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Abstract

The process of interpreting speech through the obser-
vation of lip movements is termed lipreading. LipNet [2]
transcribes a variable sequence of video frames into tex-
tual representation by employing spatiotemporal convolu-
tions, a recurrent neural network architecture, and connec-
tionist temporal classification loss. When trained on 500
video segments featuring a single speaker and evaluated
on 50 distinct video segments from the same speaker us-
ing the GRID corpus [4], LipNet achieved a 3% word error
rate (WER). This report discusses limitations of GRID data
set and further techniques using LLMs to improve lip read-
ing performance. The use of linguistic context from LLMs
may really help correcting the predictions from lip reading
model output.

1. Introduction

Lipreading is a challenging task for humans, with the
accuracy significantly lower for the hearing-impaired peo-
ple as well. It is particularly hard without contextual cues.
LipNet, a deep learning-based automatic speech recognition
(ASR) system, addresses this by employing an end-to-end
training approach for sentence-level predictions. Operating
at the character level, LipNet utilizes spatiotemporal convo-
lutional neural networks (STCNNSs), recurrent neural net-
works (RNNs), and the connectionist temporal classifica-
tion loss (CTC). We process video frames input and produce
a predicted sentence spoken by the speaker as the output.

2. Related work

Since the LipNet paper, there has been research in im-
proving modeling techniques [8], datasets, and also in un-
derstanding the nuances of muscle movements. The LRS3-
TED [9], [1], [6] papers obtain richer datasets for robust ex-
periments of the machine learning models. [8] discusses a
lot more details about setting up large-scale pipeline to pro-
duce a sequence of phoneme distributions given a sequence
of video frames. It also discusses the challenge of video
processing such as computational and memory limits and
issues related to stable video frames that are not considered

corrupt or impossible to process as tensors due to inherent
flakiness.

A significant challenge in lip-reading is that many dif-
ferent sounds are made in the same area of the mouth. This
means two different sounds can be captured as nearly iden-
tical video frames, which makes them hard to tell apart vi-
sually. These types of sounds are known as homorganic
sounds. There is another field of research recently being
more important and exciting to experiment with is use of
LLMs in VSR. Research ideas such as VALLR [9] propose
techniques to use linguistic context from LLM to correct
the prediction of the LipNet-like model output. The LipNet
model completely relies on understanding the video frame
and the pixel values to predict spoken character which may
miss the contextual awareness about the language, scene
setup where the speaker is, and timeline what has happened
in the past in video. Using LLM as a tool to refine the output
with prompts to help correct the prediction could potentially
improve the accuracy drastically in real world scenarios like
providing real-time closed captions in the Augmented Real-
ity (AR) glasses for noisy environments at a sport event or
surveillance from a magnifying lens.

3. Methods

LipNet implementation begins with three blocks of 3D
convolutions. Each block uses a ReLU activation and is fol-
lowed by a MaxPool3D layer that down-samples the spa-
tial dimensions (height and width) while preserving the full
temporal (frame) sequence. After the convolutional blocks,
a reshape layer flattens the spatial and channel dimensions
for each of the 75 time steps. This prepares the volumetric
features for processing by the recurrent layers. The core
of the temporal analysis is handled by two stacked bidi-
rectional LSTM layers (similar to the use of Bi-GRU in
the original implementation in [2]). Using dropout after
each layer helps prevent overfitting. This structure allows
the model to learn contextual information from the full se-
quence of lip movements, looking at both past and future
frames. The final stage consists of a dense layer with soft-
max activation. This layer produces a probability distri-
bution over all possible characters in the vocabulary (plus
the CTC blank token) for each of the 75 time steps. The



total parameter count of the entire model is around 8.4M,
where the majority of parameters (6.6M) are from the first

Bi-LSTM unit.
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Layer (type) Output Shape Param #
conv3d (Conv3D) (None, 75, 46, 3,584
140, 128)
activation (Activation) (None, 75, 46, 0
140, 128)
max_pooling3d (None, 75, 23, 0
(MaxPooling3D) 70, 128)
conv3d_1 (Conv3D) (None, 75, 23, 884,992
70, 256)
activation_1 (None, 75, 23, 0
(Activation) 70, 256)
max_pooling3d._1 (None, 75, 11, 0
(MaxPooling3D) 35, 256)
conv3d_2 (Conv3D) (None, 75, 11, 518,475
35,75)
activation_2 (None, 75, 11, 0
(Activation) 35,75)
max_pooling3d_2 (None, 75, 5, 17, 0
(MaxPooling3D) 75)
reshape (Reshape) (None, 75, 6375) 0
bidirectional (None, 75, 256) 6,660,096
(Bidirectional)
dropout (Dropout) (None, 75, 256) 0
bidirectional _1 (None, 75, 256) 394,240
(Bidirectional)
dropout_1 (Dropout) (None, 75, 256) 0
dense (Dense) (None, 75, 41) 10,537
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Figure 1. The high-level workflow of implemented system, starting
with video input, processing through the LipNet model, and using
an CTC loss at the end.

Lip reading is an inherently dynamic process that re-
quires the interpretation of motion. So, LipNet architecture
is using Spatio-temporal Convolutions (3D convolutions).
2D convolutions operate only over the height and width of
an image, whereas STCNN utilizes 3D kernels that con-
volve across two spatial dimensions (height, width) and one
temporal dimension (the sequence of video frames). This
is very useful since it allows the network to learn not only
the spatial features of the mouth region in a given frame but
also the temporal dynamics of how these features evolve
across frames. By learning these motion patterns directly,
the STCNN can extract powerful feature representations

Table 1. Model summary of implemented LipNet baseline

corresponding to the articulation of phonemes.

The output of the STCNN front-end is a sequence of
feature vectors, where each vector represents a slice of
time in the input video. To model the dependencies within
this sequence, Bidirectional Recurrent Neural Network is
used. Standard unidirectional RNN processes the sequence
chronologically so its prediction at a given time step is in-
formed only by past context. This is a significant limitation
for speech and lip reading, where the identity of a phoneme
is often dependent on both past and future contexts (simi-
lar to language modeling problems). A bidirectional archi-
tecture overcomes this by processing the input sequence in
two directions simultaneously: one forward pass from be-
ginning to end, and one backward pass from end to begin-
ning.

To avoid the alignment issue between the video length
and the sentence, the Connectionist Temporal Classification
(CTC) loss is useful. CTC works by augmenting the set
of possible character labels with a special ’blank” token.
It removes the need for pre-aligned data and it inherently
handles variable-length sequences.

The next iteration was to use the idea from the LipNet
paper and obtain a result from a richer and more recent




dataset. For that, WildVSR [6] dataset was selected as it
showed a more diverse representation of clip video that is
included. The videos have person speaking sentences that
we hear in day-to-day life. Since the sentences and frame
length are longer in time dimension compared to the GRID
dataset videos, the exact architecture that was implemented
for the GRID dataset was not possible to run on the Wild-
VSR dataset. For batch size of 1 (single video), out-of-
memory (OOM) errors were coming out of the training runs
when the T4 GPU memory size was 15GB and each video
tensor was requiring around 18GB RAM at minimum.

4. Dataset

LipNet primarily uses the GRID dataset which has video
clips with speaker speaking sentences generated from a sim-
ple grammar with six word categories: command (bin, lay,
place, set), color (blue, green, red, white), preposition (at,
by, in, with), letter (A-Z excluding W), digit (zero-nine),
and adverb (again, now, please, soon). There are 4 choices
for command, color, preposition, and adverb, 25 choices for
letter, and 10 choices for digit, resulting in 4 * 4 * 4 * 25 *
10 * 4 = 64,000 possible sentences. Examples of generated
sentences include “set blue by A four please” and “place red
at C zero again”. Each video clip is 75 frames.

To process the video data for our model, code imple-
ments a dedicated loading function that reads each video
file using OpenCV. For every frame in the video, it first
converts it from its original RGB color space to grayscale,
reducing the dimensionality of the input. Then each frame
was cropped to a specific region of interest, isolating the
speaker’s mouth area to ensure that the model focuses on
relevant visual cues. After processing all frames, thecode
performs temporal normalization throughout the video se-
quence.

Compared to the GRID dataset, the WildVSR dataset
is much more aligned to what we hear in daily life in the
English language. There is no fixed format for how many
words a sentence would have or which type of word would
come at which part of the sentence in the WildVSR dataset.
In addition to that, the variety of words spoken were very
limited in the GRID data set, which made the LipNet model
easy to get the accuracy and low WER noted in the paper.
The longest length in the WildVSR dataset for a sentence
is around 340 English characters, and the approximate av-
erage length of the label is around 170 English characters.
Similarly, the length of the video (or number of frames) is
more than double in the WildVSR dataset compared to the
GRID dataset.

In the paper [0] it is mentioned that compared to the
LRS3 data set the WildVSR test data set has a higher num-
ber of utterances along with 1.5x unique speakers, 4.6x
word instances, 3x vocabulary coverage and 5.3x the dura-
tion. [6] discusses how popular models such as Whisper [7]

and BERT [5] based models perform worse in WER com-
pared to LRS3 [1] indicating difficulty of the data set. Per-
formance degradation is noticed due to the dataset including
some non-native speakers, videos with different head poses,
and harder vocabulary.

5. Results

Each of the 75 frames of a clip is cropped during the
data preparation phase to be of dimension 46 pixel height
and 140 pixel width. Training in Google Colab (link) for
70 epochs with around 450 training examples of a single
speaker speaking from the GRID data set is able to repro-
duce the model which during the test of 50 test examples
showed the total WER of 1.5, resulting in 3% WER over-
all. Achieved WER is within the same ballpark of what the
LipNet [2] paper mentions in table 2.

The training run of modified LipNet architecture on the
WildVSR data set was not finished before the submission
date, but for the initial 15 epochs, the training and the val-
idation loss were really high. And there was no evident
downward trend noticed in the loss as training progressed
from epoch 1 to epoch 15. For WildVSR data set, as men-
tioned earlier, LipNet architecture was modified slightly in
order to fit the training into the 15GB RAM limit of the
training instance on Colab. So, there is no fair comparison
performed over how LipNet behaves over two datasets.

5.1. Training overfit

While training the model after 30 epoch the training loss
was noticed to be declining for the 450 examples but the
validation loss started to stagnate at a constant value.

The following graph shows only the loss computation
from epoch 32 to showcase the overfit. From epoch 1 to
epoch 32 the model loss went dramatically down.
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Figure 2. Loss progression after first 31 epochs for both validation
and training

6. Future Work

There are a number of possible follow-ups to be tested in
the next attempt, such as adding a linguistic context similar


https://colab.sandbox.google.com/drive/12X8aelvjzLnh5FoALg7k0fK2Ql9lXrGr

to [9] or, using a transformer based architecture to achieve
similar results. And evaluating performance of LipNet and
transformers based models on richer datasets like LRS3-
TED [1] and [3].
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Figure 3. High level block diagram of how a fine tune LLM can
be used after a Visual recogition block model output for better
prediction accuracy

Above is a simpler diagram to explain the idea from the
[9] paper and how it can be generalized and used with Lip-
Net or any other recent architectures like Transformer. The
paper explains that a large language model pre-trained for
phoneme— sentence reconstruction helps increase the accu-
racy of the prediction and also eliminates reliance on exten-
sive lip-reading video data for pre-training.
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