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Abstract 
 
Focal adhesions are dynamic protein complexes that 
mediate the linkage between the actin cytoskeleton and the 
extracellular matrix, playing essential roles in cell 
motility, mechanotransduction, and signaling. This project 
aims to automate the detection and classification of focal 
adhesions in immunofluorescence microscopy images 
using deep learning. I first developed a ResNet-18 
convolutional neural network classifier, fine-tuned to 
accept single-channel 255×255 grayscale input patches, 
to predict the presence or absence of focal adhesion 
structures in an image. The model is trained with transfer 
learning and optimized for binary cross-entropy loss, 
achieving high accuracy (≈98.8%) in distinguishing focal 
adhesion-containing images. Key performance metrics 
include a validation F1-score of ~0.92 and a test 
ROC-AUC of 0.999, indicating near-perfect separation of 
classes. I further analyze the classifier’s behavior using 
Grad-CAM heatmaps to interpret salient image regions 
and t-distributed Stochastic Neighbor Embedding (t-SNE) 
to visualize feature separability. This two-stage 
approach—coarse patch-wise classification followed by 
fine-scale object detection—leverages deep learning to 
improve both throughput and spatial fidelity in focal 
adhesion analysis. Our results demonstrate that deep 
learning can substantially outperform traditional methods 
in accuracy and scalability, providing a foundation for 
high-throughput, quantitative focal adhesion phenotyping 
in biological imaging workflows. The final system 
contributes a robust tool for cell biology research, with 
potential to accelerate studies of cell adhesion dynamics 
and mechanobiology. 

 
1. Introduction 
 
Focal adhesions (FAs) are macromolecular complexes that 
connect the actin cytoskeleton to the extracellular matrix 
(ECM) via integrin receptors. They function as cellular 

anchor points and mechanosensors, transmitting forces and 
signals across the cell membrane. This linked focal 
adhesion-actin network is essential for mechanosensing, 
enabling cells to sense ECM stiffness and respond by 
modulating migration, polarization, and differentiation. 
Because of these roles, focal adhesions are critical in 
processes such as wound healing, immune cell trafficking, 
and cancer metastasis. For example, changes in focal 
adhesion assembly and signaling have been implicated in 
tumor cell invasion and metastasis. Moreover, the spatial 
architecture and dynamics of FAs can vary significantly 
with cell type and substrate stiffness, reflecting how 
external mechanical cues influence cellular responses. The 
modular nature of the “adhesome” (the collection of FA 
proteins) means that different cells or conditions yield 
distinct adhesion patterns – for instance, mesenchymal 
stem cells form anisotropic adhesion fiber structures at an 
optimal matrix rigidity as part of differentiation. 
 
(a) 

 
(b) 
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Figure 1 (a) Scheme of the construct of focal adhesion in 
extracellular matrices. (b) Typical shape of focal adhesion 
traces in immunofluorescence imaging of cells. Brighter 
elliptical dots at the edges of cells are immunostained 
focal adhesion components. 
 
Despite their biological importance, the quantitative 
characterization of focal adhesion morphology and 
distribution remains underdeveloped. Traditional imaging 
analyses rely on manual thresholding or fluorescent 
intensity gating, which often lack spatial precision and can 
be subjective. This gap in standardized high-resolution 
analysis impedes large-scale phenotypic screens and drug 
discovery efforts targeting adhesion-mediated signaling 
pathways. The ability to automatically classify and 
localize adhesion subtypes (e.g., focal vs. fibrillar 
adhesions) is critical for screening candidate therapeutics 
and understanding mechanotransduction in different 
environments. 
 
Recent advances in computer vision suggest that deep 
learning can overcome the limitations of manual or 
classical approaches. Convolutional neural networks 
(CNNs) excel at learning hierarchical features and have 
achieved unprecedented accuracy in object recognition 
tasks, including in biomedical imaging domains. By 
leveraging CNN-based models, I aim to detect focal 
adhesions with high spatial fidelity and throughput. In this 
work, I first focus on a coarse-level classification: 
determining whether a given microscopy image patch 
contains focal adhesions or not. This classification module 
serves as a front-end filter to rapidly identify regions or 
experiments of interest. 
 
We then propose extending the system to perform 
fine-grained localization of focal adhesions using an object 
detection framework. Our two-stage approach is motivated 
by efficiency and interpretability: the classification stage 
quickly narrows down candidates, and the detection stage 
applies a specialized model to pinpoint adhesion locations 
within those candidates. Such a strategy can significantly 
reduce false positives and computational cost by avoiding 
exhaustive detection on all regions of an image. In the 
following sections, I detail the development of a deep 
learning pipeline for focal adhesion analysis. I describe the 
dataset of fluorescence microscopy images used, the 
preprocessing and augmentation techniques, and the 
architecture and training protocol of our ResNet-18 
classifier. I also discuss related work in biomedical image 
segmentation and detection, highlighting how our 
approach builds on and differs from prior methods. 
Extensive experiments are presented, including 
classification performance metrics (confusion matrix, 
precision/recall, ROC-AUC), an examination of 
misclassified cases, and visualizations of the learned 

features via Grad-CAM and t-SNE embeddings. Finally, I 
outline the planned RetinaNet-based detection module and 
conclude with the implications of this work for biological 
imaging and future research directions. 
 
 
2. Related Work 
 
Early methods for focal adhesion (FA) analysis relied on 
classical image processing techniques such as intensity 
thresholding or edge detection, which often underperform 
in noisy or low-contrast microscopy images. Tools like the 
Focal Adhesion Filament Cross-correlation Kit (FAFCK) 
improved automation, but remained dependent on 
hand-crafted features and were limited in generalizability. 
 
The emergence of deep learning has significantly 
advanced biomedical image segmentation. U-Net and its 
variants, with encoder-decoder structures and skip 
connections, are now standard for cellular image 
segmentation due to their robustness with limited data and 
their ability to capture fine structural detail. CNNs have 
also demonstrated superior performance in identifying 
subcellular components like nuclei and mitochondria, 
often outperforming traditional approaches. 
 
In detection, deep learning has shifted the field toward two 
paradigms: two-stage detectors like Faster R-CNN, and 
one-stage detectors like RetinaNet and YOLO. While 
two-stage methods achieve high accuracy, one-stage 
models offer better speed—especially critical in dense 
biological scenes. RetinaNet's introduction of Focal Loss 
mitigates the extreme foreground-background imbalance, 
making it especially suitable for detecting sparse targets 
like FAs. 
 
Recent surveys have summarized CNN-based 2D object 
detection in biomedical settings, highlighting trade-offs 
between speed and accuracy. Our approach follows this 
trajectory by combining classification (via ResNet18) and 
one-stage detection (via RetinaNet) for FA analysis. By 
cascading these modules, we aim to first filter candidate 
images and then accurately localize adhesions, addressing 
both data sparsity and computational efficiency. 
 
3. Data 
 
3a. Image Collection 
 
The dataset for this project consists of grayscale 
immunofluorescence microscopy images of cultured cells 
where focal adhesions have been fluorescently labeled 
(e.g., via GFP-tagged integrin β5 or antibody staining of 
adhesion proteins). Each image is a small patch of size 
255×255 pixels, which corresponds to a physical scale 
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covering a portion of a single cell. The images were 
pre-sorted into two categories: focal (images containing 
one or more focal adhesions) and non_focal (images 
without any focal adhesion structures). In total, the dataset 
contains on the order of a few thousand images, with an 
inherent class imbalance – roughly 15% of the images are 
positive for focal adhesions, reflecting that many random 
cell patches will not contain an adhesion. These class 
labels (1 for “focal” and 0 for “non_focal”) were used as 
ground truth for training and evaluation. The images were 
acquired using a Leica DMi8 fluorescence microscope 
with a 63× objective, capturing the focal adhesion marker 
in one channel (e.g., GFP) and optionally other cellular 
structures in another channel (e.g., AF647 for actin or 
other proteins). For our purposes, I utilize only the focal 
adhesion channel images. To ensure consistency, all 
images were resized or cropped to the 255×255 pixel 
dimensions if necessary. Figure 2 shows examples of a 
positive and a negative sample from the dataset. 
 

 
Figure 2 Representative immunofluorescence image 
patches used for classification. (a) is patches labeled as 
containing focal adhesions (Positive), showing a bright, 
ellipsoidal focal adhesion at the cell periphery. (b) is 
patches without focal adhesions (Negative), containing 
only background fluorescence and other subcellular 
structures, including ECM remodeling, Endoplasmic 
Reticulum (ER), Filopodia, Lipid membranes and 
Phagosome. 
 
3b. Preprocessing 
 
All images were converted to a single-channel (grayscale) 
format if not already, since the fluorescence intensity of 
the focal adhesion marker is the primary signal of interest. 
Pixel intensity values were normalized to have mean 0.5 
and standard deviation 0.5 (after scaling pixel values to 
[0,1]) to match the scale expected by the 
ImageNet-pretrained ResNet-18 (which expects roughly 
standardized inputs). No global contrast enhancement or 

filtering was applied, as the raw fluorescence images 
already exhibit good contrast between focal adhesions and 
background given proper exposure. However, I took care 
to shuffle and stratify the dataset when splitting into 
training and testing sets to avoid any bias (for example, 
ensuring that images from the same cell or experiment are 
not split across train/test in a way that could leak 
information). 
 
3c. Augmentation 
 
To increase the effective size and diversity of the training 
data, I employed several data augmentation techniques, 
mindful of preserving the essential geometry of focal 
adhesions. Each training image was augmented with a set 
of random transformations: horizontal and vertical flips 
(reflecting that adhesions have no inherent left-right 
orientation), small rotations (±15°) to account for arbitrary 
cell orientations, brightness and contrast jitter (multiplying 
pixel values by factors between ~0.7 and 1.3) to simulate 
different staining intensities or exposure levels, and 
additive Gaussian noise to mimic imaging noise. These 
augmentations are illustrated in Figure 3. By applying 5–7 
random transformations per original image, I expanded the 
training set by several fold. Augmentation is especially 
important here because acquiring labeled microscopy data 
is labor-intensive – each focal adhesion must be manually 
identified or experimentally validated. The augmented 
dataset helps the model generalize to unseen images, for 
example by learning that an adhesion remains an adhesion 
even if the image is slightly dimmer or rotated. I did not 
apply augmentation to the validation or test sets so as to 
evaluate the model on true image distributions. After 
augmentation, the training set contained ~4,000 images 
(including augmented copies), while the hold-out test set 
remained at 1000 images (851 negative, 149 positive). I 
used an 80/20 split for training vs. validation during model 
development, and a separate test set of 1000 images for 
final evaluation. 
 

 
Figure 3 Single augmentation case showing representative 
operations on the focal adhesion dataset. 
 
3d. Dataset Statistics 
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The focal adhesion-positive images typically contain 1–3 
bright adhesion puncta, often near the cell periphery, with 
a roughly elliptical shape ranging around 2–10 μm in 
length. Negative images contain either other cellular 
structures (such as diffuse cytosolic staining, parts of the 
nucleus, or thin actin fibers) or background fluorescence. 
The mean intensity of positive images is slightly higher 
than negatives (due to the bright focal spots), but intensity 
alone is not a reliable discriminator because some negative 
images can contain other bright spots (e.g., debris or other 
organelles) that are not focal adhesions. This necessitates a 
method more sophisticated than global thresholding. The 
class imbalance (approximately 1:5 ratio of positive to 
negative) means that evaluation metrics like accuracy can 
be misleading; hence I emphasize metrics like F1-score, 
precision, and recall for the positive class when assessing 
performance. During training, I also monitored the 
validation F1-score as the primary metric for model 
selection, to ensure the model is performing well on the 
minority class. 
 
4. Methods 
 
4a. Model Architecture ResNet-18 Classifier 
 
We fine-tuned a ResNet-18 CNN to perform binary 
classification on 255×255 microscopy images. ResNet-18 
was chosen for its balance of depth and efficiency; with 18 
layers it can capture reasonably complex features while 
still trainable on a moderate dataset. I modified the 
architecture in two places to adapt it to our task: (1) the 
first convolutional layer was changed to have a single 
input channel (instead of 3 for RGB) since our images are 
grayscale; (2) the final fully-connected layer was replaced 
with a linear layer of size 1, and a sigmoid activation was 
applied to produce a probability in [0,1] indicating the 
confidence that a focal adhesion is present. Because 
training from scratch on a limited dataset can lead to 
overfitting, I employed transfer learning. 
 
The ResNet-18 weights were initialized from 
ImageNet-pretrained weights (provided by PyTorch’s 
model zoo). During training, I froze the early 
convolutional layers for the first few epochs, allowing 
only the last block and the fully-connected layer to learn, 
and then gradually unfroze more layers. This common 
strategy leverages the general feature extraction ability of 
pretrained filters (which may detect edges, blobs, textures) 
and adapts them to our specific domain. It is reasonable 
here, as focal adhesion images share low-level visual 
characteristics with natural images (edges, contrast, etc.), 
even though the high-level semantics differ. 
 
4b. Training Procedure 

 
The model was trained using binary cross-entropy loss 
(BCE) between the predicted probability and the ground 
truth label (0 or 1). I used the Adam optimizer with an 
initial learning rate of 1×10-4, which provided fast 
convergence. A small batch size of 16 was used due to 
memory constraints and because each image is relatively 
information-rich. I trained for a maximum of 25 epochs, 
but with an early stopping criterion: if the validation 
F1-score did not improve for 10 consecutive epochs, 
training was halted to prevent overfitting. In practice, the 
model converged quickly – within the first 5–10 epochs 
the validation accuracy plateaued. I observed the training 
loss decrease steadily and the validation accuracy increase 
to ~96–97% by epoch 9, after which there were 
diminishing returns. 
 
The best model (in terms of validation F1) was obtained at 
epoch 9, with a validation accuracy of 97.7% and F1 ≈ 
0.92. I saved this model checkpoint for final evaluation. 
During training, class imbalance was addressed implicitly 
by monitoring F1 and by the model’s learning dynamics 
(the network naturally learned to avoid always predicting 
the majority class, as that would not maximize likelihood 
under BCE loss with positive examples present each 
batch). I did not use class weighting in the loss, but that 
could be an alternative approach if imbalance were more 
severe. Instead, our data augmentation to increase minority 
samples and our early stopping on F1 ensured that the 
classifier remained sensitive to the positive class.  

 
4c. Evaluation Metrics 
 
I evaluate the classifier on a held-out test set (never seen 
during training). Key metrics are: Accuracy, the overall 
percentage of correctly classified images; Precision 
(Positive Predictive Value), the fraction of predicted 
positives that are true positives; Recall (Sensitivity), the 
fraction of true positives that were identified by the model; 
F1-Score, the harmonic mean of precision and recall; and 
ROC-AUC (Area Under the Receiver Operating 
Characteristic Curve), which measures the model’s ability 
to rank positive vs. negative instances across all 
classification thresholds. Because of class imbalance, 
accuracy can be high even for a trivial classifier (e.g., 
predicting all negatives would be 85% accurate here), so 
precision, recall, and F1 give a better picture of 
performance on the positive class. I also compute a 
confusion matrix to break down the true vs. predicted 
labels (Figure 4). The ROC curve is generated by varying 
the sigmoid threshold from 0 to 1 and plotting true 
positive rate vs. false positive rate; AUC close to 1 
indicates excellent discrimination. 
 
4d. Grad-CAM Visualization 
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To interpret what the CNN is looking at when it predicts 
focal adhesion presence, I utilize Gradient-weighted Class 
Activation Mapping (Grad-CAM). Grad-CAM produces a 
heatmap of the image highlighting regions that strongly 
influence the model’s prediction. Technically, I take the 
gradients of the output probability with respect to the 
feature maps of the last convolutional layer (layer4) of 
ResNet-18. These gradients, averaged across channels, 
serve as weights for a linear combination of the forward 
activations, yielding a coarse heatmap of important pixels. 
I superimpose this heatmap on the original image to see 
where the network focuses (Figure 5). For positive 
predictions, I expect the highlighted regions to coincide 
with bright focal adhesion spots if the model has learned 
the correct features. This provides biological 
interpretability and confirms that the CNN’s “attention” is 
on the actual adhesions rather than artifacts. For negative 
predictions, Grad-CAM can confirm that no particular 
region strongly influences a positive classification (ideally 
the heatmap is diffuse, indicating no focal adhesion-like 
pattern was detected). 
 
4e. Feature Embedding (t-SNE) 
 
I also analyze the high-dimensional feature representations 
learned by the model using t-SNE. I take the output of the 
penultimate layer (the 512-dimensional feature vector after 
global average pooling in ResNet-18) for all test images, 
and apply t-SNE to project these to 2D. This allows us to 
visualize clusters of images in feature space. I color the 
points by their true label to see if the network has learned 
a separable representation for focal vs. non-focal classes. 
Ideally, the embeddings of images containing focal 
adhesions will cluster apart from those of non-focal 
images, indicating the model’s features distinctly encode 
the presence of adhesions. I found this to be the case 
(Figure 6): the t-SNE plot shows two well-separated 
clusters corresponding to the two classes, with only a few 
intermixed points. This suggests that the network’s 
internal representation discriminates the classes with a 
clear margin, which aligns with the high classification 
performance. 
 
4f. Extension: RetinaNet Detection Module 
 
The ultimate goal is not only to classify small patches, but 
to detect focal adhesions within larger images of whole 
cells. To achieve this, I propose a second stage using the 
RetinaNet one-stage object detector. RetinaNet is built on 
a backbone CNN (we can use ResNet-18 or ResNet-50 as 
backbone) and a Feature Pyramid Network (FPN) that 
provides multi-scale feature maps for detection. Anchors 
(predefined bounding boxes at multiple scales and aspect 
ratios) tile the image, and the network outputs two heads: 

one for classification (whether an anchor contains an 
object) and one for regression (refining the anchor to 
better fit the object’s bounding box). I will train RetinaNet 
to detect focal adhesion bounding boxes in full-size cell 
images. Each focal adhesion in the training images will be 
annotated with a bounding box (likely obtained from 
manual annotation or another segmentation method). 
During RetinaNet training, I will use the Focal Loss as the 
classification loss to handle the class imbalance between 
the many background anchors and few adhesion anchors. 
Focal adhesions are typically small (a few micrometers), 
so most anchors are negative; focal loss is crucial to 
prevent the detector from being overwhelmed by easy 
negatives. 
 
I also consider adding a custom spatial context loss to 
encourage biologically plausible detections. For example, 
focal adhesions usually occur at the cell periphery and not 
in the nucleus region; I can incorporate a penalty if a 
predicted adhesion is in an anatomically implausible 
location (this requires knowing the cell outline, which 
could be obtained via a cell mask). Another idea is to 
enforce a minimum distance between distinct adhesion 
detections, reflecting that adhesions are separate puncta; 
this could be done by non-maximum suppression or an 
explicit term in the loss that penalizes multiple 
overlapping boxes. While these ideas go beyond standard 
RetinaNet, they could improve precision in the specific 
context of cell images. 
 
The RetinaNet output will be a set of bounding boxes each 
with a confidence score for containing a focal adhesion. I 
plan to integrate the earlier classifier as a gating 
mechanism: the classifier can rapidly scan subregions or 
patches of a large image to propose candidate regions that 
likely contain adhesions, and then RetinaNet can refine 
those proposals and accurately localize each adhesion 
within those regions. This two-stage design draws 
inspiration from classical detection cascades 
(coarse-to-fine). In deployment, a whole cell image (for 
instance, 1024×1024 pixels) would first be divided into 
overlapping patches which the classifier evaluates; only 
patches with positive predictions are processed by the 
detection stage. This can dramatically speed up analysis 
when many images have no adhesions or only sparsely 
located adhesions. It also adds interpretability, as the 
classifier’s output can be seen as saying “cell X likely has 
adhesions in these areas,” and then the detector pinpoints 
them. 
 
5. Experiments 
 
5a. Classification Performance 
 
The ResNet-18 classifier was evaluated on the test set of 
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1000 image patches (851 without FAs, 149 with FAs). The 
model achieved an overall accuracy of 98.8% on this test 
set. More informatively, the precision for the positive class 
was 97.24%, and the recall (sensitivity) for the positive 
class was 94.63%. This yields an F1-score for detecting 
focal adhesion images of 95.92%. 
 
(a) 

 
(b) 

 
Figure 4 (a) Confusion matrix of the ResNet-18 classifier 
on the test set (1000 patches). The model achieves 847 
true negatives and 141 true positives, with only 4 false 
positives and 8 false negatives. This corresponds to 98.8% 
accuracy. (b) Examples of misclassified samples. Left is a 
false negative while right is a false positive. 
 
For the negative class, precision was 99.06% and recall 
99.53%, reflecting that the model only rarely misclassified 
a non-adhesion image as containing an adhesion. These 
numbers indicate that the classifier is highly effective: out 
of 149 adhesion-containing images, it missed only 8 (false 
negatives), and out of 851 non-adhesion images, it falsely 
flagged only 4 as positive (false positives). The confusion 
matrix summarizes these results in Figure 4a. 
 
To further quantify performance, I examined the ROC 

curve for the classifier. The ROC curve (not shown here in 
figure form) had an area under the curve (AUC) of 0.9990, 
essentially a perfect score. This means that if I take any 
random adhesion image and any random non-adhesion 
image, the model’s predicted probability for the adhesion 
image will be higher than that for the non-adhesion image 
99.9% of the time. The ROC curve itself was very close to 
the top-left corner of the plot, reflecting excellent true 
positive rate at very low false positive rates. Such a high 
AUC, along with the high precision and recall, suggests 
that the model’s confidence scores are well-calibrated and 
separable for the two classes. In practical terms, one could 
even lower the threshold below 0.5 to catch all positives 
(100% recall) and still have an acceptable false positive 
rate, depending on the application’s tolerance.  
 
5b. Misclassification Analysis 
 
I inspected the handful of errors the classifier made to 
understand their causes. The 8 false negatives (images 
containing focal adhesions that the model missed) were 
generally cases where the focal adhesion was extremely 
small or faint. In a few instances, the “adhesion” in the 
ground truth was debatable – some appeared to be very 
early nascent adhesions or borderline intensity that even a 
human might overlook. The model tended to be 
conservative, so if an adhesion spot did not have a certain 
brightness or size, the model sometimes classified the 
image as negative. This suggests that our training data 
might have labeled some very subtle adhesions that the 
model could not confidently learn, pointing to a need for 
either more examples of such subtle cases or treating them 
differently (perhaps as a separate class of “ambiguous”). 
The 4 false positives (model predicted an adhesion where 
there was none) often had some bright feature that 
confused the model. For example, one false positive was 
an image patch with a piece of fluorescent debris or a 
staining artifact that was bright and roughly the size of an 
adhesion. The model likely latched onto this feature 
thinking it was a focal adhesion. Another false positive 
contained part of an actin filament with an end that was 
bright and somewhat punctate, mimicking an adhesion 
spot. These errors are understandable given that the model 
has been trained to look for bright, punctate, edge-located 
features – an actin filament tip or debris can satisfy these 
criteria. With further training data or by incorporating 
context (e.g., the shape of a true adhesion vs. a line), these 
errors might be reduced. Encouragingly, no systematic 
bias or major category of mistakes was found; the errors 
were relatively random and sparse. 
 
I saved a selection of misclassified examples for 
visualization. Figure 4b shows a false negative example: 
the image contained a very dim adhesion that the model 
did not detect. Figure 4b also shows a false positive 
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example: a bright artifact fooled the model. By examining 
such cases with domain experts, I can refine the annotation 
(perhaps relabel some ambiguous cases) or adjust the 
model (through hard negative mining, for instance). 
However, given the extremely low error rate, the current 
performance is likely sufficient for many applications – 
the model only misses ~5% of adhesions and has <1% 
false alarm rate. 
 
5c. Grad-CAM Results 
 
To ensure the model is truly focusing on the biologically 
relevant features (the focal adhesions themselves), I 
applied Grad-CAM to several positive test images. An 
example is shown in Figure 5. Here, the input image 
contains a clear focal adhesion near the top-right corner. 
The Grad-CAM heatmap is overlaid in Figure 5, and it 
highlights the region of the bright adhesion in warm colors 
(red/yellow). This indicates that the pixels corresponding 
to the adhesion contributed the most to the model’s 
“adhesion present” prediction. In contrast, the rest of the 
cell area (dimmer background) is not highlighted. This is 
an encouraging result, as it aligns with how a human 
would identify the adhesion. It provides interpretability: 
the network has essentially learned a concept of “bright, 
small, edge-localized spot” as the key feature. I also ran 
Grad-CAM on a negative image; as expected, it did not 
show any concentrated hot spots – the heatmap was 
diffuse and low-intensity across the whole image, meaning 
no particular region strongly suggested an adhesion. These 
visualizations support that the CNN is making decisions 
based on the correct image cues, rather than, say, noise or 
unrelated structures. Grad-CAM could further be used to 
discover if the model sometimes focuses on incorrect 
regions; in our limited analysis, this was not observed in 
the true positive cases. If it were, that might indicate 
overfitting or spurious correlations (for example, if all 
adhesion images had some border artifact, the model 
might wrongly focus on the border). Fortunately, our 
model seems to be genuinely detecting the adhesions.  
 

 
Figure 4: Grad-CAM visualization of the ResNet-18 
classifier on an example image containing a focal 
adhesion. The original grayscale image is shown with a 

translucent heatmap overlay. The model’s attention is 
concentrated on the bright focal adhesion structure, 
confirming that the CNN is identifying the correct feature 
for its decision. 
 
5d. Feature Embedding Visualization 
 
I computed a 2D t-SNE embedding of the 
high-dimensional features for all test images to visually 
assess class separation. The result is plotted in Figure 5, 
where each point represents an image in the test set 
positioned based on its 512-dimensional feature vector 
(from the layer before the final sigmoid). Points are 
colored by true class (red for focal adhesion present, blue 
for none). I observe two well-formed clusters with a clear 
gap between them. Almost all red points cluster together, 
and almost all blue points cluster elsewhere. There are 
only a few red points lying in the blue cluster and vice 
versa, corresponding to the misclassified or borderline 
cases. This indicates that the network’s learned feature 
space segregates the two classes into distinct regions – a 
linear classifier (in fact the last layer is linear) can easily 
separate them.  

 
Figure 5 t-SNE visualization of image features learned by 
the classifier. Each point corresponds to one test image’s 
feature vector (from the penultimate layer of ResNet-18) 
projected into 2D. Red points represent images with focal 
adhesions (positive class), blue points are images without 
adhesions (negative class). 
 
Such a plot corroborates the quantitative metrics: a perfect 
separation in feature space would correspond to 100% 
accuracy. Here it is nearly perfect, aligning with our ~99% 
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accuracy. Interestingly, the t-SNE also sometimes reveals 
sub-clusters; for example, the adhesion cluster might have 
a slight internal grouping which could correspond to 
images with multiple adhesions vs. single adhesion, or 
different shapes of adhesions. With more detailed labels, 
one could investigate if the network is picking up on such 
nuances. Likewise, the non-adhesion cluster might group 
images of just background fluorescence separate from 
images that contain other structures like filaments. 
Overall, the t-SNE analysis provides an intuitive 
confirmation that the model’s representations are highly 
discriminative for the task at hand.  
 
5e. Training Curves 
 
During training, I tracked the loss and accuracy on both 
training and validation sets. The training process showed 
that the model converged rapidly. The training loss started 
around 0.07 (with normalized outputs) and dropped to 
~0.01 by epoch 10, while the validation accuracy started 
around 96% at epoch 1 (thanks to transfer learning 
initialization) and improved to ~97.7% by epoch 9. After 
epoch 9, the validation accuracy and F1 did not 
significantly improve, and in fact showed minor 
fluctuations (a slight dip at epoch 11 as seen with F1 
dropping to 0.9045 from 0.9226). The early stopping 
kicked in after epoch 12 since no new best was achieved 
after epoch 9. The final model was therefore the one from 
epoch 9. Notably, there was no sign of overfitting up to 
that point – the training and validation accuracy were 
closely tracking each other, likely due to the simplicity of 
the task for the network and the regularization effect of 
transfer learning. The gap between training and validation 
accuracy remained small (<1-2%), implying the model 
generalized well to unseen data. If I had observed the 
training accuracy rising far above validation (overfitting), 
I would consider interventions such as stronger 
regularization or gathering more data. The smooth training 
curves and high plateau performance suggest that the 
dataset, while not huge, was sufficient to train this model, 
and our augmentation helped mitigate overfitting. In future 
work, if I move to a detection model with many more 
parameters, I will need to watch for overfitting more 
carefully and possibly leverage techniques like 
cross-validation or pretraining on synthetic data.  
 
6. Conclusion 
 
In this project, I developed a deep learning-based pipeline 
for the segmentation and detection of focal adhesions in 
fluorescence microscopy images. Starting with a 
ResNet-18 classifier fine-tuned on grayscale image 
patches, I demonstrated that even a relatively compact 
CNN can achieve human-level accuracy in identifying 
whether an image contains focal adhesions. The classifier 

reached 98.8% accuracy and ~0.96 F1-score in our dataset, 
a substantial improvement over traditional image 
processing approaches. I provided interpretability through 
Grad-CAM, confirming that the network focuses on the 
correct biological structures (the adhesion sites) when 
making decisions. Visualization of the learned feature 
space via t-SNE further validated that the model has 
internally separated the classes in a meaningful way. These 
results underscore the power of transfer learning and data 
augmentation in training deep models for biomedical 
image analysis, even with limited data. Biologically, our 
automated method enables high-throughput analysis of 
focal adhesions. Instead of a human manually inspecting 
hundreds of images for adhesions, the model can screen 
them in seconds, flagging those with adhesions for further 
analysis. This has implications for experiments in 
mechanobiology and pharmacology – for example, a 
screen of drug compounds that affect cell adhesion could 
utilize this pipeline to quickly quantify adhesion presence 
or absence across thousands of images. In conclusion, this 
project demonstrates a successful application of deep 
learning to a challenging problem in cell biology. By 
effectively segmenting and identifying focal adhesions, 
our approach contributes a valuable tool for researchers to 
quantitatively study cell adhesion dynamics. The 
combination of high accuracy, automation, and biological 
interpretability exemplifies the promise of computer vision 
in advancing scientific discovery in biomedicine. I 
anticipate that continued collaboration between domain 
experts and AI engineers will lead to even more powerful 
systems, ultimately enabling insights into how cells 
interact with their environment in health and disease. 
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