
Using Transfer Learning to Adapt MobileNet for General Plant Disease
Detection on Irregular Images

Medhya Goel
Stanford University

450 Jane Stanford Way, Stanford, CA 94305
medhya@stanford.edu

Abstract

Early detection of plant diseases is critical for ensuring
global food security, particularly in low-resource settings
where expert diagnosis is not readily available. While deep
learning models trained on curated datasets like PlantVil-
lage have shown promise, they often fail to generalize to
real-world field conditions due to significant domain shifts.
In this work, we explore transfer learning techniques to
adapt a lightweight MobileNetV2 model—pretrained on
ImageNet and fine-tuned on PlantVillage—for robust dis-
ease classification on PlantDoc, a more diverse and noisy
dataset. We evaluate four finetuning strategies: classifier-
only, full-network finetuning (with and without augmen-
tation), and a two-phase finetuning approach. Our re-
sults show that two-phase finetuning achieves the high-
est weighted F1 score (49.89%) and outperforms a zero-
shot baseline by over 15 percentage points in accuracy.
We attribute these improvements to targeted adaptation
of higher-level layers while preserving transferable low-
level features. Our study demonstrates the effectiveness of
lightweight transfer learning pipelines for mobile deploy-
ment in field settings and highlights promising directions
for future work in robust agricultural diagnostics.

1. Introduction

Each year, the world loses between 20 and 40% of crops
to pests and diseases, costing the global economy $220 bil-
lion a year [9]. Beyond the financial impact, these losses
pose a serious threat to global food security. With the world
population projected to reach 9.8 billion, the United Nations
estimates that we will need to increase food production by
50% to meet demand in 2050 [4]. In this context, early and
accurate identification of plant diseases is essential not only
for reducing crop losses, but also for ensuring sustainable
agricultural practices.

A major barrier to achieving widespread, accurate dis-

ease diagnosis is the lack of accessible diagnostic tools for
non-experts. Farmers—particularly in low-resource or rural
environments—often rely on visual inspection to identify
diseases, which can be unreliable due to the variability in
how symptoms manifest across crop types, growth stages,
and environmental conditions. Misdiagnosis can lead to in-
appropriate or excessive use of chemical treatments, com-
pounding economic losses and contributing to environmen-
tal degradation. Thus, there is a pressing need for scalable,
reliable, and field-deployable disease recognition systems
that do not depend on expert knowledge.

Recent advances in computer vision and deep learning
offer a promising solution. Convolutional neural networks
(CNNs) have achieved remarkable success in image clas-
sification tasks, and have been applied to problems such
as identifying skin lesions, detecting diabetic retinopathy,
and diagnosing pneumonia from X-rays. Similar techniques
have been applied to agriculture, most notably using curated
datasets like PlantVillage (introduced in 2015 [5]). How-
ever, models trained on clean, lab-like datasets often fail to
generalize well to real-world field conditions where images
may be blurry, uncentered, occluded, poorly lit, or contain
complex backgrounds. Further, different geographical lo-
cations may have very different diseases that they are inter-
ested in, but farmers and communities in these regions may
not have enough compute or data to train a model to identify
these diseases from scratch. This domain shift highlights a
core challenge in building field-ready models and motivates
the use of transfer learning to improve robustness under dis-
tributional shifts.

In this project, we investigate the use of various trans-
fer learning techniques to adapt a lightweight CNN ar-
chitecture—specifically MobileNetV2–trained on the clean
PlantVillage dataset to the more realistic and noisy Plant-
Doc dataset, for the task of classifying crop diseases from
images. Our objective is to build a model that is not only ac-
curate, but also efficient and robust enough to be deployed
on mobile devices for in-field diagnosis using transfer learn-
ing. The input to our system is an image of a plant leaf

1

captured in uncontrolled conditions, and the output is the
predicted crop species and disease class (or crop species
and “healthy” if no disease is detected). We evaluate our
approach on the PlantDoc dataset to assess accuracy, gener-
alization, and suitability for real-world use.

2. Related Work
2.1. Traditional Machine Learning Approaches

Early efforts in plant disease detection relied on tra-
ditional machine learning algorithms, which typically in-
volved manual feature extraction followed by classification
using models like support vector machines (SVMs) or de-
cision trees. For instance, Mohanty et al. [8] utilized hand-
crafted features such as color and texture to classify plant
diseases, achieving moderate accuracy. However, these
methods often struggled with generalization due to their re-
liance on manually engineered features and limited capacity
to capture complex patterns in image data.

2.2. Convolutional Neural Networks (CNNs)

The advent of CNNs revolutionized image-based plant
disease detection by enabling automatic feature extraction
and end-to-end learning. Sladojevic et al. [14] demon-
strated the effectiveness of CNNs in classifying 13 differ-
ent plant diseases with high accuracy. Similarly, Ferenti-
nos [3] achieved over 99% accuracy using deep CNNs on
a dataset of 87,848 images. Despite their success, these
models often require substantial computational resources
and large labeled datasets, limiting their applicability in
resource-constrained environments.

2.3. Evolution of MobileNet-Based Approaches to
Plant Disease Classification

To address resource limitations, researchers have pro-
posed making use of more lightweight CNNs like Mo-
bileNet and EfficientNet. These architectures offer a bal-
ance between performance and computational efficiency
that make them ideal for deployment on mobile and em-
bedded devices.

Various research teams have tried finetuning MobileNet
to classify plant diseases, usually focusing on a particular
plant species. One of the earliest teams to publish about
this technique, Zaki et al. [16] achieved over 90% accu-
racy in classifying the subset of tomato leaf diseases within
the PlantVillage dataset, using a MobileNet V2 architecture
that they finetuned on PlantVillage images. Vinuta M. S. et
al. [6] (2019) extended this technique to a broader subset
of PlantVillage, achieving over 90% accuracy while iden-
tifying 15 disease classes spanning 8 plant species. These
studies demonstrate the effectiveness of MobileNet when
trained and tested on clean, controlled data. Wang et al.
(2023) [15] introduced an ultra-lightweight efficient net-

work (ULEN) incorporating MobileNet’s depthwise sepa-
rable convolutions for plant disease and pest detection. The
model, with approximately 100,000 parameters, achieved
competitive accuracy while being highly efficient for real-
time applications. The architecture was designed to be
trained from scratch, focusing on efficiency.

Some work has also been done to build atop the archi-
tecture of MobileNet and other pretrained models. Shafik
et al. [12] introduce models that integrate early fusion with
pretrained CNNs (including MobileNet) finetuned by deep
feature extraction on PlantVillage dataset with considerable
success (97% accuracy). However, modifying the architec-
ture of these pretrained models can increase the size and
complexity, reducing the benefit of MobileNet’s intentional
lightweight structure.

Importantly, despite the gains in efficiency achieved by
reducing the size and complexity of the CNNs used for plant
disease classification, most of these models are not gen-
eralizable to real world data. Most existing work focuses
on finetuning models on curated datasets like PlantVillage,
which contain clean, centered, and well-lit images. This
limits generalization to real-world, in-field conditions that
involve occlusion, lighting variation, multiple leaves, and
overlapping symptoms. Additionally, class imbalance, data
scarcity for rare diseases, and difficulty in distinguishing
visually similar conditions (e.g., nutrient deficiency versus
fungal infection) hinder robust performance.

2.4. Transfer Learning for Irregular Plant Disease
Datasets

While MobileNet-based models show high accuracy on
curated data, their generalization to field data is underex-
plored. Few works combine MobileNet’s efficiency with
explicit transfer learning pipelines targeting real-world ro-
bustness across many disease types. Additionally, most lit-
erature ignores fine-grained classification on datasets like
PlantDoc.

Beyond classification, object detection and segmenta-
tion models aim to localize disease symptoms within im-
ages. YOLO (You Only Look Once) models, known for
their speed and accuracy, have been applied to plant dis-
ease detection. For instance, a recent study [10] finetuned
YOLOv7 and YOLOv8 and tested them on the PlantVillage
dataset as well as a more irregular Cassava disease dataset,
achieving high precision and real-time performance. Miao
et al. [7] similarly tune YOLOv8 on the PlantDoc dataset,
achieving a precision of over 0.7. However, these models
require extensive annotated data for training and may strug-
gle with detecting diseases at early stages or under occlu-
sions. This exploration also explores only a relatively nar-
row set of irregular data (specifically cassava) rather than a
broader range of plant species and diseases.

In 2022, Aarizou and Merah [1] proposed transfer learn-

2

ing on a hybrid dataset of regular (PlantVillage) images
and irregular (EdenLibrary) images to finetune various clas-
sifiers (AlexNet, ResNet, etc.) pretrained on ImageNet
to classify plants as healthy or unhealthy. Although in-
formative, such coarse-grained labels limit real-world util-
ity—farmers often already know if a plant is unhealthy;
identifying the disease is what informs treatment. More-
over, heavier models like ResNet are less suitable for on-
device deployment.

3. Methods
3.1. Codebase

This project builds on top of a MobileNetV2 model
that has been pretrained on ImageNet and fine-tuned
on the PlantVillage dataset to classify 38 plant disease
classes. The pretrained model is available at https:
//huggingface.co/linkanjarad/mobilenet_
v2_1.0_224-plant-disease-identification
[2]. All training code, augmentation pipelines, logging,
and evaluation metrics were implemented from scratch in
Google Colab using PyTorch and Hugging Face Trans-
formers. The base MobileNetV2 weights were loaded from
HuggingFace.

3.2. MobileNetV2 Architecture

MobileNetV2 is a convolutional neural network de-
signed for efficient inference on mobile and embedded de-
vices [11]. It achieves computational efficiency by combin-
ing two key design elements: depthwise separable convo-
lutions and inverted residual bottleneck blocks (see Figure
2).

Depthwise separable convolutions decompose a standard
convolution into a depthwise convolution (applying a sin-
gle filter per input channel) followed by a pointwise 1 × 1
convolution that mixes information across channels. This
decomposition significantly reduces the number of compu-
tations and parameters, costing hi ·wi ·di

(
k2 + dj

)
, which

is a factor of k2 or 8-9 times less than standard convolutions,
with only a small decrease in accuracy.

The central innovation of MobileNetV2 is the use of in-
verted residuals with linear bottlenecks. In traditional resid-
ual connections (as in ResNet), the input is passed through
a block that expands its representation before the result is
added back to the input (see Figure 1). MobileNetV2 inverts
this idea: it first expands the input to a higher-dimensional
space using a pointwise convolution, applies a depthwise
convolution in that space, and then projects it back down to
a lower-dimensional output using another pointwise convo-
lution.

Mathematically, for input x ∈ RH×W×d (with H height,
W width, d channels), the inverted residual block performs:

x′ = Convexpand
1×1 (x) → DWConv3×3(x

′) → Convproject
1×1 (x′)

If the input and output dimensions match, a residual con-
nection is added.

This structure allows the network to maintain represen-
tational power with fewer parameters, while the linear bot-
tleneck avoids unnecessary non-linearities (ReLU) in low-
dimensional spaces that can destroy information. These in-
verted residuals are especially well-suited for mobile appli-
cations, as they maximize the ratio of accuracy to FLOPs.

With fewer parameters and a latency-friendly design,
MobileNetV2 provides a lightweight yet expressive back-
bone, making it a strong choice for deploying disease clas-
sification models in the field using mobile devices or edge
hardware.

Figure 1. Residual Block and Inverted Residual Block (Figure
from [11])

Figure 2. MobileNetV2 structure

3.3. Baseline

As a baseline, we use zero-shot learning to run infer-
ence on the PlantDoc dataset using the baseline model
(MobileNetV2 pretrained on ImageNet and finetuned on
PlantVillage). We map the model’s 38 PlantVillage classes
to the 29 PlantDoc classes using a dictionary and con-
sider predictions of unmapped classes (classes that exist in
PlantVillage but not in PlantDoc) to be incorrect .

3

https://huggingface.co/linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification
https://huggingface.co/linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification
https://huggingface.co/linkanjarad/mobilenet_v2_1.0_224-plant-disease-identification

We also run inference on the PlantVillage dataset on
which our Baseline Model was originally finetuned in order
to sanity-check that the Baseline Model does achieve high
accuracy and performance on the finetuned dataset. We do
not do any mapping here since the model’s existing classi-
fier head already outputs to the PlantVillage dataset classes.

3.4. Transfer Learning and Fine-Tuning

To transfer the PlantVillage-pretrained MobileNetV2
to conduct inference effectively on the PlantDoc dataset,
which contains fewer classes, we first substitute an
appropriately-sized and randomly initialized classifier head
in the model. Then, we experiment with several transfer
learning strategies:

• Single-phase fine-tuning with feature extraction:
update only the classifier weights while finetuning on
unaugmented PlantDoc data.

• Single-phase fine-tuning of all weights: updating all
weights with unaugmented PlantDoc data.

• Single-phase fine-tuning of all weights with aug-
mentation: updating all weights while finetuning on
augmented PlantDoc data (see 3.5).

• Two-phase fine-tuning: (1) fine-tune only the classi-
fier layer while freezing all other layers, then (2) un-
freeze dropout and last three inverted-residual blocks,
and fine-tune these higher-level convolutional layers,
dropout layer, and classifier weights.

We randomly split the PlantDoc training dataset into an
80/20 split to create a training and validation split and ver-
ified that the class distribution of all three splits is similar.
We also overfit the finetuning pipeline to a single training
example to verify the correctness of the finetuning pipeline.

3.5. Justification for Selective Unfreezing

In the second phase of our two-stage fine-tuning process,
we chose to unfreeze only the final few layers of the Mo-
bileNetV2 backbone—specifically layers 13 through 15, the
final 1 × 1 convolutional layer (conv1x1), and the classi-
fier and dropout layers. This selective unfreezing strategy
was motivated by the need to balance adaptation to the new
domain (PlantDoc) with retention of the general visual fea-
tures learned from the much larger and cleaner PlantVillage
dataset.

MobileNetV2, like other convolutional architectures,
learns hierarchical features, with earlier layers capturing
low-level information (e.g., edges, color gradients) and later
layers capturing high-level task-specific patterns (e.g., leaf
texture, disease spots). Because the low-level features are

often transferable across domains, we freeze the earlier lay-
ers to preserve their representations and avoid overfitting to
the limited and noisy PlantDoc training data.

We unfreeze only the final three layers to allow the model
to adapt its high-level representations to the new dataset,
where disease cues may appear under different lighting,
backgrounds, and leaf poses than in PlantVillage. This pro-
vides enough capacity for domain-specific adaptation while
keeping the majority of the network stable, reducing the risk
of catastrophic forgetting and overfitting. Additionally, we
reduced the learning rate in Phase 2 (to 2×10−5) to accom-
modate the increased number of trainable parameters while
allowing fine-grained updates to these deeper layers without
destabilizing the pretrained weights.

3.6. Data Augmentation

Given the significant domain shift between datasets, we
applied aggressive augmentations to the PlantDoc training
set:

• RandomResizedCrop(224, scale=(0.6, 1.0))

• RandomHorizontalFlip(p=0.5)

• RandomRotation(20◦)

• ColorJitter(brightness=0.4, contrast=0.4, satura-
tion=0.4, hue=0.05)

• RandomErasing(p=0.25)

These augmentations aim to simulate the variability
found in real-world field data and reduce overfitting.

3.7. Loss Function and Optimization

We use standard cross-entropy loss for multi-class clas-
sification. Optimization is performed with the Adam op-
timizer (β1 = 0.9, β2 = 0.999) and a learning rate of
5× 10−4. A linear warmup schedule is used to avoid early
divergence. Each training configuration was run for 5–10
epochs with a batch size of 16 (due to memory constraints)
and checkpointed by validation accuracy on Google Colab’s
A100 GPU.

3.8. Evaluation Metrics

We evaluate models using accuracy, precision, and F1
score. All metrics are computed on the PlantDoc test split
using standard scikit-learn definitions. Given that both the
PlantVillage and PlantDoc datasets are highly imbalanced,
we chose to report the weighted F1 score because it ac-
counts for the support (i.e., number of true instances) of
each class. This is especially important in real-world plant
disease classification settings, where certain diseases—like
healthy leaves or common infections—occur far more fre-
quently than rare conditions. While macro-averaged F1

4

would give equal importance to all classes, it can be mis-
leading when some classes have very few samples, as per-
formance on these rare classes can disproportionately affect
the metric. By contrast, the weighted average gives a more
representative measure of overall model performance, re-
flecting the model’s ability to correctly classify both com-
mon and rare classes in proportion to their real-world fre-
quency in the dataset.

4. Dataset and Features

We used the PlantDoc dataset, which was introduced
in 2020 [13], to finetune the baseline model. This dataset
contains 2342 examples in the training split and 236
examples in the test split. We randomly split the training
dataset further into a training and validation dataset with
an 80/20 ratio (1873 training examples and 469 valida-
tion examples). The examples in this dataset covered
29 classes and were a subset of the 35 classes in the
original PlantVillage dataset. The PlantDoc dataset is avail-
able at https://huggingface.co/datasets/
agyaatcoder/PlantDoc, and the PlantVillage
dataset is available at https://huggingface.co/
datasets/GVJahnavi/PlantVillage_dataset.
As demonstrated in Figure 4, PlantVillage images are
reliably individual leaves, centered in the frame, against a
plain, uniform, decently-lit background. On the other hand,
as displayed in Figure 3, PlantDoc data range from stock
images containing the fruit of the plant in addition to the
leaves, leaves with messy and confusing backgrounds, and
off-center samples, in addition to some clean, centered,
well-lit images. Both the PlantVillage and PlantDoc
datasets are heavily right-skewed and highly imbalanced,
with long tails of underrepresented classes (see Figures 6
and 5). However, each class is placed in a relatively similar
spot in each distribution (i.e. the relative proportion of
healthy potato leaves in both datasets is about the same).

In order to work with the finetuned model, we prepro-
cessed images in the same way that the model preprocessed
images during finetuning. More specifically, we resized im-
ages to 256 x 256 pixels, took the center crop of 224 x 224
pixels, and normalized the pixel values. We did not extract
handcrafted features. Instead, we leveraged the pretrained
MobileNetV2 backbone to learn hierarchical visual features
directly from the image data.

In order to sanity check our procedure, we overfitted the
finetuning pipeline to a single example and verified the ac-
curacy of the unmodified model we were experimenting
with on the original PlantVillage dataset on which it was
trained. This verification ensured that our data preprocess-
ing pipeline was aligned with the original training regime,
and that our implementation could recover near-perfect ac-
curacy on a memorized training example.

Figure 3. Example PlantDoc images

Figure 4. Example PlantVillage images

Figure 5. PlantDoc dataset distribution

Figure 6. PlantVillage dataset distribution

5. Experiments, Results, and Discussion

5.1. Experiments

Outside of the baseline, we ran four experiments af-
ter conducting hyperparameter sweeps to estimate the cor-
rect hyperparameter range for each technique. For learning
rates, we tried values between 1 ∗ 10−8 and 1 ∗ 10−2. Ulti-
mately, for finetuning just the classifier using unaugmented
data, we chose to train for 5 epochs with a learning rate
of 1 ∗ 10−4 and weight decay of 0.01 after experimenting
with smaller learning rates and not seeing a significant de-
crease in training loss. To investigate what would happen if
we mitigated the possibility of overfitting, we tried unfreez-
ing all layers and finetuning all weights of the underlying
model.

For finetuning all layers using unaugmented data, we

5

https://huggingface.co/datasets/agyaatcoder/PlantDoc
https://huggingface.co/datasets/agyaatcoder/PlantDoc
https://huggingface.co/datasets/GVJahnavi/PlantVillage_dataset
https://huggingface.co/datasets/GVJahnavi/PlantVillage_dataset

found that a similar training setup but with a slightly higher
learning rate of 5 ∗ 10−4 was most effective. We used
the same hyperparameters to finetune all layers using aug-
mented data.

Finally, for multiphase fine-tuning, we used a lower
learning rate of 5 ∗ 10−5 to train the classifier head for 3
epochs, and then reduced the learning rate further to 2∗10−5

to fine-tune a larger subset of model layers for another 3
epochs. In earlier experiments, we observed that a linear
learning rate schedule yielded the best performance; how-
ever, for the second stage of multiphase fine-tuning, we
adopted a cosine annealing schedule. This choice was mo-
tivated by the need for a smoother decay of the learning
rate as the model adapted higher-level convolutional layers.
The cosine schedule gradually reduces the learning rate in
a non-linear fashion, which helps prevent catastrophic for-
getting of previously learned representations while allow-
ing more stable convergence during fine-tuning of deeper
network components.

Strategy Accuracy (%) Precision (%) F1 (%)
Zero-shot 34.55% 33.02% 29.88%
Fine-tuned classifier (unaugmented) 15.68% 23.02% 10.64%
Fine-tuned (unaugmented) 32.63% 31.33% 25.13%
Fine-tuned (augmented) 25.42% 24.15% 19.80%
Two-phase tuning 51.69% 54.15% 49.89%

Table 1. Comparison of model performances on the PlantDoc test
set.

5.2. Results & Discussion

Table 1 summarizes the comparative performance across
methods. The zero-shot baseline achieved a modest ac-
curacy of 34.55%, showing the pretrained model’s limited
ability to generalize from the clean PlantVillage dataset to
the more challenging PlantDoc images. The most common
errors were misclassifications of corn diseases (although the
model accurately identified that the leaves in question were
corn leaves) and over-prediction of various types of healthy
leaves as healthy blueberry leaves. See Figure 21 for a com-
parison of the healthy leaf failure case.

Finetuning only the classifier head resulted in a substan-
tial drop in F1 (10.64%). There are several possible expla-
nations for this. More layers may simply be needed to adapt
to the target distribution. The classifier could also be over-
fitted to the small finetuning dataset, as is suggested by the
rapidly decreasing training loss and more slowly decreas-
ing validation loss. Additionally, there could be a signifi-
cant misalignment between the frozen features learned from
PlantVillage and the features needed to accurately predict
PlantDoc. These issues could be exacerbated by the under-
lying class imbalance in the training and tuning data.

Surprisingly, fine-tuning all weights on unaugmented
data (F1: 25.13%) outperformed finetuning on augmented
data (F1: 19.80%), suggesting that naive augmentation did

not provide robustness benefits in the low-data regime. We
believe that the augmentation parameters may have been
too aggressive, and certain ”standard” augmentation tech-
niques like color jitter may have interfered with inference
based on key features of the data. For example, the brown
color of a leaf may have been critical to its correct classifica-
tion, and color jitter randomization may have confused the
model on this front. The best performance came from the
two-phase strategy, which achieved 51.69% accuracy and
49.89% F1—substantially outperforming all other methods.

Figure 11 shows the training and validation loss curves
for all strategies. While all methods achieved steady train-
ing loss reductions, the validation loss curves indicate that
overfitting was common in single-phase setups. Two-phase
fine-tuning produced the smoothest and lowest validation
loss, reinforcing its effectiveness in learning transferable
disease representations while avoiding overfitting.

Figures 23 and 22 show the confusion matrices for the
zero-shot and two-phase models. The zero-shot model
frequently confuses disease types within the same species
(e.g., early vs. late blight in potatoes), while the two-phase
model demonstrates significantly better class separation and
reduced confusion.

Figures 12 and 13 display class visualizations for ”Potato
with Early Blight” generated via gradient ascent. The
zero-shot model attends to noisy background textures,
while the two-phase model focuses more clearly on blight-
characteristic lesion patterns, indicating more biologically
meaningful representations.

Figure 17 presents saliency maps on a test image with
powdery mildew. The zero-shot model’s saliency is dif-
fusely distributed, whereas the two-phase model sharply
highlights mildew-covered areas, suggesting that it has
learned to attend to disease-localized evidence more effec-
tively.

Together, these quantitative and qualitative results
support our hypothesis that carefully staged fine-
tuning—particularly two-phase transfer learning—can
substantially improve model generalization to noisy,
real-world agricultural datasets.

6. Conclusion/Future Work
In this project, we investigated how well a MobileNetV2

model—pretrained on ImageNet and finetuned on the clean,
lab-controlled PlantVillage dataset—could be adapted to
perform robustly on the more challenging and diverse Plant-
Doc dataset. We evaluated several transfer learning strate-
gies, including zero-shot inference, single-stage finetuning
(with and without augmentation), and a staged, two-phase
finetuning approach. Among these, two-phase finetuning
proved the most effective, yielding the highest gains in ac-
curacy, precision, and F1 score relative to the zeroshot base-
line, while maintaining modest computational demands.

6

Figure 7. *
Fine-tuning Classifier Only

Figure 8. *
Two-Phase Fine-tuning

Figure 9. *
Fine-tuned (Augmented)

Figure 10. *
Fine-tuned (Unaugmented)

Figure 11. Training and validation loss curves for each fine-tuning strategy. Each column corresponds to one strategy, with training loss on
top and validation loss below.

Figure 12. Class Visualization of
”Potato with Early Blight” by
Baseline Model

Figure 13. Class Visualization of
”Potato with Early Blight” by
Two-Phase Model

Figure 14. *
Original Image

Figure 15. *
Zero-shot Model

Saliency

Figure 16. *
Two-Phase Model

Saliency
Figure 17. Saliency maps comparing original image, baseline
model, and two-phase finetuned model.

This approach allowed the model to better disentangle
plant species recognition from disease classification, result-
ing in reduced confusion across visually similar disease
classes. Qualitative tools such as saliency maps and class
visualizations further confirmed that the model was learning
to attend to domain-relevant visual features—such as lesion
patterns, discolorations, and leaf textures—suggesting a de-
gree of generalizable disease understanding.

Looking ahead, with more computational resources and

Figure 18. *
Blueberry Leaf

Figure 19. *
Peach Leaf

Figure 20. *
Apple Leaf

Figure 21. Zeroshot often misclassifies healthy fruit leaves as blue-
berry leaves.

time, a natural next step would be to systematically ex-
plore the tradeoff between accuracy and compute cost in
low-data, low-resource scenarios. Another promising di-
rection would be to assess transferability when the tar-
get dataset contains novel classes absent from the source
dataset, which better reflects real-world deployment condi-
tions. Finally, recent advances in multimodal models such
as Vision-Language Models (VLMs), as well as generative
approaches for synthetic data augmentation, offer intrigu-
ing possibilities for improving plant disease classification
in under-resourced settings with minimal annotation effort.

7. Contributions & Acknowledgements
This project was completed by the sole author, Medhya

Goel. This work was completed only for CS 231N and the
author did not work with any other collaborators. Thanks to
the teaching team for their guidance and feedback.

7

Figure 22. Baseline model confusion matrix on PlantDoc

Figure 23. Two-Phase Model confusion matrix on PlantDoc

8

References
[1] A. Aarizou and M. Merah. Transfer learning for plant dis-

ease detection on complex images. In 2022 7th International
Conference on Image and Signal Processing and their Appli-
cations (ISPA), pages 1–6, 2022. 2

[2] L. Anjarad. mobilenet v2 1.0 224-plant-disease-
identification. https://huggingface.co/linkanjarad/mobilenet v2 1.0 224-
plant-disease-identification, 2023. 3

[3] K. Ferentinos. Deep learning models for plant disease detec-
tion and diagnosis. Computers and Electronics in Agricul-
ture, 145:311–318, 02 2018. 2

[4] Food and Agriculture Organization of the United Nations.
Plant production and protection division, 2024. Accessed
May 20, 2025. 1

[5] D. Hughes and M. Salathe. An open access repository of im-
ages on plant health to enable the development of mobile dis-
ease diagnostics through machine learning and crowdsourc-
ing. arXiv preprint arXiv:1511.08060, 11 2015. 1

[6] R. Kharbanda, Rajani, R. Pareek, and V. Ms. Crop monitor-
ing: Using mobilenet models. International Research Jour-
nal of Engineering and Technology, 6, 05 2019. 2

[7] Y. Miao, W. Meng, and Z. X. Serpensgate-yolov8: an en-
hanced yolov8 model for accurate plant disease detection.
Frontiers in Plant Science, 15, 1 2025. 2

[8] S. P. Mohanty, D. P. Hughes, and M. Salathé. Using deep
learning for image-based plant disease detection. Frontiers
in Plant Science, Volume 7 - 2016, 2016. 2

[9] National Institute of Food and Agriculture. Researchers
helping protect crops from pests, 2021. Accessed May 20,
2025. 1

[10] B. Sambana, H. S. Nnadi, M. A. Wajid, N. O. Fidelia,
C. Camacho-Zuñiga, H. D. Ajuzie, and E. M. Onyema. An
efficient plant disease detection using transfer learning ap-
proach. Scientific Reports, 15, 5 2025. 2

[11] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-
C. Chen. MobileNetV2: Inverted Residuals and Linear
Bottlenecks . In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4510–4520,
Los Alamitos, CA, USA, June 2018. IEEE Computer Soci-
ety. 3

[12] W. Shafik, A. Tufail, C. D. S. Liyanage, and R. A. A. H. M.
Apong. Using transfer learning-based plant disease classifi-
cation and detection for sustainable agriculture. BMC Plant
Biology, 24, 2 2024. 2

[13] D. Singh, N. Jain, P. Jain, P. Kayal, S. Kumawat, and N. Ba-
tra. Plantdoc: A dataset for visual plant disease detection. In
Proceedings of the 7th ACM IKDD CoDS and 25th COMAD,
CoDS COMAD 2020, page 249–253, New York, NY, USA,
2020. Association for Computing Machinery. 5

[14] S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, and
D. Stefanovic. Deep neural networks based recognition of
plant diseases by leaf image classification. Computational
Intelligence and Neuroscience, 2016(1):3289801, 2016. 2

[15] B. Wang, C. Zhang, Y. Li, C. Cao, D. Huang, and Y. Gong.
An ultra-lightweight efficient network for image-based plant
disease and pest infection detection. Precision Agriculture,
24:1836–1861, 4 2023. 2

[16] S. Z. M. Zaki, M. A. Zulkifley, M. M. Stofa, N. A. M. Ka-
mari, and N. A. Mohamed. Classification of tomato leaf dis-
eases using mobilenet v2. IAES International Journal of Ar-
tificial Intelligence, 9:290–296, 06 2020. 2

Package Version
datasets 3.6.0
transformers 4.52.3
matplotlib 3.10.0
collections builtin
PIL 11.2.1
torchcam 0.4.0
torchvision 0.21.0+cu124
torch 2.6.0+cu124
numpy 2.0.2
cv2 4.11.0
tqdm 4.67.1
wandb 0.19.11
os builtin
google.colab 0.0.1a2
evaluate 0.4.3
datetime builtin
sklearn 1.6.1

Table 2. Packages and versions used in the project.

9

