection
[S]. While these techniques underscore the potential of SR
for both geological and materials applications, they remain
constrained by labor-intensive SEM acquisition for each re-
gion of interest and are typically demonstrated on limited
2D or small 3D volumes, limiting throughput for large-scale
studies.

2.4. Summary

CNN-based methods (e.g., SRCNN [4]], MS-ResUnet
[13], EDSR [3! [8]) leverage hierarchical feature extraction
to achieve substantial quantitative improvements over inter-
polation, but they often exhibit blocky artifacts when ap-
plied beyond their training distribution and require large
paired datasets to generalize across varied lithologies.
GAN-based frameworks (e.g., EDSRGAN [3], octree-
WGAN [14, [15]) generate perceptually realistic volumet-
ric outputs and improve segmentation accuracy, yet their
high memory demands, architectural complexity, and po-
tential for training instability limit scalability. Cross-modal
approaches that synthesize SEM-like textures from micro-
CT inputs demonstrate that inferred textures can faithfully
reflect pore-scale geometry [3} [12]], but they remain con-
strained by time consuming co-registration and extensive
SEM imaging. SEM-specific SR in materials science (e.g.,
Berzins et al. [5]]) shows clear benefits for downstream 2D



analyses such as defect detection, yet these methods do
not extend to full 3D volumes and still depend on time-
consuming SEM acquisition. Currently, most practitioners
continue to perform high-resolution SEM imaging manu-
ally, as automated SR solutions are not yet fully validated
in industrial or research pipelines.

3. Methods

To our knowledge, no prior work has applied denoising-
diffusion probabilistic models (DDPMs) to the micro-
CT — SEM super-resolution (SR) problem. Formally, let
ot ¢ RI>XHXW denote a low-resolution micro-CT slice
and z°°™ € R™H*W jts corresponding high-resolution
SEM slice. Our goal is to train a model F : (a:m“, z) —
%™ that produces a plausible SEM-quality image ™
given z™¢" (and optionally noise z). As a reference, we use
a conditional GAN (cGAN) architecture—widely adopted
in image-to-image translation—where the generator G is
conditioned on the micro-CT input and trained to fool a dis-
criminator D that receives both the generated output and the
original low-resolution slice. Representative cGAN frame-
works (e.g., Pix2Pix [7], ESRGAN [16]) can yield sharp
textures but often suffer from mode collapse, training insta-
bility, and the need for carefully balanced adversarial and
reconstruction losses to achieve both fidelity and realism.

Denoising-diffusion probabilistic models (DDPMs) [6]
sidestep the adversarial min—-max game by casting super-
resolution as maximum-likelihood estimation in a latent
noise space: a Gaussian corruption process iteratively de-
stroys high-frequency content in the SEM channel, a neural
network learns to predict the added noise at each timestep,
and ancestral denoising inverts this chain while concatenat-
ing the clean micro-CT slice for perfect conditioning. This
single reconstruction objective yields stable optimization,
avoids mode collapse, and has already pushed the state of
the art in image SR (e.g., SR3, Palette) beyond cGAN base-
lines in both perceptual scores and Fréchet Inception Dis-
tance. In the following subsections, we will elaborate on the
formulations of both the DDPM and the cGAN for micro-
CT — SEM super-resolution.

3.1. Conditional cGAN Baseline

A conditional cGAN treats image SR as an adversar-
ial game between a generator G and a discriminator D.
The generator G, takes the micro-CT input z™°* (normal-
ized to [—1, 1]) and outputs a super-resolved image Z°™
G (z™"). The discriminator D, receives a pair (2™, z),
where z is either a real SEM slice 2™ or a generated
output £°°™, and predicts Dy, (z°*, z) € [0,1], indicating
whether z is real.

Generator architecture. The generator G, is imple-
mented as a lightweight U-Net, denoted UNet 1, that maps
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a single-channel micro-CT input 2™t € RIX512X512 (g 4
single-channel SEM output £°™. First, the input passes
through an encoding convolution Conv2d(1,64,4,2,1)
with InstanceNorm2d and LeakyReLU, reducing the res-
olution from 512x512 to 256x256. Next, a “mid” con-
volution Conv2d(64,128,4,1,1) (stride=1, padding=1)
further processes the 256x256 features without spatial
downsampling. In the decoder, a transpose convolution
ConvTranspose2d (128, 64,4,2,1) with InstanceNorm2d
and ReLU upsamples back to 512x512. Finally, the decoder
output is bilinearly interpolated to match the original spa-
tial dimensions if necessary, concatenated with the original
2™t (skip connection), and passed through a 1 x 1 convo-
lution that reduces 64 + 1 channels to 1, followed by a Tanh
activation to produce Z°°™ € [—1,1].

Discriminator architecture. The discriminator D, is
a PatchGAN (PatchD) that takes the concatenated pair
[z, z] € R?*P12X512 (where x is either a real SEM slice
or a generated output) and outputs a 63x63 feature map of
“real”/““fake” scores. Concretely, four successive blocks ap-
ply Conv2d layers with kernel size 4 and stride 2 (except
the fourth block uses stride=1), each followed by Instan-
ceNorm2d and LeakyReLU(0.2). The channel progression
is2 — 64 — 128 — 256 — 512, and all convolutional lay-
ers are wrapped with spectral normalization. A final 1 x 1
convolution maps 512 channels to 1, yielding a patch-score
map.

Loss functions. We train G4 and D, with hinge adver-
sarial losses and an ¢ reconstruction term. For a minibatch
of real pairs (met, xsem) and generated outputs %™
Gy (x™"), the discriminator loss can be written in a split
form to avoid overflow:

Lp= E(zmctyxsem) |:IT[1aX(07 1 — D"P (met’ xsem))i|

+ E met [max((), 1 + Dy (a™, G¢(xm0t)))]

The generator minimizes a combination of the adversar-
ial hinge loss and an ¢; reconstruction loss, also formatted
in a split environment:

Lo =—Ezme [Dlﬁ (@™, G¢($m6t))}

20, Emer, gom [ [ = G2,

where Ay, = 100. Both G and D, are optimized with
Adam (Ir = 2 x 1074, 3; = 0.5, B2 = 0.999).



3.2. Conditional DDPM Implementation

In our super-resolution task, each training example con-
sists of a perfectly aligned pair (z™*, z5°™), where ™" €
R*HXW is a low-resolution micro-CT slice and x%™ €
RIXH*W g its corresponding high-resolution SEM image.
We construct a two-channel tensor

xsem
L0 _ |70
€T

c RQXHXW’
mct

in which only the SEM channel is corrupted by Gaussian
noise during the forward diffusion process, while the micro-
CT channel remains entirely noise-free. This conditional
setup ensures that the U-Net denoiser learns to leverage the
low resolution structure present in z“* to “fill in” fine-scale
SEM details rather than synthesizing the entire image from
noise.

At each timestep t = 1,...,T, we sample € ~ N (0, I)
(gaussian noise) of shape (2, H, W) and zero out its second

channel so that
Esem
€= .
0

The SEM channel evolves according to

mct

mct
Ty .

s,em_\/*‘,Esem_i_\/mE _xo
Equivalently, one may write the marginal forward-diffusion
distribution:

g(a® | 20 =

mct
Tt

q( sem | xsem) 5(
N(J*ﬁm‘u—agga(

xmct)

mct

' —x

(D
t
o = H Qg.
s=1

Thus, at every ¢, the second channel remains exactly z
and only the first channel x3°™ is a noisy version of the
original SEM.

To reverse this process, we employ a U-Net denoiser ¢g
which is explicitly modified to accept two input channels:
the noisy SEM slice x7°™ and the clean micro-CT slice
™t In implementation, the first convolution of the U-
Net is adjusted from 1 — d to 2 — d channels, and every
residual and attention block propagates the micro-CT fea-
ture map alongside the SEM feature map. During training,
we randomly draw ¢ ~ Uniform({1,...,7}) and sample
esm ~ N(0, I) to compute

mct
9

sem / xsem + /1 _ at Esem et

xsem
ON.
€T

mct)

9
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and then minimize the smooth-¢; loss

sem mct
, L

Bl -

We optimize € with AdamW and clip gradients to a max-
imum norm of 0.7, reducing the learning rate on plateau
of the validation loss. Since no noise is ever added to the
micro-CT channel, its features remain intact as a guide in
every U-Net block.

At inference, we initialize x55™ ~ AN(0,I) and iterate

‘CDDPM = Exgcm, gmet ¢ gsem Ese — &y ([

t =T, T —1,...,1. Given the current noisy state z® =
[z5em ) z™t], we predict
1 1-— Ot
59 =gy sem) xmct ) t ) 0 = (xsem _ i é
([ ] ) H o t i—a,
and sample
zien’ll:/lQ_'_ Btnta WtNN(07])7

while concatenating z™* to form

sem

[xt " xmct].

Sem

After T den01smg steps, xp
construction ¢

Compared to standard, unconditional DDPM code (such
as the Hugging Face “annotated diffusion” notebook), our
implementation differs in that:

1.

is our final SEM-quality re-

we use a custom rockDataset to load paired micro-
CT/SEM tiles and apply identical augmentations to
both channels,

we zero out any noise in the micro-CT channel so only
the SEM is corrupted, and

we modify the U-Net’s input to two channels and prop-
agate the clean micro-CT features throughout every
convolutional block.

By conditioning in this manner—always re-concatenating
2™t when denoising—the model learns to reconstruct
high-frequency SEM details guided by low-frequency

micro-CT structure rather than generating from pure noise.

4. Dataset
4.1. Source data

The dataset used in this project is pixel-registered micro-
CT and SEM pair for real rock porous media from the North
Sea Sandstone release on Digital Porous Media[l] It contains
two aligned 6100 x 6100 images: one micro—CT and one
SEM, however, one pair is insufficient to train a diffusion
model, so we built an aggressive tiling plus augmentation
pipeline to synthesise a dataset of 36 785 perfectly aligned
image pairs.

Ihttps://digitalporousmedia.org/
published-datasets/tapis/projects/drp.project.
published/drp.project.published.DRP-251/


https://digitalporousmedia.org/published-datasets/tapis/projects/drp.project.published/drp.project.published.DRP-251/
https://digitalporousmedia.org/published-datasets/tapis/projects/drp.project.published/drp.project.published.DRP-251/
https://digitalporousmedia.org/published-datasets/tapis/projects/drp.project.published/drp.project.published.DRP-251/

4.2. Image augmentation

The mCT slice was adjusted brightness and contrast in
FlJI/Imagel to enhance pore—grain contrast, then exported
as 8-bit PNG. The SEM slice was likewise converted to 8-
bit so that both images share the same dynamic range. No
further registration was required.

We slide a 512 x 512 window across each 6100 x 6100
image with a stride of 128 px (75 % overlap). Each axis
therefore yields

6100 — 512
{ 128

1936 = 44 x 44 base tiles per image.

Ng = Ny =

J+1=44,

Applying this grid to both mCT and SEM produces 1936
aligned 512 x 512 image pairs per image, to further grow
the dataset without padding artifacts, we use a three-step
rotation-safe augmentation:

1. Pad-free crop: extract a centered patch of size 512+/2
so that any in-plane rotation remains fully inside it.

2. In-plane rotations:
{0°,20°,...,340°}.

rotate this patch by 6 €

3. Center crop: from each rotated view, center-crop back
to 512 x 512.

The process yields 19 views per base tile. In practice the
script is executed on all original tiles extracted from the
mCT/SEM pair, giving

1936 x19 = 36 784
~—~

base tiles

aligned training pairs. This volume of data ensures that we
have sufficient samples for training, validation, and testing.

Figure |1| shows one base tile (unrotated) and two aug-
mented (rotated) examples for both micro-CT (top row) and
SEM (bottom row). Note how the pore and grain geometry
in the micro-CT slice corresponds to fine-grained textures
in the SEM slice, even after rotation.

After gathering enough data, we randomly assign 24 000
pairs to the training set, 4 800 to the validation set, and keep
the remainder for testing purposes. No tile from a given
location appears in more than one split, guaranteeing a clean
separation between train and validation data.

5. Results

In this section, we present both quantitative and qualita-
tive evaluations of our conditional GAN (cGAN) baseline
and our proposed denoising-diffusion probabilistic model
(DDPM) for micro-CT — SEM super-resolution. We first
define the primary metrics (SSIM and PSNR) used to com-
pare generated SEM images against ground truth. Next, we
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MCT Base MCT Rotated 200°

MCT Rotated 100°

SEM Base SEM Rotated 100°

Figure 1. Example micro-CT and SEM pair tiles from our dataset

summarize our training hyperparameters and experimen-
tal setup, and then present quantitative results followed by
qualitative examples illustrating typical successes and fail-
ure modes for both methods. Finally, we discuss overfitting
considerations and practical trade-offs between the two ap-
proaches.

5.1. Evaluation Metrics

To quantitatively assess the fidelity of generated SEM
images £°°™ relative to ground-truth SEM slices 5™, we
employ two standard image-quality metrics: the structural
similarity index measure (SSIM) and the peak signal-to-
noise ratio (PSNR). Let & and x denote two single-channel
images of size H x W.

Structural Similarity Index Measure (SSIM). SSIM
measures perceptual similarity by comparing local lumi-
nance, contrast, and structural information [1]]. For any lo-
cal patch z; and z;, SSIM is defined as

M iaAi - 5
SSIM(e ) = (22 100 (02 + 02 + Co)

where iz, jiz, 02, 02 are the means and variances over the
patch, o4 is the covariance, and C7, Cs are small constants
for numerical stability. The overall SSIM index between
full-resolution images is the average of SSIM over a sliding
window. Values range from O to 1, with 1 indicating perfect

structural agreement.

Peak Signal-to-Noise Ratio (PSNR). PSNR measures
pixel-wise fidelity by comparing the mean-squared error
(MSE) to the dynamic range of pixel intensities[9]]. Let



where z, % € [0,1]7>W . Then
2

MSE(x,j:))’ L=1

PSNR(z,2) = 1010g10(

Higher PSNR indicates smaller reconstruction error.

5.2. Quantitative Results

(a) SSIM for cGAN Results

55IM
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Test Sample Index (1-60)

(b) SSIM for DDPM Results
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(c) PSNR for cGAN Results
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r
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(d) SSIM for DDPM Results
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Figure 2. SSIM and PSNR curves for 60 held-out test examples.
Panels (a) and (c) display cGAN baseline performance; panels (b)
and (d) display DDPM performance.

All reported results use the single checkpoint from each
model that achieved the lowest validation loss. We then

evaluated both models on a subset of 60 SEM—micro-CT
image pairs that were never seen during training. Figure 2]
plots SSIM and PSNR curves over the same 60 test exam-
ples for both the cGAN baseline and our DDPM.

The SSIM trajectory for the cGAN (Figure |Zka)) ranges
from approximately 0.55 to 0.67, with an overall aver-
age of 0.60. Lower SSIM values appear early in the se-
quence—around indices 1-20—indicating that these partic-
ular micro-CT geometries produce more challenging tex-
tures for the U-Net generator. As the index increases past
40, SSIM steadily improves; for example, test sample 59
reaches nearly 0.67, suggesting that the cGAN captures
larger, smoother grain boundaries more faithfully. The cor-
responding PSNR curve (Figure[2{c)) similarly begins near
20.2 dB (indices 1-5), dips to 20.0 dB around index 20, and
then climbs to a maximum of 21.6 dB at index 59. This
trend implies that pixel-wise reconstruction error decreases
on those “easier” samples with more uniform contrast.

In contrast, the DDPM’s SSIM (Figure [2b)) lies be-
tween 0.75 and 0.86, with a mean of 0.80—substantially
higher than the cGAN across every index. Although oc-
casional dips (e.g. index 20 at 0.75) occur when the SEM
contains highly irregular pore networks, the DDPM con-
sistently recovers structural details that the cGAN misses.
Notably, index 59 achieves SSIM 0.86, indicating almost
perfect agreement with the ground-truth SEM in regions of
minimal high-frequency noise. The DDPM’s PSNR (Fig-
ure [2(d)) spans 25.7-29.0 dB (mean 27.0 dB), clearly out-
performing the cGAN’s 20.0-21.6 dB range. Peaks near
29 dB correspond to samples whose SEMs are dominated
by smooth mineral phases, which the diffusion model can
reconstruct with very low pixel-wise error.

Table [T] reports the average SSIM and PSNR over the
full set of 7 985 test pairs. On average, the cGAN achieves
SSIM 0.595 and PSNR 20.52 dB, whereas our DDPM ob-
tains SSIM 0.789 and PSNR 26.91 dB. These aggregate
metrics confirm that selecting the best validation checkpoint
for each architecture yields a substantial performance gap:
the DDPM outperforms the cGAN baseline by nearly 0.21
SSIM points and 6.56 dB in PSNR on unseen rock-texture
images.

Table 1. Average SSIM and PSNR on the full unseen test set (7 985
pairs).

Model Mean SSIM  Mean PSNR (dB)
cGAN (best-val) 0.595 20.52
DDPM (best-val) 0.789 26.91

5.3. Qualitative Results

Figure [3 presents three randomly selected test exam-
ples (rows) that are identical for both the cGAN baseline
(top half) and our DDPM (bottom half) model. Each row
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(a) cGAN Baseline Results

Micro-CT  Predicted SEM Real SEM Absolute Difference

(b) DDPM Results
Micro-CT Predicted SEM Real SEM Absolute Difference

Figure 3. Comparison between the cGAN baseline (top half) and
the DDPM (bottom half) on three randomly selected test samples.

comprises four panels: the leftmost column shows the low-
resolution micro-CT input tile, the second column displays
the corresponding predicted SEM, the third column is the
ground-truth SEM, and the rightmost column shows the
pixel-wise absolute-difference image | — x| by gray scale.

In the cGAN results (Figure[3] top half), the generator re-
covers the general grain boundaries but fails to capture finer
intragranular textures. In the first row, for example, sub-
micron cracks visible in the true SEM appear noticeably
attenuated in the predicted SEM, and this loss of detail is
highlighted by the bright, irregular patterns in the absolute-
difference map. The second row reveals that regions of
dark matrix material are over-smoothed, causing pores to
blur together; the corresponding difference image shows
a dense texture of mid-tone errors around these blurred
boundaries. In the third row, the cGAN again washes out
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high-frequency variations within individual mineral grains,
producing larger, smoother patches where the true SEM
exhibits subtle tonal shifts. Consequently, the absolute-
difference map for row 3 is characterized by widespread
speckled noise, indicating that many small-scale features
were not faithfully reconstructed.

By contrast, the DDPM outputs (Figure [3| bottom half)
demonstrate markedly sharper and more accurate recovery
of fine-scale SEM textures. In the first row, cellular-scale
crack networks and intragranular inclusions present in the
ground truth are rendered with high fidelity, resulting in an
almost uniformly dark absolute-difference image (indicat-
ing very low pixel-wise error). The second row further il-
lustrates this point: pores and mineral inclusions maintain
crisp edges, and the DDPM’s difference map shows only
faint, localized errors where minor shading variations occur.
In the third row, heterogeneous grain-face textures—such as
etched surfaces and small inclusions—match the true SEM
almost exactly, and the difference panel is nearly blank ex-
cept for a few isolated bright spots where residual noise re-
mains.

Overall, these three test samples reveal that the DDPM
more consistently preserves high-frequency SEM features
and produces substantially lower reconstruction error than
the cGAN. The cGAN’s difference images exhibit pro-
nounced textured patterns of error, whereas the DDPM’s
difference plots are almost uniformly dark, confirming that
our diffusion-based approach captures sub-micron detail
that the GAN baseline tends to miss.

5.4. Discussion

Hyperparameter Choices For the cGAN, we adopted a
learning rate of 2 x 10~* with Adam (5, = 0.5,3; =
0.999), which aligns with best practices in Pix2Pix-style
image-to-image translation [7]. This value provided a sta-
ble adversarial training regime while maintaining reason-
able convergence speed. A mini-batch size of 24 was se-
lected to fully utilize the H100 GPU memory without sac-
rificing gradient diversity. For the DDPM, we reduced the
learning rate to 5 x 10~° and introduced a weight decay of
5x10~% (via AdamW) to accommodate the longer diffusion
chain and discourage over-smoothing during early denois-
ing iterations. We also applied gradient clipping at 0.7 and
used a ReduceLROnPlateau scheduler on validation loss.
These hyperparameter settings were determined through
grid-search-style tuning on the 4,800-pair validation set and
yielded the lowest validation loss before plateauing (around
epoch 150 for the cGAN and epoch 300 for the DDPM).

Failure Modes Although the DDPM substantially outper-
forms the cGAN baseline in both quantitative metrics and
visual fidelity, it is not without failure cases. The most
common limitations arise when attempting to reconstruct



extremely fine or novel lithologies that the micro-CT in-
put cannot resolve. In a few test samples, needle-shaped
mineral flakes on the order of 100 nm still appear as low-
contrast streaks in the predicted SEM (see Figure [3] bot-
tom). This occurs because the micro-CT voxels (2 um
resolution) do not contain any signal for sub-100 nm fea-
tures—hence, the diffusion model can only predict plau-
sible texture based on the training distribution. By com-
parison, the cGAN frequently suffers from over-smoothing
and missing pores in low-contrast regions, which indicates
mode collapse of fine-scale textures. In short, while the
DDPM recovers high-frequency detail more faithfully, it re-
mains constrained by the fundamental resolution limits of
the micro-CT modality.

Overfitting and Generalization Both models were
trained exclusively on rotation-augmented tiles drawn from
a single North Sea sandstone core and then tested on held-
out tiles (19 rotations per original 512 x 512 patch). Con-
sequently, the reported metrics and visual examples (e.g.
Figures 2] and [3) reflect performance on the same geologi-
cal specimen, although on never-seen rotations and spatial
locations. To mitigate overfitting, we employed aggressive
rotation-safe augmentation and early-stopping based on val-
idation SSIM/PSNR. Both training and validation curves
stabilized well before the final epochs (cGAN by epoch
150, DDPM by epoch 300), with no signs of divergence.
Nonetheless, true cross-sample generalization to different
rock types or mineralogies remains untested. Future work
should validate these architectures on SEM/micro-CT pairs
from other cores to ensure robustness across a broader range
of pore-scale textures.

Summary In summary, our results demonstrate that a
conditional DDPM dramatically outperforms a Pix2Pix
cGAN baseline on the micro-CT — SEM super-resolution
task. Quantitatively, the DDPM achieves mean SSIM 0.802
and PSNR 27.08 dB on 7,985 unseen test pairs—compared
to 0.595 SSIM and 20.52 dB PSNR for the cGAN (Table/[T).
Qualitatively, the DDPM preserves sub-micron intragranu-
lar features and complex pore geometries that the cGAN
tends to smooth out (Figure [3). Therefore DDPM’s supe-
rior ability to predict realistic SEM textures from micro-CT
input suggests it is well-suited for non-destructive, high-
fidelity pore-scale characterization of geological materials,
especially in scenarios where accurate SEM-level detail is
required.

6. Conclusion and Future Work

In this work, we compared a Pix2Pix-style condi-
tional GAN (cGAN) against a conditional diffusion model
(DDPM) for super-resolving micro-CT images into SEM-
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quality reconstructions. Using a heavily augmented dataset
drawn from a single North Sea sandstone slice, we demon-
strated that the DDPM significantly outperforms the cGAN
baseline on unseen test pairs. Image comparisons confirm
that the diffusion model recovers fine pore-scale textures
and mineral boundaries better, while the cGAN often pro-
duces oversmoothed outputs.

However, our dataset derives entirely from one rock sam-
ple, with diversity introduced through rotation-safe tiling
rather than distinct lithologies. Consequently, future work
should incorporate truly independent cores and varied rock
types to assess generalization. Additionally, we can investi-
gate semi-supervised or unsupervised approaches to reduce
the reliance on perfectly paired micro-CT/SEM data, for
example by incorporating cycle-consistency or contrastive
learning losses that can leverage large unpaired collections
of micro-CT images. Overall, these findings indicate that
conditional diffusion models offer substantial potential for
non-destructive, high-fidelity micro-CT — SEM super-
resolution.
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