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Abstract

Focal adhesions are dynamic protein complexes that
mediate the linkage between the actin cytoskeleton and the
extracellular matrix, playing essential roles in cell
motility, mechanotransduction, and signaling. This project
aims to automate the detection and classification of focal
adhesions in immunofluorescence microscopy images
using deep learning. I first developed a ResNet-18
convolutional neural network classifier, fine-tuned to
accept single-channel 255%255 grayscale input patches,
to predict the presence or absence of focal adhesion
structures in an image. The model is trained with transfer
learning and optimized for binary cross-entropy loss,
achieving high accuracy (=98.8%) in distinguishing focal
adhesion-containing images. Key performance metrics
include a validation Fl-score of ~0.92 and a test
ROC-AUC of 0.999, indicating near-perfect separation of
classes. 1 further analyze the classifier'’s behavior using
Grad-CAM heatmaps to interpret salient image regions
and t-distributed Stochastic Neighbor Embedding (t-SNE)
to visualize feature separability. This two-stage
approach—coarse patch-wise classification followed by
fine-scale object detection—leverages deep learning to
improve both throughput and spatial fidelity in focal
adhesion analysis. Our results demonstrate that deep
learning can substantially outperform traditional methods
in accuracy and scalability, providing a foundation for
high-throughput, quantitative focal adhesion phenotyping
in biological imaging workflows. The final system
contributes a robust tool for cell biology research, with
potential to accelerate studies of cell adhesion dynamics
and mechanobiology.

1. Introduction
Focal adhesions (FAs) are macromolecular complexes that

connect the actin cytoskeleton to the extracellular matrix
(ECM) via integrin receptors. They function as cellular

anchor points and mechanosensors, transmitting forces and
signals across the cell membrane. This linked focal
adhesion-actin network is essential for mechanosensing,
enabling cells to sense ECM stiffness and respond by
modulating migration, polarization, and differentiation.
Because of these roles, focal adhesions are critical in
processes such as wound healing, immune cell trafficking,
and cancer metastasis. For example, changes in focal
adhesion assembly and signaling have been implicated in
tumor cell invasion and metastasis. Moreover, the spatial
architecture and dynamics of FAs can vary significantly
with cell type and substrate stiffness, reflecting how
external mechanical cues influence cellular responses. The
modular nature of the “adhesome” (the collection of FA
proteins) means that different cells or conditions yield
distinct adhesion patterns — for instance, mesenchymal
stem cells form anisotropic adhesion fiber structures at an
optimal matrix rigidity as part of differentiation.
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Figure 1 (a) Scheme of the construct of focal adhesion in
extracellular matrices. (b) Typical shape of focal adhesion
traces in immunofluorescence imaging of cells. Brighter
elliptical dots at the edges of cells are immunostained
focal adhesion components.

Despite their biological importance, the quantitative
characterization of focal adhesion morphology and
distribution remains underdeveloped. Traditional imaging
analyses rely on manual thresholding or fluorescent
intensity gating, which often lack spatial precision and can
be subjective. This gap in standardized high-resolution
analysis impedes large-scale phenotypic screens and drug
discovery efforts targeting adhesion-mediated signaling
pathways. The ability to automatically classify and
localize adhesion subtypes (e.g., focal vs. fibrillar
adhesions) is critical for screening candidate therapeutics
and understanding mechanotransduction in different
environments.

Recent advances in computer vision suggest that deep
learning can overcome the limitations of manual or
classical approaches. Convolutional neural networks
(CNNs) excel at learning hierarchical features and have
achieved unprecedented accuracy in object recognition
tasks, including in biomedical imaging domains. By
leveraging CNN-based models, I aim to detect focal
adhesions with high spatial fidelity and throughput. In this
work, I first focus on a coarse-level classification:
determining whether a given microscopy image patch
contains focal adhesions or not. This classification module
serves as a front-end filter to rapidly identify regions or
experiments of interest.

We then propose extending the system to perform
fine-grained localization of focal adhesions using an object
detection framework. Our two-stage approach is motivated
by efficiency and interpretability: the classification stage
quickly narrows down candidates, and the detection stage
applies a specialized model to pinpoint adhesion locations
within those candidates. Such a strategy can significantly
reduce false positives and computational cost by avoiding
exhaustive detection on all regions of an image. In the
following sections, I detail the development of a deep
learning pipeline for focal adhesion analysis. I describe the
dataset of fluorescence microscopy images used, the
preprocessing and augmentation techniques, and the
architecture and training protocol of our ResNet-18
classifier. I also discuss related work in biomedical image
segmentation and detection, highlighting how our
approach builds on and differs from prior methods.
Extensive  experiments are presented, including
classification performance metrics (confusion matrix,
precision/recall, ROC-AUC), an examination of
misclassified cases, and visualizations of the learned
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features via Grad-CAM and t-SNE embeddings. Finally, I
outline the planned RetinaNet-based detection module and
conclude with the implications of this work for biological
imaging and future research directions.

2. Related Work

Early methods for focal adhesion (FA) analysis relied on
classical image processing techniques such as intensity
thresholding or edge detection, which often underperform
in noisy or low-contrast microscopy images. Tools like the
Focal Adhesion Filament Cross-correlation Kit (FAFCK)
improved automation, but remained dependent on
hand-crafted features and were limited in generalizability.

The emergence of deep learning has significantly
advanced biomedical image segmentation. U-Net and its
variants, with encoder-decoder structures and skip
connections, are now standard for cellular image
segmentation due to their robustness with limited data and
their ability to capture fine structural detail. CNNs have
also demonstrated superior performance in identifying
subcellular components like nuclei and mitochondria,
often outperforming traditional approaches.

In detection, deep learning has shifted the field toward two
paradigms: two-stage detectors like Faster R-CNN, and
one-stage detectors like RetinaNet and YOLO. While
two-stage methods achieve high accuracy, one-stage
models offer better speed—especially critical in dense
biological scenes. RetinaNet's introduction of Focal Loss
mitigates the extreme foreground-background imbalance,
making it especially suitable for detecting sparse targets
like FAs.

Recent surveys have summarized CNN-based 2D object
detection in biomedical settings, highlighting trade-offs
between speed and accuracy. Our approach follows this
trajectory by combining classification (via ResNet18) and
one-stage detection (via RetinaNet) for FA analysis. By
cascading these modules, we aim to first filter candidate
images and then accurately localize adhesions, addressing
both data sparsity and computational efficiency.

3. Data
3a. Image Collection

The dataset for this project consists of grayscale
immunofluorescence microscopy images of cultured cells
where focal adhesions have been fluorescently labeled
(e.g., via GFP-tagged integrin B5 or antibody staining of
adhesion proteins). Each image is a small patch of size
255%255 pixels, which corresponds to a physical scale
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covering a portion of a single cell. The images were
pre-sorted into two categories: focal (images containing
one or more focal adhesions) and non_focal (images
without any focal adhesion structures). In total, the dataset
contains on the order of a few thousand images, with an
inherent class imbalance — roughly 15% of the images are
positive for focal adhesions, reflecting that many random
cell patches will not contain an adhesion. These class
labels (1 for “focal” and O for “non_focal”) were used as
ground truth for training and evaluation. The images were
acquired using a Leica DMi8 fluorescence microscope
with a 63x objective, capturing the focal adhesion marker
in one channel (e.g., GFP) and optionally other cellular
structures in another channel (e.g., AF647 for actin or
other proteins). For our purposes, I utilize only the focal
adhesion channel images. To ensure consistency, all
images were resized or cropped to the 255x255 pixel
dimensions if necessary. Figure 2 shows examples of a
positive and a negative sample from the dataset.

(a)
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Figure 2 Representative immunofluorescence image
patches used for classification. (a) is patches labeled as
containing focal adhesions (Positive), showing a bright,
ellipsoidal focal adhesion at the cell periphery. (b) is
patches without focal adhesions (Negative), containing
only background fluorescence and other subcellular
structures, including ECM remodeling, Endoplasmic
Reticulum (ER), Filopodia, Lipid membranes and
Phagosome.

3b. Preprocessing

All images were converted to a single-channel (grayscale)
format if not already, since the fluorescence intensity of
the focal adhesion marker is the primary signal of interest.
Pixel intensity values were normalized to have mean 0.5
and standard deviation 0.5 (after scaling pixel values to
[0,1]) to match the scale expected by the
ImageNet-pretrained ResNet-18 (which expects roughly
standardized inputs). No global contrast enhancement or
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filtering was applied, as the raw fluorescence images
already exhibit good contrast between focal adhesions and
background given proper exposure. However, I took care
to shuffle and stratify the dataset when splitting into
training and testing sets to avoid any bias (for example,
ensuring that images from the same cell or experiment are
not split across train/test in a way that could leak
information).

3c. Augmentation

To increase the effective size and diversity of the training
data, I employed several data augmentation techniques,
mindful of preserving the essential geometry of focal
adhesions. Each training image was augmented with a set
of random transformations: horizontal and vertical flips
(reflecting that adhesions have no inherent left-right
orientation), small rotations (£15°) to account for arbitrary
cell orientations, brightness and contrast jitter (multiplying
pixel values by factors between ~0.7 and 1.3) to simulate
different staining intensities or exposure levels, and
additive Gaussian noise to mimic imaging noise. These
augmentations are illustrated in Figure 3. By applying 5-7
random transformations per original image, I expanded the
training set by several fold. Augmentation is especially
important here because acquiring labeled microscopy data
is labor-intensive — each focal adhesion must be manually
identified or experimentally validated. The augmented
dataset helps the model generalize to unseen images, for
example by learning that an adhesion remains an adhesion
even if the image is slightly dimmer or rotated. I did not
apply augmentation to the validation or test sets so as to
evaluate the model on true image distributions. After
augmentation, the training set contained ~4,000 images
(including augmented copies), while the hold-out test set
remained at 1000 images (851 negative, 149 positive). I
used an 80/20 split for training vs. validation during model
development, and a separate test set of 1000 images for
final evaluation.

Figure 3 Single augmentation case showing representative
operations on the focal adhesion dataset.

3d. Dataset Statistics
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The focal adhesion-positive images typically contain 1-3
bright adhesion puncta, often near the cell periphery, with
a roughly elliptical shape ranging around 2—-10 pm in
length. Negative images contain either other cellular
structures (such as diffuse cytosolic staining, parts of the
nucleus, or thin actin fibers) or background fluorescence.
The mean intensity of positive images is slightly higher
than negatives (due to the bright focal spots), but intensity
alone is not a reliable discriminator because some negative
images can contain other bright spots (e.g., debris or other
organelles) that are not focal adhesions. This necessitates a
method more sophisticated than global thresholding. The
class imbalance (approximately 1:5 ratio of positive to
negative) means that evaluation metrics like accuracy can
be misleading; hence I emphasize metrics like F1-score,
precision, and recall for the positive class when assessing
performance. During training, I also monitored the
validation Fl-score as the primary metric for model
selection, to ensure the model is performing well on the
minority class.

4. Methods
4a. Model Architecture ResNet-18 Classifier

We fine-tuned a ResNet-18 CNN to perform binary
classification on 255%255 microscopy images. ResNet-18
was chosen for its balance of depth and efficiency; with 18
layers it can capture reasonably complex features while
still trainable on a moderate dataset. I modified the
architecture in two places to adapt it to our task: (1) the
first convolutional layer was changed to have a single
input channel (instead of 3 for RGB) since our images are
grayscale; (2) the final fully-connected layer was replaced
with a linear layer of size 1, and a sigmoid activation was
applied to produce a probability in [0,1] indicating the
confidence that a focal adhesion is present. Because
training from scratch on a limited dataset can lead to
overfitting, I employed transfer learning.

The ResNet-18 weights were initialized from
ImageNet-pretrained weights (provided by PyTorch’s
model zoo). During training, 1 froze the early
convolutional layers for the first few epochs, allowing
only the last block and the fully-connected layer to learn,
and then gradually unfroze more layers. This common
strategy leverages the general feature extraction ability of
pretrained filters (which may detect edges, blobs, textures)
and adapts them to our specific domain. It is reasonable
here, as focal adhesion images share low-level visual
characteristics with natural images (edges, contrast, etc.),
even though the high-level semantics differ.

4b. Training Procedure
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The model was trained using binary cross-entropy loss
(BCE) between the predicted probability and the ground
truth label (0 or 1). I used the Adam optimizer with an
initial learning rate of 1x10* which provided fast
convergence. A small batch size of 16 was used due to
memory constraints and because each image is relatively
information-rich. I trained for a maximum of 25 epochs,
but with an early stopping criterion: if the validation
Fl-score did not improve for 10 consecutive epochs,
training was halted to prevent overfitting. In practice, the
model converged quickly — within the first 5-10 epochs
the validation accuracy plateaued. I observed the training
loss decrease steadily and the validation accuracy increase
to ~96-97% by epoch 9, after which there were
diminishing returns.

The best model (in terms of validation F1) was obtained at
epoch 9, with a validation accuracy of 97.7% and F1 =
0.92. T saved this model checkpoint for final evaluation.
During training, class imbalance was addressed implicitly
by monitoring F1 and by the model’s learning dynamics
(the network naturally learned to avoid always predicting
the majority class, as that would not maximize likelihood
under BCE loss with positive examples present each
batch). I did not use class weighting in the loss, but that
could be an alternative approach if imbalance were more
severe. Instead, our data augmentation to increase minority
samples and our early stopping on F1 ensured that the
classifier remained sensitive to the positive class.

4c. Evaluation Metrics

I evaluate the classifier on a held-out test set (never seen
during training). Key metrics are: Accuracy, the overall
percentage of correctly classified images; Precision
(Positive Predictive Value), the fraction of predicted
positives that are true positives; Recall (Sensitivity), the
fraction of true positives that were identified by the model;
F1-Score, the harmonic mean of precision and recall; and
ROC-AUC (Area Under the Receiver Operating
Characteristic Curve), which measures the model’s ability
to rank positive vs. negative instances across all
classification thresholds. Because of class imbalance,
accuracy can be high even for a trivial classifier (e.g.,
predicting all negatives would be 85% accurate here), so
precision, recall, and F1 give a better picture of
performance on the positive class. 1 also compute a
confusion matrix to break down the true vs. predicted
labels (Figure 4). The ROC curve is generated by varying
the sigmoid threshold from 0 to 1 and plotting true
positive rate vs. false positive rate; AUC close to 1
indicates excellent discrimination.

4d. Grad-CAM Visualization
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To interpret what the CNN is looking at when it predicts
focal adhesion presence, I utilize Gradient-weighted Class
Activation Mapping (Grad-CAM). Grad-CAM produces a
heatmap of the image highlighting regions that strongly
influence the model’s prediction. Technically, I take the
gradients of the output probability with respect to the
feature maps of the last convolutional layer (layer4) of
ResNet-18. These gradients, averaged across channels,
serve as weights for a linear combination of the forward
activations, yielding a coarse heatmap of important pixels.
I superimpose this heatmap on the original image to see
where the network focuses (Figure 5). For positive
predictions, I expect the highlighted regions to coincide
with bright focal adhesion spots if the model has learned
the correct features. This provides biological
interpretability and confirms that the CNN’s “attention” is
on the actual adhesions rather than artifacts. For negative
predictions, Grad-CAM can confirm that no particular
region strongly influences a positive classification (ideally
the heatmap is diffuse, indicating no focal adhesion-like
pattern was detected).

4e. Feature Embedding (t-SNE)

I also analyze the high-dimensional feature representations
learned by the model using t-SNE. I take the output of the
penultimate layer (the 512-dimensional feature vector after
global average pooling in ResNet-18) for all test images,
and apply t-SNE to project these to 2D. This allows us to
visualize clusters of images in feature space. I color the
points by their true label to see if the network has learned
a separable representation for focal vs. non-focal classes.
Ideally, the embeddings of images containing focal
adhesions will cluster apart from those of non-focal
images, indicating the model’s features distinctly encode
the presence of adhesions. I found this to be the case
(Figure 6): the t-SNE plot shows two well-separated
clusters corresponding to the two classes, with only a few
intermixed points. This suggests that the network’s
internal representation discriminates the classes with a
clear margin, which aligns with the high classification
performance.

4f. Extension: RetinaNet Detection Module

The ultimate goal is not only to classify small patches, but
to detect focal adhesions within larger images of whole
cells. To achieve this, I propose a second stage using the
RetinaNet one-stage object detector. RetinaNet is built on
a backbone CNN (we can use ResNet-18 or ResNet-50 as
backbone) and a Feature Pyramid Network (FPN) that
provides multi-scale feature maps for detection. Anchors
(predefined bounding boxes at multiple scales and aspect
ratios) tile the image, and the network outputs two heads:
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one for classification (whether an anchor contains an
object) and one for regression (refining the anchor to
better fit the object’s bounding box). I will train RetinaNet
to detect focal adhesion bounding boxes in full-size cell
images. Each focal adhesion in the training images will be
annotated with a bounding box (likely obtained from
manual annotation or another segmentation method).
During RetinaNet training, I will use the Focal Loss as the
classification loss to handle the class imbalance between
the many background anchors and few adhesion anchors.
Focal adhesions are typically small (a few micrometers),
so most anchors are negative; focal loss is crucial to
prevent the detector from being overwhelmed by ecasy
negatives.

I also consider adding a custom spatial context loss to
encourage biologically plausible detections. For example,
focal adhesions usually occur at the cell periphery and not
in the nucleus region; I can incorporate a penalty if a
predicted adhesion is in an anatomically implausible
location (this requires knowing the cell outline, which
could be obtained via a cell mask). Another idea is to
enforce a minimum distance between distinct adhesion
detections, reflecting that adhesions are separate puncta;
this could be done by non-maximum suppression or an
explicit term in the loss that penalizes multiple
overlapping boxes. While these ideas go beyond standard
RetinaNet, they could improve precision in the specific
context of cell images.

The RetinaNet output will be a set of bounding boxes each
with a confidence score for containing a focal adhesion. I
plan to integrate the earlier classifier as a gating
mechanism: the classifier can rapidly scan subregions or
patches of a large image to propose candidate regions that
likely contain adhesions, and then RetinaNet can refine
those proposals and accurately localize each adhesion
within those regions. This two-stage design draws
inspiration ~ from  classical  detection  cascades
(coarse-to-fine). In deployment, a whole cell image (for
instance, 1024x1024 pixels) would first be divided into
overlapping patches which the classifier evaluates; only
patches with positive predictions are processed by the
detection stage. This can dramatically speed up analysis
when many images have no adhesions or only sparsely
located adhesions. It also adds interpretability, as the
classifier’s output can be seen as saying “cell X likely has
adhesions in these areas,” and then the detector pinpoints
them.

5. Experiments
5a. Classification Performance

The ResNet-18 classifier was evaluated on the test set of

PAG

250

PAG

251

PAG

232

PAG

253

PAG

254

PAG

255

PAG

256

PAG

257

PAG

258

PAG

259

PAG

260

PAG



PAG

200

PAG

201

FAG

202

PAG

203

PAG

204

PAG

205

PAG

206

PAG

207

PAG

208

PAG

209

PAG

210

PAG

CVPR

fprokokok

1000 image patches (851 without FAs, 149 with FAs). The
model achieved an overall accuracy of 98.8% on this test
set. More informatively, the precision for the positive class
was 97.24%, and the recall (sensitivity) for the positive
class was 94.63%. This yields an Fl-score for detecting
focal adhesion images of 95.92%.

(a)
Confusion Matrix
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False 4
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= 500
=
=

g - 400
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- 300

True 4 8 141 L 500

- 100

T T —
False True
Predicted label

(b)

Figure 4 (a) Confusion matrix of the ResNet-18 classifier
on the test set (1000 patches). The model achieves 847
true negatives and 141 true positives, with only 4 false
positives and 8 false negatives. This corresponds to 98.8%
accuracy. (b) Examples of misclassified samples. Leftis a
false negative while right is a false positive.

For the negative class, precision was 99.06% and recall
99.53%, reflecting that the model only rarely misclassified
a non-adhesion image as containing an adhesion. These
numbers indicate that the classifier is highly effective: out
of 149 adhesion-containing images, it missed only 8 (false
negatives), and out of 851 non-adhesion images, it falsely
flagged only 4 as positive (false positives). The confusion
matrix summarizes these results in Figure 4a.

To further quantify performance, I examined the ROC
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curve for the classifier. The ROC curve (not shown here in
figure form) had an area under the curve (AUC) of 0.9990,
essentially a perfect score. This means that if I take any
random adhesion image and any random non-adhesion
image, the model’s predicted probability for the adhesion
image will be higher than that for the non-adhesion image
99.9% of the time. The ROC curve itself was very close to
the top-left corner of the plot, reflecting excellent true
positive rate at very low false positive rates. Such a high
AUC, along with the high precision and recall, suggests
that the model’s confidence scores are well-calibrated and
separable for the two classes. In practical terms, one could
even lower the threshold below 0.5 to catch all positives
(100% recall) and still have an acceptable false positive
rate, depending on the application’s tolerance.

5b. Misclassification Analysis

I inspected the handful of errors the classifier made to
understand their causes. The 8 false negatives (images
containing focal adhesions that the model missed) were
generally cases where the focal adhesion was extremely
small or faint. In a few instances, the “adhesion” in the
ground truth was debatable — some appeared to be very
early nascent adhesions or borderline intensity that even a
human might overlook. The model tended to be
conservative, so if an adhesion spot did not have a certain
brightness or size, the model sometimes classified the
image as negative. This suggests that our training data
might have labeled some very subtle adhesions that the
model could not confidently learn, pointing to a need for
either more examples of such subtle cases or treating them
differently (perhaps as a separate class of “ambiguous”).
The 4 false positives (model predicted an adhesion where
there was none) often had some bright feature that
confused the model. For example, one false positive was
an image patch with a piece of fluorescent debris or a
staining artifact that was bright and roughly the size of an
adhesion. The model likely latched onto this feature
thinking it was a focal adhesion. Another false positive
contained part of an actin filament with an end that was
bright and somewhat punctate, mimicking an adhesion
spot. These errors are understandable given that the model
has been trained to look for bright, punctate, edge-located
features — an actin filament tip or debris can satisfy these
criteria. With further training data or by incorporating
context (e.g., the shape of a true adhesion vs. a line), these
errors might be reduced. Encouragingly, no systematic
bias or major category of mistakes was found; the errors
were relatively random and sparse.

I saved a selection of misclassified examples for
visualization. Figure 4b shows a false negative example:
the image contained a very dim adhesion that the model
did not detect. Figure 4b also shows a false positive
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example: a bright artifact fooled the model. By examining
such cases with domain experts, I can refine the annotation
(perhaps relabel some ambiguous cases) or adjust the
model (through hard negative mining, for instance).
However, given the extremely low error rate, the current
performance is likely sufficient for many applications —
the model only misses ~5% of adhesions and has <1%
false alarm rate.

5c. Grad-CAM Results

To ensure the model is truly focusing on the biologically
relevant features (the focal adhesions themselves), I
applied Grad-CAM to several positive test images. An
example is shown in Figure 5. Here, the input image
contains a clear focal adhesion near the top-right corner.
The Grad-CAM heatmap is overlaid in Figure 5, and it
highlights the region of the bright adhesion in warm colors
(red/yellow). This indicates that the pixels corresponding
to the adhesion contributed the most to the model’s
“adhesion present” prediction. In contrast, the rest of the
cell area (dimmer background) is not highlighted. This is
an encouraging result, as it aligns with how a human
would identify the adhesion. It provides interpretability:
the network has essentially learned a concept of “bright,
small, edge-localized spot” as the key feature. I also ran
Grad-CAM on a negative image; as expected, it did not
show any concentrated hot spots — the heatmap was
diffuse and low-intensity across the whole image, meaning
no particular region strongly suggested an adhesion. These
visualizations support that the CNN is making decisions
based on the correct image cues, rather than, say, noise or
unrelated structures. Grad-CAM could further be used to
discover if the model sometimes focuses on incorrect
regions; in our limited analysis, this was not observed in
the true positive cases. If it were, that might indicate
overfitting or spurious correlations (for example, if all
adhesion images had some border artifact, the model
might wrongly focus on the border). Fortunately, our
model seems to be genuinely detecting the adhesions.

Grad-CAM Visualization

Figure 4: Grad-CAM visualization of the ResNet-18
classifier on an example image containing a focal
adhesion. The original grayscale image is shown with a
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translucent heatmap overlay. The model’s attention is
concentrated on the bright focal adhesion structure,
confirming that the CNN is identifying the correct feature
for its decision.

5d. Feature Embedding Visualization

I computed a 2D t-SNE embedding of the
high-dimensional features for all test images to visually
assess class separation. The result is plotted in Figure 5,
where each point represents an image in the test set
positioned based on its 512-dimensional feature vector
(from the layer before the final sigmoid). Points are
colored by true class (red for focal adhesion present, blue
for none). I observe two well-formed clusters with a clear
gap between them. Almost all red points cluster together,
and almost all blue points cluster elsewhere. There are
only a few red points lying in the blue cluster and vice
versa, corresponding to the misclassified or borderline
cases. This indicates that the network’s learned feature
space segregates the two classes into distinct regions — a
linear classifier (in fact the last layer is linear) can easily
separate them.

t-SNE Feature Embedding
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Figure 5 t-SNE visualization of image features learned by
the classifier. Each point corresponds to one test image’s
feature vector (from the penultimate layer of ResNet-18)
projected into 2D. Red points represent images with focal
adhesions (positive class), blue points are images without
adhesions (negative class).
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Such a plot corroborates the quantitative metrics: a perfect
separation in feature space would correspond to 100%
accuracy. Here it is nearly perfect, aligning with our ~99%
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accuracy. Interestingly, the t-SNE also sometimes reveals
sub-clusters; for example, the adhesion cluster might have
a slight internal grouping which could correspond to
images with multiple adhesions vs. single adhesion, or
different shapes of adhesions. With more detailed labels,
one could investigate if the network is picking up on such
nuances. Likewise, the non-adhesion cluster might group
images of just background fluorescence separate from
images that contain other structures like filaments.
Overall, the t-SNE analysis provides an intuitive
confirmation that the model’s representations are highly
discriminative for the task at hand.

Se. Training Curves

During training, I tracked the loss and accuracy on both
training and validation sets. The training process showed
that the model converged rapidly. The training loss started
around 0.07 (with normalized outputs) and dropped to
~0.01 by epoch 10, while the validation accuracy started
around 96% at epoch 1 (thanks to transfer learning
initialization) and improved to ~97.7% by epoch 9. After
epoch 9, the wvalidation accuracy and F1 did not
significantly improve, and in fact showed minor
fluctuations (a slight dip at epoch 11 as seen with F1
dropping to 0.9045 from 0.9226). The early stopping
kicked in after epoch 12 since no new best was achieved
after epoch 9. The final model was therefore the one from
epoch 9. Notably, there was no sign of overfitting up to
that point — the training and validation accuracy were
closely tracking each other, likely due to the simplicity of
the task for the network and the regularization effect of
transfer learning. The gap between training and validation
accuracy remained small (<1-2%), implying the model
generalized well to unseen data. If I had observed the
training accuracy rising far above validation (overfitting),
I would consider interventions such as stronger
regularization or gathering more data. The smooth training
curves and high plateau performance suggest that the
dataset, while not huge, was sufficient to train this model,
and our augmentation helped mitigate overfitting. In future
work, if I move to a detection model with many more
parameters, I will need to watch for overfitting more
carefully and possibly leverage techniques like
cross-validation or pretraining on synthetic data.

6. Conclusion

In this project, I developed a deep learning-based pipeline
for the segmentation and detection of focal adhesions in
fluorescence microscopy images. Starting with a
ResNet-18 classifier fine-tuned on grayscale image
patches, I demonstrated that even a relatively compact
CNN can achieve human-level accuracy in identifying
whether an image contains focal adhesions. The classifier
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reached 98.8% accuracy and ~0.96 F1-score in our dataset,
a substantial improvement over traditional image
processing approaches. I provided interpretability through
Grad-CAM, confirming that the network focuses on the
correct biological structures (the adhesion sites) when
making decisions. Visualization of the learned feature
space via t-SNE further validated that the model has
internally separated the classes in a meaningful way. These
results underscore the power of transfer learning and data
augmentation in training deep models for biomedical
image analysis, even with limited data. Biologically, our
automated method enables high-throughput analysis of
focal adhesions. Instead of a human manually inspecting
hundreds of images for adhesions, the model can screen
them in seconds, flagging those with adhesions for further
analysis. This has implications for experiments in
mechanobiology and pharmacology — for example, a
screen of drug compounds that affect cell adhesion could
utilize this pipeline to quickly quantify adhesion presence
or absence across thousands of images. In conclusion, this
project demonstrates a successful application of deep
learning to a challenging problem in cell biology. By
effectively segmenting and identifying focal adhesions,
our approach contributes a valuable tool for researchers to
quantitatively study cell adhesion dynamics. The
combination of high accuracy, automation, and biological
interpretability exemplifies the promise of computer vision
in advancing scientific discovery in biomedicine. I
anticipate that continued collaboration between domain
experts and Al engineers will lead to even more powerful
systems, ultimately enabling insights into how cells
interact with their environment in health and disease.
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