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Abstract

Despite recent advances in computer vision, real-time
sign language translation remains a challenging problem,
hindered by the lack of standardized methodologies and
large-scale benchmark datasets. In this work, we evalu-
ate the effectiveness of different feature representations and
model architectures on two core tasks: isolated sign recog-
nition using the WLASL dataset and continuous sentence-
level translation using the How2Sign dataset.

Our experiments demonstrate that full-frame RGB in-
puts consistently outperform skeleton-based and keypoint-
only representations. For isolated sign recognition, a model
combining I3D100 features with a Transformer encoder
achieved the highest accuracy of 77%. For sentence-level
translation, integrating the 13D100 encoder with a GPT-2
decoder produced the best results, reaching a BLEU score
of 7.25% on a subset of How2Sign. These findings under-
score the importance of rich spatiotemporal features and
pretrained language models for effective sign language un-
derstanding.

1. Introduction

American Sign Language (ASL) serves as the primary
means of communication for millions of deaf and hard-of-
hearing individuals worldwide. In the United States alone,
over 11 million people identify as deaf or have significant
hearing loss, resulting in substantial social and economic
barriers when communicating with the hearing population.
Traditional sign language interpretation requires skilled
human interpreters, which are costly and often unavailable
in many real-time scenarios such as medical consultations,
educational settings, and public services. Consequently,
automatic sign language recognition and translation sys-
tems have the potential to bridge this communication
gap, offering real-time, scalable solutions that improve
accessibility and inclusion.

In this project, we focus on two complementary tasks:
(1) isolated sign recognition using the Word-Level Ameri-
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can Sign Language (WLASL) dataset [14], and (2) contin-
uous sentence-level ASL translation using the How2Sign
dataset [5]. For the WLASL task, the input to our algorithm
is a video clip of a single ASL sign, uniformly sampled to
50 frames (224x224 pixels each), from which we extract
either raw RGB frames or skeletal keypoints. We then
employ deep architectures - ranging from Convolutional
Neural Network (CNN) combined with Long Short-Term
Memory (LSTM) layers baselines to a pretrained Inflated
3D ConvNet (I3D) [3] coupled with a Transformer encoder
- to output a predicted sign label among 100 classes. For
the How2Sign task, the input is a continuous ASL video
clip sampled to 64 frames (1280x720 pixels each), along
with optional optical flow or skeletal features, and our goal
is to generate the corresponding English sentence. Here,
we again leverage a pretrained I3D backbone to encode
spatiotemporal features, followed by either a Transformer
encoder-decoder or a large language model (e.g., GPT-
2 [18] or BART [13]) to produce fluent English translations.

Our motivation is twofold. First, while many prior works
address isolated word recognition [14, 12], few have di-
rectly compared keypoint-based versus frame-based repre-
sentations under a unified architecture pool. Second, con-
tinuous translation from video to text remains a challenging,
underexplored problem due to the complexities of fast hand
movements, occlusions, and sentence-level context. By sys-
tematically evaluating a spectrum of architectures on both
WLASL and How2Sign, we aim to identify which combina-
tions of feature representation and model architecture yield
the best performance for American Sign Language recogni-
tion and translation.

2. Related Work

Existing research on sign language recognition and
translation can be broadly grouped into three categories:
(1) feature representation and pre-processing methods, (2)
publicly available datasets and their characteristics, and (3)
model architectures for isolated recognition and continuous
translation.



Feature Representation. Accurate sign recognition
hinges on extracting informative spatial and temporal
features that capture rapid hand movements, body posture,
and facial expressions. Early approaches relied on hand-
crafted features or raw RGB frames fed into 2D CNNs
[12, 8]. With advances in pose estimation, skeleton-based
representations have gained popularity, as they distill
high-level joint trajectories, reducing background noise
and computational complexity. Jiang et al. [10] proposed a
skeleton-aware multi-modal network that fuses keypoints
with CNN features to improve recognition robustness.
Similarly, Gan et al. [7] demonstrated that concatenating
skeletal keypoints with full-frame RGB channels helps
the network distinguish subtle gesture variations - e.g.,
identical handshapes at different body locations - crucial
for ASL semantics.

Datasets. Publicly available datasets have been pivotal to
progress in this field. The WLASL dataset [14] contains
over 2,000 sign classes and tens of thousands of video in-
stances collected from a diverse signer pool. Most works
focus on a subset of the top 100 or 200 frequent signs to
balance class distribution [14]. How2Sign [5] offers over
80 hours of continuous ASL video sourced from instruc-
tional videos, annotated with English translations and 2D
keypoints. Prior to WLASL and How2Sign, earlier datasets
such as RWTH-PHOENIX-Weather 2014T were domain-
specific (weather forecasting) and limited in vocabulary [2].
The release of How2Sign and WLASL has enabled end-to-
end deep learning pipelines that jointly learn spatiotemporal
features and language modeling [ 1, 22].

Model Architectures for Isolated Recognition. Tradi-
tional frame-based pipelines process each RGB frame
through a backbone CNN (e.g., ResNet50 [9] or Mo-
bileNetV2 [19]) to extract spatial features, followed by se-
quence modeling via LSTMs and temporal attention [4, 12].
Dima et al. [4] fine-tuned YOLOVS, which was already pre-
trained on COCO dataset, to recognize finger-spelled vo-
cabulary, indicating that object-detection backbones can be
repurposed for sign recognition. More recent works lever-
age 3D ConvNets to directly capture spatiotemporal infor-
mation. Carreira and Zisserman’s Inflated 3D ConvNet
(I3D) [3], pretrained on Kinetics-400 [11], has become a
standard for video understanding and has been applied to
ASL with Transformer to model long-range dependencies
[22]. Budria et al. [ 1] compared LSTM-based, PerceiverlO,
and Transformer-based encoders on How2Sign, finding that
pure Transformer models outperform recurrent approaches
for continuous sign recognition.

Model Architectures for Continuous Translation. ASL
video translation to English text is inherently more com-

plex due to sentence-level structure and linguistic nuances.
Early efforts used CNN+LSTM pipelines with attention
mechanisms to generate gloss sequences or English trans-
lations [8, 17]. Tarres et al. [22] introduced a baseline
that combines I3D with Transformers encoder-decoder,
achieving a BLEU score of 8.0 on How2Sign. Topic-level
detection methods [!] segment continuous videos into
semantically coherent units before translation, facilitating
alignment between video frames and text. Despite these
advances, achieving both high accuracy and real-time
inference remains challenging due to model complexity
and limited annotated data.

In summary, while keypoint-based methods excel in
computational efficiency and noise robustness [10, 7],
frame-based and multi-stream approaches leveraging pre-
trained backbones (e.g., I3D+Transformer) have demon-
strated superior accuracy on both isolated and continuous
sign recognition tasks [22, 1]. Our work builds upon these
insights by systematically evaluating skeleton-only, frame-
only, and I3D+Transformer pipelines, as well as explor-
ing large language model (e.g., GPT-2 [18] or BART [13])
decoders, to determine the optimal architecture for ASL
recognition and translation on WLASL and How2Sign.

3. Datasets
3.1. WLASL

We use the Word-Level American Sign Language
(WLASL) dataset [14], a large-scale collection of isolated
sign language videos curated for recognition tasks. The full
dataset includes over 2,000 unique sign classes and tens of
thousands of video samples captured from a diverse group
of signers. For this project, we focus on a subset compris-
ing the 100 most frequent signs by video count, enabling
a balanced yet tractable classification task. Each selected
sign is represented by approximately 15-20 video samples,
recorded at 25 frames per second. Our final split includes
1,249 videos in total: 816 for training, 117 for validation,
and 316 for testing.

3.1.1 Features

Each video in our subset is reshaped to 224x224 pixels,
normalized by dividing the pixels by 255, and preprocessed
to contain 50 frames that were uniformly sampled across
its duration. For each frame, we extract skeletal keypoints
using MediaPipe’s holistic model [16], which provides 3D
coordinates for the hands. These keypoints serve as the
primary features for our model which encodes spatial and
gestural information crucial for sign language recognition.

This preprocessing pipeline allows the model to oper-
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Figure 1. Keypoint-extracted frames from the WLASL dataset

ate on structured pose representations instead of raw pixel
data, improving efficiency and enabling better generaliza-
tion. Figure 1 shows an example of keypoint annotations
extracted from a WLASL video frame.

3.2. How2Sign

How2Sign [5] is a large-scale, multimodal, and multi-
domain dataset for continuous American Sign Language
(ASL) recognition. It comprises over 80 hours of sign lan-
guage video data and 35,000 validated sentence-level anno-
tations. Derived from the How?2 instructional video series,
the dataset includes 31,000 training, 2,300 validation, and
1,700 test clips, spanning a vocabulary of approximately
16,000 English words. The videos are recorded in 720p
high definition (1280x720 pixels) at 30 frames per second.
On average, each clip contains 162 frames (approx 5.4 sec-
onds) and 17 words per sentence.

3.2.1 Features

We used two types of features: full-body poses and skele-
ton poses, that are both provided in the How2Sign dataset.
We preprocessed each clip to contain 64 uniformly-spaced
frames of size 224x224 and normalized by dividing the pix-
els by 255. Figures 2 and 3 show the full body and skeleton
frames extracted from the clip respectively.
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Figure 2. Extracted frames (full body) from the How2Sign dataset

4. Methods
4.1. WLASL
4.1.1 Keypoint-based Variant

LSTM Model. For a lightweight approach, we used 3D
hand keypoints extracted from each frame via MediaPipe

Figure 3. Extracted frames (skeleton) from the How2Sign dataset

(see Figure 1) [17]. These keypoints were concatenated
and treated as a sequence, which was passed through a
single-layer Long Short-Term Memory (LSTM) network to
capture temporal dependencies across frames. The LSTM
output was followed by a linear classification layer. This
model operates entirely on pose-based features and avoids
the computational overhead of processing raw images.

4.1.2 Frame-based Architecture Variants

CNN + LSTM. We implemented a baseline model using
convolutional layers to process individual video frames, fol-
lowed by an LSTM to model temporal relationships [17].
The CNN encoder learns spatial features from each frame,
which are then fed sequentially to the LSTM. A linear out-
put layer maps the final temporal embedding to class logits.

Pretrained CNN + LSTM. To evaluate alternative fea-
ture extractors, we introduced an alternative solution, us-
ing pretrained 2D CNNs (ResNet50 [9] and MobileNetV?2
[19]), both initialized with weights trained on the ImageNet
dataset. These models were applied frame-by-frame to ex-
tract high-level spatial features from each video frame, ef-
fectively encoding the visual content of each moment in the
sequence. The resulting per-frame feature vectors were fed
into a bidirectional LSTM to capture temporal dependen-
cies across the sequence. A temporal attention mechanism
was then applied to weigh the importance of each frame,
enabling the model to focus on the most informative parts
of the video. The attention-weighted sum of LSTM outputs
was passed through a linear classifier to predict the corre-
sponding sign. This architecture is designed to learn not
only temporal patterns but also which specific moments are
most relevant for accurate sign identification.

I3D100 + LSTM. The Inflated 3D ConvNet (I3D) back-
bone is initialized with weights pretrained on Kinetics-400
[11] for 100 classes, and used to extract spatiotemporal
embeddings from ASL video clips. As an alternative to
the Transformer decoder, we introduced a novel approach,
feeding the resulting frame-wise feature sequence into a
bidirectional LSTM to model temporal dynamics. A tem-
poral attention mechanism then aggregates the LSTM out-



puts into a single context vector, which is passed through
a linear classification head to predict the sign class. This
architecture leverages powerful pretrained 3D features to-
gether with sequential encoding and attention.

I3D100 + Transformer. The same pretrained 13D model
was also used here to extract spatiotemporal features from
ASL videos. This was used to extract deep spatiotemporal
features from short video clips. These features were treated
as a sequence and passed into a Transformer encoder to cap-
ture long-range dependencies between temporal segments.
The final representation was pooled and passed through a
linear classification layer [20]. This architecture leverages
strong pretrained spatiotemporal features and the expressiv-
ity of self-attention.

4.2. How2Sign
4.2.1 Input-Based Variants

We explored several input-based preprocessing techniques
to evaluate how different video representations affect model
performance. All variants in this section were trained us-
ing the I3D100-Transformer Encoder + Transformer De-
coder architecture. We chose this setup as our baseline for
How?2Sign captioning, because the encoder showed the best
classification performance on WLASL (see Table 1).

Skeleton-Based. The How2Sign dataset provides syn-
thetic skeleton videos generated using the EDN (Every-
body Dance Now) motion transfer and synthesis frame-
work. EDN transfers pose and keypoint information from
source videos onto a target identity, effectively synthesizing
a simplified representation of body motion. As shown in
Figure 2, these skeleton videos feature a blacked-out back-
ground to eliminate speaker identity and appearance varia-
tion. This reduces visual noise and prevents the model from
learning irrelevant features such as background, lighting, or
camera setup. The skeleton format emphasizes body move-
ment and pose, though it may omit critical contextual cues
like facial expressions and hand shape due to keypoint esti-
mation limitations.

Optical Flow-Based. We computed optical flow repre-
sentations from the full-body RGB videos to emphasize
temporal motion features. Optical flow algorithms com-
pute a 2D vector field representing motion between consec-
utive frames. We tested three flow algorithms, Farneback
[6] , TV-L1 [21], and Lucas-Kanade [15], and selected
the Lucas-Kanade method for its computational efficiency
and emphasis on tracking salient keypoints rather than full-
frame pixel motion. For each video, we calculated the mean
motion across frames and selected the first 64 frames that

exceeded a motion threshold of 1.0. Lucas-Kanade param-
eters included a window size of 7.0, maximum corners set
to 100, and a quality level of 0.3. These settings were cho-
sen to prioritize detection of small, fast motions common in
signing.

First 64 Frames. Inspired by prior work [22], which used
the first 16 consecutive frames for [3D-based sign language
translation, we investigated the use of the first 64 consecu-
tive frames from each How2Sign video. This simple heuris-
tic requires no prior knowledge of motion or semantics and
serves as a straightforward baseline for evaluating fixed-
length temporal representations.

Linearly Sampled Frames. To improve temporal cover-
age while maintaining a fixed input length, we implemented
uniform linear sampling. For each video, we sampled 64
frames spaced evenly across its entire duration, regardless
of motion intensity. This method ensures that early, mid-
dle, and late segments of the video are all represented, help-
ing the model attend to long-range dependencies in signing
without bias toward the beginning of the clip.

4.2.2 Architecture-based Variants

I13D100-Transformer Encoder + Transformer Decoder.
Since I3D-Transformer encoder was the best performing
architecture for WLASL, we introduced a novel method
by adding the Transformer decoder to translate How2Sign
videos into sentences. The decoder uses masked multi-head
self-attention to ensure token predictions depend on the pre-
vious token. The encoder-decoder cross-attention allows
the decoder to attend to the encoder’s output, facilitating
the generation of target sequences based on encoded fea-
tures. A fully connected linear layer projects the decoder’s
output to the vocabulary size (7000), producing logits for
each token in the target sequence. The benefit of using
I3D-Transformer-ASL model is that it is tailored for Amer-
ican Sign Language recognition and translation tasks so the
model can be trained end-to-end.

I3D100 + GPT-2 Decoder. In this architecture, we use
a pretrained I3D model trained on 100 classes to extract
1024-dimensional spatiotemporal features from input video
clips. These features are then passed through a projection
layer and then directly fed into the embedding space of a
frozen GPT-2 language model - another method we pro-
posed - which acts as a decoder to generate captions autore-
gressively. This model serves as a baseline for video-to-text
generation using only visual features and a pretrained lan-
guage model. Its simplicity makes it fast to train, and it pro-
vides insight into how well raw I3D features encode sign
language semantics without additional temporal modeling.



13D100/2000-Transformer Encoder + GPT-2 Decoder.
To improve upon the baseline, we introduce a Transformer
encoder between the I3D feature extractor and the GPT-2
decoder. The I3D model extracts 1024-dimensional spa-
tiotemporal features for each frame, which are then pro-
cessed by a 2-layer Transformer encoder to capture long-
range temporal dependencies. The output of the encoder is
projected as a learned prefix to condition GPT-2’s text gen-
eration. We experiment with two variants of this architec-
ture: one using an 3D backbone pretrained on 100 classes
(I3D100), and another using an I3D model trained on 2000
classes (I3D2000). The latter benefits from greater signer
diversity and vocabulary coverage, improving the model’s
ability to generalize to varied signing styles in How2Sign.
This hybrid setup combines rich visual features, temporal
modeling, and a powerful language decoder and is suited
for generating sentence-level captions from continuous sign
language videos.

I3D100-Transformer Encoder + BART Decoder. This
model retains the I3D100 feature extractor and Transformer
encoder, but replaces GPT-2 with BART as the decoder, as
another original method of ours. Unlike GPT-2, BART is
a sequence-to-sequence model with a bidirectional encoder
and an autoregressive decoder, trained with denoising ob-
jectives. By using BART, we take advantage of its stronger
generation capabilities and robustness to noisy inputs. This
setup allows us to better handle the diverse and often noisy
video recordings in How2Sign, making it a strong candidate
for improving caption fluency and correctness in challeng-
ing real-world signing scenarios.

5. Experiments

5.1. Training Procedure
5.1.1 WLASL

All models were trained using the same procedure for con-
sistency. We used the Adam optimizer with a learning rate
of le-5 and weight decay of le-6. The learning rate was
chosen to prevent overfitting due to the small dataset size
and the weight decay was selected for mild regularization
while preserving the pretrained model’s feature representa-
tions. More details can be found in section 5.3.1. Adam
optimizer was used due to its fast convergence with mini-
mal tuning and its combinaion of AdaGrad and RMSProp
benefits. Models were trained for 10 epochs using a stan-
dard cross-entropy loss:

c
Lee=— Y yilog(i)

i=1
where C is the number of classes, y; is the true label, and
9; is the predicted class probability.

Input video clips were uniformly sampled and reshaped
to match the expected input format for each model. During
training, only the task-specific components (e.g., classifier
head, LSTM, Transformer layers) were updated; pretrained
encoders (when used) were frozen.

After each epoch, models were evaluated on a held-out
validation set using both average loss and top-1 accuracy:

# correct predictions

x 100
# total samples %

Accuracy =

5.1.2 How2Sign

All models were trained using a consistent procedure to en-
sure fair comparison. We used the Adam optimizer with a
learning rate of 1e-4 and a weight decay of 1e-6. The Adam
optimizer and decay of le-6 were selected to be the same
as the WLASL experiments. The learning rate of le-4 was
chosen after generating the best BLEU scores on a subset
of 1000 training samples. Each model was trained for 10
epochs using a cross-entropy loss function applied at each
time step over the output vocabulary. The objective was to
maximize the likelihood of the correct token sequence:

T
Lttt = — »_log P(wy | w1, 22, ..., x4-150)

t=1

where T is the target sequence length, z; is the token
at time step ¢, and P(x; | x1,...,24-1;0) is the model’s
predicted probability of x; given the preceding tokens and
model parameters 6.

Input video clips were uniformly sampled and prepro-
cessed to match the required input format of each architec-
ture. During training, both the pretrained encoder and the
large language model (LLM) decoder were kept frozen to
isolate the effects of the learned prefix conditioning. After
each epoch, models were evaluated on a held-out validation
set using both the average validation loss and BLEU score.
The average loss is computed as:

Cumulative Validation Loss
# Validation Samples

Average Loss =

To evaluate caption quality, we used the BLEU score,
a standard metric in machine translation that measures the
overlap of n-grams between generated and reference sen-
tences, with a penalty for brevity. It is defined as:

N
BLEU = BP - exp (Z Wy, logpn>

n=1



where N is the maximum n-gram order, wy, is the weight
assigned to each n-gram (typically uniform), and p,, is the
modified precision for n-grams of size n.

The brevity penalty (BP) is given by:

BP — 1 %fc>7"
exp(lfg) ife<r

where c is the length of the candidate sentence and r is
the length of the reference. This penalty discourages the
model from generating overly short translations that might
superficially appear precise.

5.2. Quantitative Results
5.2.1 WLASL

We evaluated a range of architectures using different input
representations, 3D keypoints extracted via MediaPipe or
raw RGB video frames, to determine the most effective
combination for word-level sign classification on the
WLASL dataset. Each input type was paired with multiple
model architectures, and performance was evaluated using
classification accuracy.

Table 1. Model architecture performance on WLASL.

Model Architecture Train Size  Accuracy (%)
Keypoint-Based Variants

LSTM 816 6.60
Frame-Based Variants

CNN + LSTM 816 0.50

ResNet50 + LSTM 816 2.40

MobileNetV2 + LSTM 816 1.80

13D100 + LSTM 816 75.50

13D100 + Transformer 816 77.00

The results indicate that raw frame inputs paired
with pretrained spatiotemporal models significantly outper-
form keypoint-based or CNN-LSTM models trained from
scratch. In particular, the combination of I3D and Trans-
former layers proved highly effective, suggesting that lever-
aging both local and global temporal context is critical for
accurate gesture recognition. In 5.3.1, we conducted a
hyperparameter importance analysis for the I3D + Trans-
former architecture to further refine performance and iden-
tify the most influential configurations.

5.2.2 How2Sign

Preliminary Results. Table 2 highlights clear perfor-
mance differences across input and architecture variants on
a subset of How2Sign. Input-based methods such as op-
tical flow and fixed-frame extraction yielded low BLEU

scores, indicating poor caption quality. Linearly sampling
frames performed marginally better (0.07%), suggesting
that temporal coverage helps even without motion-aware
preprocessing. Hence, we used linearly sampled frames
for all consequent experiments. Architecture-based mod-
els using pretrained I3D backbones significantly outper-
formed input baselines. The I3D100 + GPT-2 model
achieved the highest BLEU score (6.58%), with perfor-
mance further improved by using a more expressive vi-
sual backbone in I3D2000-Transformer + GPT-2
(6.70%). The addition of a Transformer encoder in
I3D100-Transformer + GPT-2 slightly decreased
performance (6.10%), possibly due to overfitting on the
small dataset. The I3D100 + BART variant under-
performed (0.12%), likely due to misalignment between
BART’s pretraining objective and the prefix-only condition-
ing used in our setup.

Table 2. BLEU scores of different architectures on How2Sign.

Model Architecture Train Size BLEU (%)
Input-Based Variants
Skeleton Videos 1.5k 0.04
Optical Flow 1.5k 0.01
First 64 Frames 1.5k 0.01
Linearly Sampled 64 Frames 1.5k 0.07
Architecture-Based Variants
I3D100-Trans. Enc. + Trans. Dec. 1.5k 0.07
13D100 Enc. + GPT-2 Dec. 1.5k 6.58
13D100-Trans. Enc. + BART Dec. 1.5k 0.12
13D100-Trans. Enc. + GPT-2 Dec. 1.5k 6.10
13D2000-Trans. Enc. + GPT-2 Dec. 1.5k 6.70
Best Performing Architecture
13D2000-Trans. Enc. + GPT-2 Dec. 9.0k 6.92
I13D100 Enc. + GPT-2 Dec. 9.0k 7.25
I13D100 Enc. + GPT-2 Dec. 31k 7.16

Best Performing Architectures. To further investigate
how data scale affects captioning performance, we trained
our two best-performing architectures on an expanded sub-
set of 9k How2Sign training samples (see Table 2). The
I3D100 encoder combined with a GPT-2 decoder achieved
the highest BLEU score of 7.25%, while the 13D2000-
Transformer encoder with GPT-2 reached 6.92%. These
results indicate that increasing the training data improves
generation quality. However, when we scaled the I3D100 +
GPT-2 model to the full dataset of approximately 30k train-
ing samples, the BLEU score slightly dropped to 7.16%.
This suggests that simply increasing the dataset size does
not always yield better performance. One possible expla-
nation is that the larger dataset introduced greater variabil-
ity in signer appearance, signing speed, and video quality,



which may have acted as noise without corresponding archi-
tectural changes or regularization strategies. Another expla-
nation is overfitting, as we saw BLEU score drop after early
gains in the first two epochs. Some strategies that could help
are increasing the weight decay, applying dropout to more
parts of the model, and label smoothing.

5.3. Qualitative Results

We conducted a qualitative analysis on the best-
performing architectures for each dataset. For WLASL,
this was the I3D + Transformer model, while for
How2Sign, it was the I3D100 Encoder + GPT-2
Decoder model.

5.3.1 WLASL

Hyper-parameters. We performed a hyperparameter
analysis while varying hidden state size, dropout, learning
rate, number of Transformer layers, and weight decay. Fig-
ure 4 shows the results, with each line representing a unique
configuration colored by accuracy. Table 3 summarizes the
importance and correlation of each hyperparameter with fi-
nal model performance.
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Figure 4. Results from the hyperparameter analysis

Among all parameters, the learning rate had the strongest
influence on accuracy, with a negative correlation of
—0.592, indicating that values above le-4 consistently de-
graded performance. Hidden state size also showed a mod-
erate negative correlation (—0.619), suggesting that larger
sizes may lead to overfitting or instability. In contrast, the
number of Transformer layers correlated positively with ac-
curacy (0.609), with optimal results achieved using 4-6 lay-
ers which highlights the value of deeper temporal modeling.
Dropout and weight decay were less impactful, both show-
ing mild negative correlations. This suggests that when
using a frozen backbone and a moderately sized dataset,
strong regularization is less critical. Overall, the results un-
derscore the importance of carefully tuning learning rate,
model depth, and hidden dimensionality.

I3D Saliency Maps. Figure 5 illustrates the most promi-
nent heatmap saliency visualizations from the I3D back-

Table 3. Hyperparameter correlation with accuracy

Hyperparameter Importance (1) Correlation
Learning Rate (Ir) High -0.592
Hidden States Moderate -0.619
Transformer Layers Moderate 0.609
Weight Decay Low -0.187
Dropout Low -0.400

bone for the sign corresponding to the word “doctor.” The
highlighted regions represent the spatial areas most influ-
ential in the model’s prediction at each time step. Across
consecutive frames, we observe consistent activation over
the signer’s upper body and hands, indicating that the model
is attending to the hand movements and posture, which are
critical for interpreting this sign. This supports the effec-
tiveness of the I3D feature extractor in capturing semanti-
cally rich spatiotemporal cues necessary for accurate sign
classification.

Figure 5. I3D Saliency Maps from WLASL

Transformer’s Temporal Attention. Figure 6 presents
the temporal attention matrix from the Transformer en-
coder, averaged across attention heads, for the same ex-
ample shown in the saliency maps. Each cell denotes how
much a query time step attends to another time step, with
frame ranges mapped back to their original positions in the
50-frame sequence. The model exhibits a sharp focus on the
frame range 16-23 across nearly all query steps, suggest-
ing that this temporal segment contains the most discrim-
inative motion features for recognizing the word “doctor.”
This aligns with the saliency maps in Figure 5, where the
signer’s hand movement is most visually prominent within
that interval. Together, these results demonstrate how the
spatial and temporal components of the model cooperate to
localize and attend to the most informative parts of a sign.

5.3.2 How2Sign

I3D Saliency Maps. Figure 7 presents gradient-based
saliency maps for two consecutive frames, highlighting re-
gions of the video that contribute most to the model’s loss
during caption generation. The visualizations reveal that the
model primarily focuses on the hands and face, which are
essential regions for recognizing ASL. This is encouraging
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Figure 6. Transformer Temporal Attention for WLASL

because it suggests that the I3D backbone is extracting rel-
evant spatial information aligned with the signing activity.
However, the spread of saliency across both hands and the
upper torso, with some noisy activation on the background,
indicates that the model may still lack precise spatial local-
ization. This could be due to the use of mean pooling across
the entire temporal sequence, which flattens motion dynam-
ics. Future improvements could involve incorporating more
temporally-aware attention mechanisms or spatial masking
to better isolate salient regions over time.

Frame 2 Frame 3

Figure 7. I3D saliency maps for How2Sign

GPT-2 Decoder Attention Maps. To better understand
how the decoder utilizes visual information, we visualize
the attention weights from caption tokens to the video-
derived prefix embeddings in the final GPT-2 layer (Fig-
ure 8). The attention map reveals that most caption tokens
assign low weights to the prefix tokens, indicating limited
reliance on the visual input during generation. While a few
tokens exhibit slightly elevated attention to specific prefixes,
there is no clear structure or alignment to suggest meaning-
ful temporal grounding. This supports our observation that
the model often generates plausible but semantically incor-
rect captions, likely due to insufficient conditioning on the
visual modality. These findings highlight a key limitation of
prefix-only architectures for temporally complex tasks like
sign language transcription.

Attention from Caption — Video Prefix (Layer -1, Head 0)
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Figure 8. Token-to-Prefix Attention Map from GPT-2 Decoder

6. Conclusion and Future Work

In this project, we explored a range of feature represen-
tations and model architectures for isolated sign recognition
on WLASL and full-sentence translation on How2Sign.
Our results show that frame-based inputs consistently
outperform skeleton and optical flow representations. On
WLASL, the best performance (77% accuracy) came
from combining a pretrained I3D100 backbone with a
Transformer encoder, leveraging I3D’s spatiotemporal
features and the Transformer’s ability to model long-range
dependencies. For How2Sign, the highest BLEU score
(7.25%) was achieved by integrating I3D features with a
Transformer encoder and GPT-2 decoder, highlighting the
benefit of combining strong visual encoders with pretrained
language models for sentence-level translation.

Underperforming models, such as keypoint-only or
optical flow variants, lacked the visual fidelity or temporal
coverage needed for accurate recognition. Adding a
Transformer encoder before GPT-2 sometimes reduced
performance on smaller datasets due to overfitting, sug-
gesting that deeper temporal modeling requires larger-scale
training. Overall, our findings emphasize that (1) pretrained
3D visual backbones are critical for gesture understanding,
(2) temporal attention mechanisms outperform vanilla
LSTMs, and (3) sequence-to-sequence language models
can effectively leverage high-level visual features for
translation.

Looking ahead, future work could include training on
larger, more diverse ASL datasets to reduce overfitting and
allow end-to-end fine-tuning of the I3D and Transformer
components. Incorporating multi-modal inputs (e.g., RGB,
skeleton, and optical flow) into a unified architecture may
further improve robustness. Additionally, aligning visual
encoders with ASL-tuned language models and optimizing
for real-time inference through pruning or distillation could
pave the way for deployable ASL translation systems.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

A. Budria, L. Tarres, G. I. Gallego, F. Moreno-Noguer,
J. Torres, and X. Giro-i Nieto. Topic detection in continu-
ous sign language videos. arXiv preprint arXiv:2209.02402,
2022. 2

N. C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bow-
den. Neural sign language translation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 7784-7793, 2018. 2

J. Carreira and A. Zisserman. Quo vadis, action recognition?
a new model and the kinetics dataset. In proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 6299-6308, 2017. 1, 2

T. F. Dima and M. E. Ahmed. Using yolov5 algorithm to de-
tect and recognize american sign language. In 2021 Interna-
tional Conference on information technology (ICIT), pages
603-607. IEEE, 2021. 2

A. Duarte, S. Palaskar, L. Ventura, D. Ghadiyaram, K. De-
Haan, F. Metze, J. Torres, and X. Giro-i Nieto. How2sign: a
large-scale multimodal dataset for continuous american sign
language. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2735-2744,
2021.1,2,3

G. Farnebick. Two-frame motion estimation based on poly-
nomial expansion. In Proceedings of the 13th Scandinavian
Conference on Image Analysis, SCIA’03, page 363-370,
Berlin, Heidelberg, 2003. Springer-Verlag. 4

S.-W. Gan, Y.-F. Yin, Z.-W. Jiang, L. Xie, and S.-L. Lu.
Vision-based sign language translation via a skeleton-aware
neural network. Journal of Computer Science and Technol-
0gy, 40(2):378-396, 2025. 2

M. Gupta, G. Singh, and A. Yadav. Cnn based speech and
text translation using sign language. In 2021 3rd Interna-
tional Conference on Advances in Computing, Communi-
cation Control and Networking (ICAC3N), pages 433-437.
IEEE, 2021. 2

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
770-778, 2016. 2,3

S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. Fu. Skeleton
aware multi-modal sign language recognition. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3413-3423, 2021. 2

W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vi-
jayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al.
The kinetics human action video dataset. arXiv preprint
arXiv:1705.06950, 2017. 2, 3

D.-H. Lee and J.-H. Yoo. Cnn learning strategy for recogniz-
ing facial expressions. IEEE Access, 11:70865-70872, 2023.
1,2

M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mo-
hamed, O. Levy, V. Stoyanov, and L. Zettlemoyer. Bart:
Denoising sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. arXiv
preprint arXiv:1910.13461, 2019. 1,2

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

D. Li, C. Rodriguez, X. Yu, and H. Li. Word-level deep sign
language recognition from video: A new large-scale dataset
and methods comparison. In The IEEE Winter Conference on
Applications of Computer Vision, pages 1459-1469, 2020. 1,
2

B. Lucas and T. Kanade. An iterative image registration tech-
nique with an application to stereo vision (ijcai). volume 81,
04 1981. 4

C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja,
M. Hays, F. Zhang, C.-L. Chang, M. G. Yong, J. Lee, et al.
Mediapipe: A framework for building perception pipelines.
arXiv preprint arXiv:1906.08172, 2019. 2
@NicholasRenotte. Action detection tutorial for sign lan-
guage (youtube video). https://www.youtube.com/
watch?v=doDUihpj6ro, 2021. Accessed: 2025-04-28.
2,3

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei,
I. Sutskever, et al. Language models are unsupervised multi-
task learners. OpenAl blog, 1(8):9, 2019. 1,2

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottle-
necks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4510-4520, 2018. 2, 3
sumedhsp.  Sign language recognition (sign-language-
recognition). https://github.com/sumedhsp/
Sign-Language—-Recognition, 2021. Accessed:
2025-05-05. 4

J. Sanchez, E. Llopis, and G. Facciolo. Tv-11 optical flow
estimation. Image Processing On Line, 3:137-150, 07 2013.
4

L. Tarrés, G. 1. Gallego, A. Duarte, J. Torres, and X. Gir6-i
Nieto. Sign language translation from instructional videos.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5625-5635, 2023. 2,
4


https://www.youtube.com/watch?v=doDUihpj6ro
https://www.youtube.com/watch?v=doDUihpj6ro
https://github.com/sumedhsp/Sign-Language-Recognition
https://github.com/sumedhsp/Sign-Language-Recognition

