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Abstract

State-of-the-art calorimeter designs enable increas-
ingly precise particle energy measurements in high-energy
physics experiments. Using Geant4-based simulations and
assuming signal readout with advanced dSiPM technology,
we investigated particle identification and energy recon-
struction using the Convolutional Neural Network (CNN).
Our findings demonstrate that deep neural networks have
the potential to achieve superior energy resolution measure-
ments and perform particle classification with exceptional
accuracy. Furthermore, we observed that incorporating
finer timing information can further enhance our network’s
hadronic energy resolution capabilities.

1. Introduction
1.1. Advances in Calorimetry for Particle Physics

Precision energy measurement is fundamental to modern
high-energy physics research. Calorimeters serve as sophis-
ticated detection systems that measure energy deposition
when particles interact with detector material. These inter-
actions produce characteristic shower patterns through elec-
tromagnetic and hadronic processes, yielding signals that
contain crucial information about particle properties. Var-
ious specialized calorimeter designs have been developed
to meet specific experimental needs, including electromag-
netic calorimeters, hadronic calorimeters, and recently dual-
readout calorimeters, each optimized for different particle
types and energy regimes.

Despite significant technological advancements, conven-
tional calorimetric data processing follows a largely un-
changed paradigm: analog signal collection, waveform dig-
itization, and subsequent offline reconstruction. This estab-
lished methodology, while robust, likely underutilizes the
wealth of information embedded within particle shower de-
velopment. For example, the dual-readout approach [11]]
represented a conceptual breakthrough by separately mea-

suring electromagnetic and non-electromagnetic shower
components to improve energy resolution. However, even
these advanced techniques have not yet achieved theoret-
ical resolution limits, suggesting that substantial informa-
tion—perhaps contained in the fine-grained spatial and tem-
poral structure of energy deposits—remains unexploited by
traditional reconstruction methods.

1.2. Neural Networks for Calorimeter Analysis

Machine learning techniques have emerged as powerful
tools for calorimeter data analysis. Deep neural networks,
specifically CNNs and GNNss, excel at extracting complex
patterns from high-dimensional data. Recent studies have
demonstrated that these approaches can achieve superior
performance in calorimetric energy reconstruction [2| [12]]
compared to traditional methods.

In this study, we apply deep learning techniques to an-
alyze spatial energy distribution patterns in calorimeters,
aiming to improve both energy reconstruction precision and
particle identification capabilities. Our approach is en-
hanced by recent advances in detector technology, particu-
larly the digital Silicon Photomultiplier (dSiPM) [7]], which
provides direct access to photon count distributions with-
out intermediate waveform processing. This combination of
advanced readout technology and neural network analysis
shows significant promise for enhancing the performance
of calorimetric measurements in future particle physics ex-
periments.

1.3. Network Inputs and Outputs

We will use simulation results from the calorimeter as
our input data. These data consist of time-evolving 2D
distributions representing photon deposition patterns within
the detector as particles enter and produce showers. By
capturing shower development across multiple time frames,
we obtain not just a single image but a sequence of frames
showing the temporal evolution of each shower event. As-
suming the use of dSiPM as the photon detection endpoint,
we record energy deposition distributions as photon counts



Figure 1. 90 GeV 7~ shower image across the full detector cross-
section. The light dots represent the number of photons collected.

across each pixel at different time intervals. The 2D im-
age shown in Figure [T|represents the distribution of photon
counts from a 90 GeV hadronic shower within the calorime-
ter at a specific time slice. The input data will include var-
ious energy ranges (1-100 GeV) and particle types, pro-
vided we have a sufficiently large dataset. In addition to
the multi-frame 2D image input, we incorporate an aux-
iliary parameter, F,,,, which represents the total energy
deposition summed across all pixels in the event. This pro-
vides complementary energy information after the 2D im-
age sequence has been normalized. We will feed this time-
dependent shower data into our model with the expectation
of producing two outputs:

* The type of incoming particle: e~, 7, etc.

* The energy of the incoming particle

2. Current Approaches in Calorimetric Energy
Reconstruction

2.1. Particle Flow Analysis

One significant approach to enhancing energy resolution
in calorimetry is Particle Flow Analysis (PFA). As com-
prehensively reviewed by this paper [15], PFA combines
calorimeter measurements with magnetic tracker data to re-
construct jets. The core principle involves using tracker in-
formation to measure charged particle momenta while re-
lying on calorimeter data for neutral particle energy mea-
surements, theoretically leveraging the superior momentum
resolution of tracking detectors.

Despite its theoretical advantages, PFA faces substantial
practical challenges. The primary difficulty lies in avoiding
double-counting of energy—charged particles measured by
the tracker also deposit energy in the calorimeter, requiring
sophisticated algorithms to disentangle these contributions.
Additionally, errors in track-cluster matching can propagate

through the reconstruction chain, either removing valid en-
ergy deposits or including spurious ones, ultimately degrad-
ing the reliability of the final energy measurements.

2.2. Dual-Readout Calorimetry

In high-energy physics experiments, achieving optimal
energy resolution remains a significant challenge, particu-
larly for hadrons at lower energies. Dual-readout calorime-
try has emerged as one of the most promising approaches to
address this challenge. The fundamental principle of dual-
readout calorimeters, as described by Lee et al. [[11] and
Pareti et al. [14], involves utilizing two distinct signal read-
out channels: one sensitive exclusively to energy deposited
by relativistic particles in the shower, and another respon-
sive to energy depositions from all charged particles within
the shower. This approach enables the disentanglement of
electromagnetic and hadronic components of particle show-
ers, theoretically improving energy resolution.

This work [6]] demonstrated through Geant4 standalone
simulations that dual-readout techniques can yield sig-
nificant improvements in energy resolution for certain
calorimeter materials, such as PbWQ4. However, their re-
sults also revealed an important limitation: the performance
enhancements were inconsistent across different detector
materials and configurations. Some of these questions have
been answered in this paper [8], but this inconsistency still
suggests that while detector design advancements have been
made, we have not yet fully exploited all available infor-
mation from particle showers to achieve optimal resolution
improvements.

2.3. Neural Network Applications

Given the limitations of both particle flow analysis
and dual-readout techniques, researchers have increasingly
turned to machine learning approaches to extract maxi-
mum information from calorimeter signals. Neural net-
works, with their capacity to identify complex patterns in
high-dimensional data, offer a promising alternative to tra-
ditional reconstruction methods. Several studies have ex-
plored this direction, applying various deep learning archi-
tectures to calorimeter data. Some early successes [4]] have
been demonstrated using deep neural networks for jet clas-
sification tasks, while Komiske et al. [10] pioneered the
application of convolutional neural networks to jet images.
Carminati et al. [5] further advanced simulation techniques
using adversarial generative networks. In the domain of
calorimeter-based particle identification, convolutional neu-
ral networks were applied to improve classification accu-
racy [3] in neutrino experiments.

More specifically in the realm of energy reconstruction,
several works [2, [13] have demonstrated promising results
applying neural networks to particle energy reconstruction.
Also the work from [12] presents the energy and angle re-



gression with the help of GNNs. These studies primarily
relied on comprehensive 3D shower information available
in simulations, using spatial distribution patterns to train
neural networks for prediction. While this approach pro-
vides excellent proof-of-concept validation, acquiring such
detailed shower information in complex experimental envi-
ronments presents significant practical challenges.

Our research diverges from these previous works by fo-
cusing exclusively on signals obtained from silicon sen-
sors at the final readout stage of the calorimeter. By utiliz-
ing both the spatial and temporal distribution of these sig-
nals, our approach offers greater practicality and compara-
tive relevance to experimental conditions. This methodol-
ogy bridges the gap between simulation-based studies and
experimental implementation, has great potential to achieve
optimal energy resolution while maintaining robust perfor-
mance across different particle types and energy ranges.

3. Methodology and Dataset

Each event in our dataset represents the spatial and tem-
poral distribution of photons detected by dSiPMs at the end
of optical fibers. Figure [2]illustrates a typical event display
showing the shower pattern produced by a 50 GeV 7~ en-
tering the detector at normal incidence. The shower devel-
opment leads to energy depositions that generate photons,
which propagate through the fibers and are ultimately de-
tected by the dSiPMs at the detector periphery.

The data for each event is structured as a 2D histogram
with dimensions 159x139, where each pixel corresponds to
a 0.4 cm x 0.4 cm area in the detector, matching the cross-
sectional size of a rod containing four Cherenkov fibers and
three scintillation fibers. Figure |3| shows the Cherenkov
photon distributions in one single rod, where the four cir-
cles stand for the arrangement of the Cherenkov fibers. This
spatial resolution captures the detailed structure of particle
showers while maintaining a computationally manageable
input size for our neural network.

Table 1. Summary of the final dataset

. . e Particle Type Number of Events  Train / Val / Test

3.1. Dataset Generation and Characteristics 1700 GeV o= 2000 53007 500 7400

Our dataset is derived from standalone detector simula- 1-100 GeV 7~ 4000 2800/ 800 / 400
tions implemented using Geant4 [1]], a toolkit widely used 10, 30, 50, 90 GeV e~ 1000 0/0/1000
in high-energy physics for modeling particle interactions 10, 30, 50, 90 GeV 7~ 1000 0/0/1000

with matter. The simulation code [9] implements the HG-
DREAM calorimeter geometry and simulates energy de-
position processes of various particles within the detector.
This simulation generates ROOT files containing compre-
hensive information about particle interactions, which we
subsequently process and convert to HDFS5 format for effi-
cient deep learning model training.

The dataset consists of 8,000 simulated events dis-
tributed among electrons and pions with energies ranging
from 1 to 100 GeV. Additionally, we prepared a sepa-
rate test dataset containing 1,000 events for each particle
type to evaluate model performance across different energy
regimes. The detailed breakdown of these datasets is pre-
sented in Table We partition this dataset into training,
validation, and test sets using a 70%/20%/10% split, result-
ing in approximately 5,600 training events, 1,600 validation
events, and 8,800 test events.

Figure 2. Event display showing the shower pattern of a 50 GeV
7~ entering the detector at normal incidence. The yellow-colored
points represent energy depositions within the detector volume.

—

Figure 3. Photon occupancy in a single rod. The color of each
pixel stands for the number of photons received in that channel.

A unique aspect of our dataset is the temporal dimen-
sion—each event includes multiple time slices capturing
the shower development over time. This temporal informa-
tion provides crucial distinguishing features between parti-
cle types, as particles and anti-particles exhibit character-
istically different shower development patterns over time,
which is also true for leptons and hadrons.

3.2. Data Preprocessing

Prior to model training, we apply several preprocessing
steps to enhance learning efficiency:

1. Energy Sum Normalization: The total energy sum
for each event is standardized using:

- Egym — M Egm

Esum = (1)

JESUIT\



where pg, , and o, are the mean and standard deviation
computed from the training set.

2. Particle Type Encoding: Particle types are one-hot
encoded for classification purposes.

3. Energy Scaling: True particle energies are scaled to
GeV (divided by 1000 from the original MeV values) to
improve numerical stability during training.
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Figure 4. CNN architecture for particle ID and energy regression.

3.3. Neural Network Architecture

We implement a convolutional neural network archi-
tecture 4] designed to effectively process both spatial and
temporal features of calorimeter data. Our network in-
put can be formally represented as a 4-dimensional tensor
X € RNXHXWXC where N is the batch size, H = 159
and W = 139 are the spatial dimensions, and C' represents
the selected time slices (we are starting from C' = 12, i.e.
about 1.0 ns time steps).

The core architecture consists of three convolutional
blocks with the following structure:

Block 1 Conv2D(5 x 5,64) — ReLU — BatchNorm
ock 1:
Conv2D(3 x 3,32) — ReLU — MaxPool(2 x 2)

( )
( )
Block 2 - {ConVZD(?) x 3,32) — ReLU — BatchNorm
Conv2D(3 x 3,32) — ReLU — MaxPool(2 x 2)
( )
( )

Block 3 : Conv2D(3 x 3,32) — ReLU — BatchNorm
" | Conv2D(3 x 3,16) — ReLU — MaxPool(2 x 2)

These convolutional layers progressively extract hierar-
chical features from the input data. The first layer uses
larger 5 x 5 filters to capture broader spatial patterns, while
subsequent layers use 3 x 3 filters to extract more refined
shower features. Batch normalization layers help stabilize
training by normalizing activations, while max-pooling op-
erations reduce spatial dimensions and provide translation
invariance.

Following the convolutional blocks, the network contin-
ues with:

Flatten — Dense(512) — ReLU — Dropout(0.2)
— Dense(128) — ReLU — Dropout(0.2)
— Dense(64) — ReLU — Dropout(0.2)

We also incorporate the total energy sum as an additional
feature in our architecture. We concatenate the learned fea-
tures with the normalized energy sum before the final output
layers:

heombined = [hCNN7 Esum] — Dense(32) — ReLU
Finally, we produce two outputs:

Yparticle = Dense(4/2) — Softmax
yenergy = Dense(l)

where Yparicle represents the probability distribution over
particle types (electron vs. pion), and Yepergy is the predicted
energy of the incident particle. There could be 4 or 2 neu-
rons in the dense layer for yparice depending on how many
different particles we hope the model to distinguish.

3.4. Training Methodology

We formulate our problem as a multi-task learning ob-
jective combining particle identification (classification) and
energy reconstruction (regression). The combined loss
function is:

Liotal = Alﬁpanicle + >\2£energy 2

where A\; and A\ are weighting coefficients that balance
the contribution of each task. For particle identification, we
use categorical cross-entropy loss:

N 2
Eparticle = - Z Z Yi,c 10g(@i,c) (3)

=1 c=1
For energy reconstruction, we employ mean squared log-
arithmic error (MSLE):

1 N
ﬁenergy = N Z(log(l + y1) - log(l + yA7))2 “)

i=1

This logarithmic transformation helps balance the impor-
tance of relative errors across the wide range of particle en-
ergies (1-100 GeV) in our dataset.

Figure [5] shows a visualization of the six selected time
channels (about 2 ns time steps) for representative electron
and pion events. The distinctive spatial patterns and tem-
poral evolution characteristics provide rich information for
our neural network to differentiate between particle types.

Our implementation uses TensorFlow 2.x with the Keras
API, building the entire model architecture and training
pipeline from scratch without relying on pre-existing spe-
cialized code bases.
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Figure 5. Temporal evolution of particle showers in the calorimeter. Top row: 82.3 GeV electron shower development. Bottom row: 84.4
GeV pion shower development. Each column represents a time slice approximately 2 ns apart.

4. Experiments and Results
4.1. Experimental Setup and Hyperparameters

We train the model using the Adam optimizer with a
learning rate of 10~* and a batch size of 256. The rela-
tively low learning rate was chosen to prevent oscillations
in the loss landscape given the complexity of our multi-task
objective. To prevent overfitting, we implement early stop-
ping based on validation loss and use dropout layers with a
rate of 0.2. Our training procedure includes an iterative ap-
proach allowing for multiple training rounds, which helps
escape local minima. The loss function weights (A; = 1.0
and Ay = 10.0) were determined through cross-validation
experiments, placing greater emphasis on the energy recon-
struction task since we found that it is much harder for the
model to perform better in the energy reconstruction task.
This weighting scheme effectively balances the numerical
scales of the categorical cross-entropy and mean squared
logarithmic error components.

To prevent overfitting, we implemented several regular-
ization strategies. Dropout layers with a rate of 0.2 were
inserted after dense layers, randomly deactivating 20% of
neurons during training to reduce co-adaptation. Batch nor-
malization was applied after convolutional layers to stabi-
lize training and mitigate internal covariate shift. Early
stopping monitored validation loss with a patience of 10
epochs, halting training when no improvement was ob-
served and restoring the best-performing model weights.
Each training run taking approximately 1.5 hours to com-
plete. The final best model were selected based on perfor-
mance across 10 runs submitted on the cluster. The loss
curve shows the good training performance of our model
after 30 epochs.

When training with finer temporal granularity (larger C'
values), we encountered significant system memory con-
straints due to the increased dataset size. To address this

limitation, we implemented an incremental training strat-
egy using sequential data chunks. Instead of loading the
entire dataset into memory at once, we randomly sampled
250 events from each particle type per iteration, trained with
a reduced batch size, and saved the resulting model. This
model then served as the initialization point for training on
the next data chunk, creating an iterative refinement pro-
cess. This approach effectively transforms the training pro-
cedure into a form of curriculum learning, where the model
progressively improves its representations while maintain-
ing memory efficiency.

4.2. Evaluation Metrics
4.2.1 Particle Identification Metrics

For the particle classification task, we report:

e Accuracy: The proportion of correctly classified par-
ticles, defined as:

Number of correctly classified particles
Total number of particles

Accuracy =
®)

* Confusion Matrix: A table showing the distribution
of predicted vs. true particle types, providing insight
into classification errors.

* ROC Curve: The Receiver Operating Characteristic
curve plotting the true positive rate against the false
positive rate at various threshold settings, with the
Area Under the Curve (AUC) quantifying the overall
classification performance independent of any specific
threshold.

4.2.2 Energy Reconstruction Metrics

For the regression task of energy reconstruction, we use:

800

200



Particle Classification Results (30 GeV)

True Label

Predicted Label

Figure 6. Confusion matrices showing particle identification per-
formance for 30 GeV electrons and pions. Both particle types are

classified with accuracy exceeding 98.5%.

¢ Mean Absolute Error (MAE): The average absolute

Percentage

difference between predicted and true energies:

1 N
MAE:NEM—%‘

(6)

* Energy Resolution: Defined as o /F, where o is
the standard deviation of the reconstructed energy dis-

tribution for events with true energy E:

. OFp
Resolution = — =

9i)?

E

\/% Zfil (yi —
E

(7

This metric is particularly important in calorimetry, as
it characterizes the detector’s ability to distinguish par-

ticles with similar energies.
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Figure 7. Particle identification accuracy across different energy

levels.
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Figure 8. ROC curve for the model.

* Energy Response: The relationship between mean re-
constructed energy and true energy, ideally following
a horizontal line with height 1.0.

4.3. Model Performance

4.3.1

Particle Identification

Our CNN-based model demonstrates exceptional perfor-
mance in particle identification tasks. Figure[6|presents con-
fusion matrices for 30 GeV electrons and pions, showing
classification accuracies exceeding 98.5% for both particle

types.

0.98

Energy Response (Predicted/True)

0.86

This high accuracy underscores the model’s ability to

Energy Response vs True Energy
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Figure 9. Ratio of reconstructed to true energy across different en-
ergy levels for electrons and pions.
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Figure 10. Energy response as a function of true particle energy for electrons (left) and pions (right). Color intensity indicates event density,
while the blue line shows the mean response at each energy level in 1 ns time slices and red for 0.1 ns.

effectively learn discriminative features from the calorime-
ter information.

The model’s identification capability remains robust
across various energy levels, as demonstrated in Figure
For each energy level, we tested the model on 1,000 events
per particle type, consistently achieving classification ac-
curacies above 97%. Notably, electrons are identified with
higher accuracy compared to pions across all energy ranges.
This performance differential can be attributed to the more
concentrated EM shower patterns produced by electrons,
compared to the more variable hadronic showers of pions.

The ROC curve in Figure [§] shows that the model can
achieve a true positive rate of more than 0.9 with a false
positive rate of less than 1073, And the AUC can reach the
0.9994 level for e~, 7~ and microaverage of both.

4.3.2 Particle Energy Reconstruction

Figure [9] presents the ratio of mean reconstructed energy
to true energy for electrons and pions across various energy
levels. Both types of particles show reconstruction accuracy
that exceeds 84% throughout the energy spectrum tested.
In particular, electrons show consistent reconstruction per-
formance across the entire 1-100 GeV range due to their
predictable electromagnetic shower characteristics. Pions,
however, exhibit declining reconstruction accuracy above
70 GeV, likely due to “punch-through” effects where por-
tions of high-energy hadronic showers escape the detector
volume rather than any model deficiency.

Figure [10| presents the energy response (defined as the
ratio of reconstructed to true energy) as a function of true
particle energy. This visualization reveals important char-
acteristics of our model’s energy reconstruction capabilities
across the full energy spectrum. The plots demonstrate a

clear trend where reconstruction efficiency improves with
increasing particle energy for both particle types, stabiliz-
ing at higher energies. For pions, we observe a decline in
the mean response curve at energies above approximately
70 GeV, confirming our earlier hypothesis about detector
punch-through effects. When we reduced the time interval
between image frames from 1 ns to 0.1 ns, the data shown
in red demonstrated a slight improvement for electrons and
a more pronounced enhancement for pions.
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Figure 11. Linear relationship between the total pixel sum in the
final time channel and true particle energy.

4.3.3 Energy Reconstruction with Linear Calibration

Given that the energy deposited by particles is proportional
to the number of photons produced in the calorimeter, we
investigated a direct calibration approach as a benchmark



method. Figure [T1] shows the linear relationship between
true energy and the sum of pixel values in the final time
channel for both electrons and pions. The strong linear cor-
relation observed in this plot (with R? = 0.9964 for elec-
trons and R? = 0.8600 for pions) suggests that a simple lin-
ear calibration could provide a reasonable first-order energy
estimate. We leveraged this relationship to implement a di-
rect energy reconstruction method by multiplying the sum
of pixel values by the corresponding calibration factor for
each particle type. This straightforward calibration serves
as a baseline for evaluating our neural network approach,
representing the most direct way to estimate particle energy
from detected photon counts with minimal signal process-
ing in actual experiments.

4.3.4 Comparison of Reconstruction Methods

To evaluate the effectiveness of our neural network ap-
proach, we compared the energy resolution achieved by our
CNN model against the linear calibration method across
different energy levels. Figure presents this compari-
son for both electrons and pions. This performance differ-
ence aligns with established calorimetry principles, where
EM showers typically yield better energy resolution. As
expected, both methods show improved energy resolution
with increasing particle energy, following the characteristic
1/+/E scaling behavior typical of calorimeter systems.

CNN vs Pixel Sum Methods
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Figure 12. Energy resolution as a function of particle energy for
both CNN and linear calibration methods.

The comparison reveals an interesting pattern: for elec-
trons, the linear calibration method actually shows slightly
better resolution than our CNN approach, suggesting room
for improvement in our model for electromagnetic showers.
However, this is acceptable as electron energy resolution
is generally not the most challenging aspect of calorimetry
due to the more predictable nature of EM showers.

Our primary focus was improving hadronic energy reso-
lution, where traditional calorimetry techniques often strug-
gle. In this regard, the CNN method demonstrates signif-
icantly superior performance compared to the linear cali-
bration approach across all energy levels for pions. This
improvement is particularly pronounced at lower energies,
where hadronic shower fluctuations are more significant and
the complex pattern recognition capabilities of neural net-
works provide greater advantage. The enhanced perfor-
mance for pions indicates that our model successfully ex-
tracts additional information from the spatial and temporal
distribution of hadronic shower development beyond what
is captured by the simple sum of detected photons. Ad-
ditionally, the figure also indicates that using more finely
divided time steps can further improve hadronic energy res-
olution.

5. Conclusion and Future Work

This study demonstrates the effectiveness of CNNs in ex-
tracting information from calorimeter data for particle iden-
tification and energy reconstruction. Our approach achieves
high accuracy in distinguishing between electrons and pi-
ons while simultaneously providing precise energy mea-
surements across a wide energy range. Our results indicate
that the integration of temporal information significantly
enhances model performance, particularly for energy re-
construction at lower energies where traditional calorimetry
techniques often struggle. The network effectively learns
distinctive shower development patterns that characterize
different particle types, providing a powerful complement
to existing dual-readout calorimetry approaches. Further-
more, our direct utilization of detector signals eliminates the
need for complex intermediate processing steps, offering a
more streamlined analysis pipeline for future experiments.

For future work, we plan to enhance our simulation with
more accurate modeling of scintillation light production and
propagation, which would enable direct comparison with
state-of-the-art energy resolution benchmarks from tradi-
tional reconstruction methods. Additionally, we aim to ex-
plore finer temporal resolution in our detector readout, po-
tentially reaching the 10 ps. Such ultra-high time resolu-
tion would provide even more detailed information about
shower development dynamics, potentially revealing subtle
features that could further improve particle discrimination
and energy reconstruction. Finally, extending this approach
to a broader range of particle types and more complex event
topologies, including overlapping showers and higher de-
tector occupancy scenarios, would be valuable for applica-
tions in future high-energy physics experiments.
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