Egocentric RGB-D Perception for High-Level Locomotion Planning in
Humanoid Robots

Tae Yang
Stanford University
taeyang@stanford.edu

Abstract

Humanoid robots navigating complex environments must
select appropriate locomotion modes such as walking,
crawling, or climbing. We propose a vision-based high-
level planner that classifies locomotion mode from egocen-
tric RGB-D input using a lightweight CNN-LSTM archi-
tecture. The model encodes spatial features via a CNN
and captures temporal context through an LSTM. Train-
ing data is collected in a custom MuJoCo simulation with
a humanoid robot equipped with stereo cameras. RGB
and depth images are rendered using real-world camera in-
trinsics. Augmentations such as color jittering and hori-
zontal flipping are applied to improve generalization. We
conduct an ablation study across seven model variants,
comparing RGB-only, depth-only, and RGB-D input, with
or without LSTM and pretrained encoders. The best-
performing model—RGB-D input, pretrained CNN, and
LSTM—achieves the highest classification accuracy and
runs over 500x faster than vision-language model base-
lines. Temporal context from the LSTM improves planning
by leveraging past visual input and prior mode transitions.
Our results demonstrate that a compact RGB-D classifier
can serve as an efficient and accurate high-level planner
for humanoid robots, with strong potential for real-time de-
ployment in visually complex environments.

1. Introduction

Humanoid robots operating in complex real-world en-
vironments must dynamically switch between different lo-
comotion modes, such as walking, crawling, or climbing,
depending on terrain geometry and obstacles. This multi-
modal capability allows humanoids to traverse diverse ter-
rain, including flat floors, confined underpasses, and ele-
vated bins. However, selecting the correct mode of move-
ment in real time—also known as high-level locomotion
planning—remains a significant challenge. Unlike low-
level motor control, this problem requires semantic under-

standing, spatial reasoning, and temporal context.

Recent research has leveraged vision-language models
(VLMs) to address high-level robot decision-making
through text-conditioned reasoning over egocentric
views [4, 3]. While VLMs show impressive zero-shot
generalization, their large computational footprint, slow
inference time, and reliance on language prompts hinder
real-time onboard deployment, especially for embedded
systems.

To address this, we present a lightweight visual classi-
fier for locomotion planning that operates solely on ego-
centric RGB-D input, removing the need for language and
enabling efficient inference. The input to our algorithm is
a time-series of synchronized RGB and depth frames cap-
tured from a head-mounted stereo camera. The model uses
convolutional neural networks (CNNs) to extract modality-
specific spatial features and a recurrent long short-term
memory (LSTM) module to capture temporal dynamics.
The output is a discrete locomotion mode: walk, crawl,
or climb.

Depth perception provides critical geometric cues for as-
sessing traversability and obstacle height, while RGB im-
ages capture semantic information, such as the presence
of gaps or surfaces. Temporal information is essential
for smooth transitions and disambiguating momentary pos-
tures—for instance, distinguishing a low crouch from a
crawl initiation. Prior work in robot locomotion has ex-
plored multi-modal inputs [10} 5], hierarchical control [9],
and egocentric visual reasoning [6] for terrain adaptation.

We build our approach on the ToddlerBot platform [12],
a compact, open-source humanoid robot designed for simu-
lation and learning. Our data is generated in a custom Mu-
JoCo environment using robosuite [[15]], and carefully cal-
ibrated to match the real robot’s fisheye camera intrinsics
and stereo depth pipeline. This enables highly realistic syn-
thetic RGB-D sequences for walking, crawling, and climb-
ing behaviors, collected across diverse procedurally gener-
ated terrain layouts.

To validate our design, we conduct a comprehensive
ablation study comparing models with and without depth,

temporal encoding, and pretrained backbones. Our best
model—combining RGB-D input, pretrained CNNs, and
an LSTM—achieves strong classification accuracy and runs
over 500x faster than VLM-based approaches. These re-
sults highlight the effectiveness of compact visual classi-
fiers for real-time high-level planning in legged humanoid
systems.

2. Related Work
2.1. Visual Locomotion Planning in Robotics

High-level locomotion planning in robotics has tradi-
tionally relied on geometry-based path planning with ter-
rain mapping, assuming global maps or structured environ-
ments [[7]. However, recent advances use visual inputs to
adapt locomotion strategies in an end-to-end or hybrid man-
ner.

A major milestone is the development of modular loco-
motion pipelines that separate terrain perception from lo-
comotion control. For example, the “Parkour in the Wild”
framework [10]] learns expert locomotion policies for walk-
ing, crawling, and climbing, and fuses them via a mode-
switching policy informed by terrain embeddings. Inspired
by this, our method simplifies the decision-making pipeline
by replacing learned high-level planners with a vision-based
classifier operating on egocentric RGB-D sequences.

Prior approaches to visual locomotion use either third-
person terrain maps [2, 1] or exteroceptive sensors such
as LiDAR or stereo [13]. In contrast, we rely entirely on
first-person RGB-D input, which more realistically matches
onboard sensing in embedded humanoids like Toddler-
Bot [12].

2.2. Vision-Language Models for Robot Planning

Recent work has explored vision-language models
(VLMs) for robot planning and adaptation. These mod-
els, such as CLIP and its derivatives, are used to reason
over egocentric visual observations using text-conditioned
prompts. Commonsense Reasoning for Legged Robots [4]
proposes using prompts like “Can the robot walk here?” and
infers locomotion decisions by comparing image-text simi-
larity. SpatialBot [3] improves spatial reasoning by enhanc-
ing CLIP with synthetic data and spatial grounding.

Although VLMs enable zero-shot generalization and in-
terpretable decision making, their inference latency and
computational footprint make them impractical for fast con-
trol loops. Additionally, they require prompt design and
may not generalize to environments unseen during pretrain-
ing [8]. In contrast, we design a compact RGB-D model that
is trained end-to-end for locomotion classification without
prompt engineering.

2.3. Egocentric Visual Understanding

Egocentric vision has become a key modality for em-
bodied Al Jain et al. [6] use a transformer-based visual
foresight model for terrain prediction and footstep planning.
Prior work has also incorporated depth sensing and tempo-
ral aggregation to improve affordance recognition [[14]. Our
work is aligned with this direction, using temporal RGB-D
inputs and LSTM-based aggregation to disambiguate short-
horizon visual ambiguity and recognize behavioral intent.

2.4. Simulation Platforms and Synthetic Datasets

High-fidelity simulation plays a crucial role in train-
ing perception-based controllers. robosuite [15] provides
a modular interface for robotic manipulation and locomo-
tion in MuJoCo. ToddlerBot [12] offers an ML-compatible
humanoid platform for simulation and real-world transfer.
We extend this ecosystem by rendering egocentric RGB-D
video and constructing a labeled dataset across locomotion
behaviors. This enables large-scale training without manual
annotation, similar to synthetic pipelines in visual naviga-
tion [[11].

3. Methods

Our goal is to train a high-level planner that classifies
locomotion mode—walk, crawl, or ¢l imb—from ego-
centric RGB-D visual input. To this end, we build a simu-
lated data collection pipeline, design a lightweight vision-
based classification architecture, and conduct an extensive
ablation study to evaluate the impact of modality, pretrain-
ing, and temporal encoding. This section describes our
dataset generation process, input encoding strategies, model
architecture, and training procedures in detail.

3.1. Camera Modeling and Simulation Setup

Our approach begins with accurately replicating the vi-
sion system of the real humanoid robot in simulation. The
physical platform uses two Arducam B0202 fisheye cam-
eras with a diagonal field of view (FOV) of 160°, a resolu-
tion of 640 x 480, and a fixed-focus lens. These cameras are
mounted on the robot’s head to provide an egocentric stereo
perspective, critical for visual terrain understanding.

To ensure the simulated images match the robot’s per-
ception pipeline, we first calibrate the real cameras using a
standard checkerboard calibration pipeline. This produces
undistorted and rectified image pairs suitable for stereo pro-
cessing. Figure (1| shows an example of fisheye distortion
before and after rectification.

We extract the camera intrinsics and extrinsics from
the calibration process, including focal lengths, principal
points, and baseline. These parameters are then used to
define identical pinhole cameras within the MuJoCo sim-
ulator. Each simulated camera is attached to the head of the

Figure 1: (Top) Raw fisheye camera input with barrel dis-
tortion. (Bottom) Undistorted and rectified image used for
stereo depth estimation.

Figure 2: Simulated stereo camera setup in MuJoCo. Two
cameras are attached to the robot’s head with the same in-
trinsics and extrinsics as the real stereo rig. Frustums are
visualized in yellow.

humanoid robot model (ToddlerBot [12]) at the same rela-
tive transform as the real-world stereo setup. The cameras
are configured to output RGB images and render accurate
depth maps in the left camera’s frame.

This physically grounded camera simulation ensures that
both RGB and depth inputs are consistent across real and
simulated domains, enabling better generalization and sim-
plifying future transfer to the real robot. Figure [2]illustrates
the simulated stereo setup with visible camera frustums.

3.2. Simulation Environment and Visual Data Col-
lection

To support diverse locomotion scenarios, we construct
a custom simulation environment using robosuite [I3],
into which we load the ToddlerBot humanoid model [12].

(a) RGB image

(b) Depth image (normalized)

Figure 3: Simulated egocentric view from the left camera.
RGB and depth frame pair for a walk sequence.

The scene is populated with semantically meaningful and
physically interactive obstacles. These elements are de-
signed to elicit distinct locomotion modes such as walking
on flat terrain, crawling under low gaps, and climbing over
obstacles.

During simulation, we render both RGB and depth im-
ages at a resolution of 640 x 480. Depth maps are cap-
tured directly using MuJoCo’s GPU-accelerated offscreen
renderer from the left camera, consistent with the real
robot’s stereo-based depth estimation pipeline, which gen-
erates disparity in the left frame. Figure [3| shows sample
outputs from the left camera in simulation.

To collect data across various environments and locomo-
tion behaviors, we enable manual teleoperation of the robot
using a keyboard-based control interface. The robot sup-
ports both translational and rotational base movements, al-
lowing it to traverse narrow passages, crawl under bars, and
approach climbable obstacles with realistic egocentric mo-
tion.

During data collection, RGB and depth video streams are
captured simultaneously from the left head-mounted cam-
era. Rendering is performed offscreen to ensure consistency
and reproducibility. Each RGB-D video pair is synchro-
nized and stored as a continuous recording of the robot’s
traversal through the scene. Figure] shows a snapshot of
the robot actively traversing the simulated environment un-
der human teleoperation.

(a) move_1 (b) move_2 (c) move_3

Figure 4: Sequence of robot movement frames during tele-
operated navigation. The robot progresses through the en-
vironment over time.

Al il

(a) RGB — Walk (b) RGB — Crawl (c) RGB — Climb

(d) Depth — Walk (e) Depth — Crawl (f) Depth — Climb

Figure 5: Labeled RGB and depth frames sampled from
each locomotion class. Depth maps are clipped to 3 meters
and normalized for visualization.

3.3. Dataset and Feature Extraction

After collecting synchronized RGB and depth videos
across different locomotion modes, we construct the train-
ing dataset by temporally segmenting the sequences and ex-
tracting labeled image frames.

Each recording corresponds to a distinct locomotion be-
havior: walking on flat terrain, crawling under bars, or
climbing over bins. Since the videos are captured indepen-
dently for each behavior, labeling becomes straightforward.
We uniformly sample frames every 5 time steps from both
RGB and depth videos, and save them as image pairs with
consistent filenames encoding the label. This automated
pipeline enables efficient dataset construction without re-
quiring per-frame manual annotation.

The full dataset contains 1,056 labeled RGB-depth im-
age pairs in total, spanning three classes: walk, crawl,
and climb. We split the data randomly into 80 percent
training and 20 percent validation sets. Each RGB and
depth image is center-cropped and resized to a resolution
of 128 x 128 pixels. RGB images are augmented using ran-
dom horizontal flipping, color jitter, and Gaussian blur to in-
crease robustness to lighting variation and camera perspec-

tive. Depth images are converted from grayscale, clipped
to a maximum distance of 3 meters, and normalized to the
[0, 1] range.

If the model uses a temporal encoder (e.g., an LSTM),
the dataset loader returns sequences of three consecutive
frames. The label corresponds to the final frame in the
sequence, allowing the model to incorporate short-horizon
temporal context. During training, sequences are dynami-
cally constructed from contiguous frames of the same loco-
motion class to ensure label consistency.

All visual features are learned directly from raw im-
age tensors using CNN backbones. No manual fea-
ture extraction is applied. Figure [5] shows representative
RGB and depth frames from each of the three locomotion
classes. Each modality contributes complementary infor-
mation: RGB captures semantic context, while depth pro-
vides geometric cues critical for terrain understanding.

3.4. Model Architecture

We formulate high-level locomotion planning as a su-
pervised classification problem over three classes: walking,
crawling, and climbing. The input to our model is a se-
quence of T' = 3 egocentric RGB and depth image pairs
from the robot’s left camera. Each RGB image is denoted
xigb € R3*HXW ‘and each depth image x?epm € RIXHXW
wheret =1,...,T and H = W = 128. The goal is to pre-
dict a locomotion label y € {0, 1,2} corresponding to the
locomotion mode in the final frame ¢t = 7.

Visual encoders. RGB and depth images are processed
by two independent convolutional encoders: - The RGB en-
coder is based on ResNetl8 pretrained on ImageNet. Let
fren(+) denote this feature extractor, which maps x=° —
h®® € R?. - The depth encoder, fuepn(-), is a lightweight
CNN trained from scratch to accommodate the different dis-
tribution of simulated depth maps.

We concatenate both embeddings at each time step to
produce z; = [h®; h{""] € R2, yielding a temporal se-
quence {z1, 22,23}

Temporal module. To incorporate short-horizon tempo-
ral context, the concatenated feature sequence is passed
through a single-layer LSTM:

h]jg}m — LSTM(Zh Z2, ZS)»

where h'™ € R" is the hidden state at the final timestep
T, and h = 128 in our experiments. This recurrent mod-
ule helps resolve transient ambiguity in single frames and
promotes smooth mode selection by leveraging prior visual
context.

Algorithm 1 Forward Pass of Locomotion Classifier

Require: RGB sequence {x'®°}7 ., Depth sequence
{Xgepth}?:l

Require: Pretrained ResNet18 encoder f,,, Depth CNN
faeptn, LSTM L, Classifier ¢

1: Initialize feature sequence Z = []

2: fort =1toT do

3 W2 fran(XE) > Extract RGB features
4 B fhopm (x0P™) > Extract depth features
50z, < [hE; i > Concatenate features
6 Append z; to Z

7: end for

8 hlim « £(Z) > Pass sequence through LSTM
9: § « p(hlim) > Predict class logits

10: § < arg max(y) > Final locomotion prediction

Classification head. The final LSTM output is passed
through a fully connected classifier with one hidden layer:

¥ = Softmax(Wj - ReLU(W h%™ + b;) + by),

where ¥ € R3 is a probability distribution over locomotion
classes. We train the model using cross-entropy loss:

L=-> 1y =dlogge.

c=1

Implementation details. We implemented the visual en-
coders, LSTM module, and classifier head using Py-
Torch. The pretrained ResNet backbone is imported from
torchvision, while the depth encoder is trained from
scratch using simulated depth maps. Our custom dataloader
dynamically assembles fixed-length frame sequences from
continuous labeled segments, ensuring that the target la-
bel corresponds to the locomotion mode in the final frame.
Data augmentation—such as color jittering and horizontal
flipping—is applied only to RGB images during training to
simulate semantic diversity. Training and evaluation scripts
are implemented from scratch.

To clarify the model’s forward computation, we sum-
marize the inference pipeline in Algorithm For each
timestep, RGB and depth features are extracted using in-
dependent encoders, concatenated, and passed through a
single-layer LSTM to capture short-horizon temporal de-
pendencies. The final LSTM hidden state is fed into a fully
connected classifier to predict the locomotion mode.

Motivation. Depth input is essential for spatial reason-
ing, particularly in distinguishing climbable obstacles from
walkable paths. RGB complements this with semantic cues
such as texture or obstacle type. The LSTM adds criti-
cal temporal reasoning by capturing motion transitions over

time—e.g., distinguishing between pre- and post-climb pos-
tures. Finally, pretrained CNN weights improve perfor-
mance and convergence speed given the limited visual di-
versity in our simulated environments.

To understand the contribution of each component, we
conduct a comprehensive ablation study (Section) across
seven variants, evaluating the effect of input modality (RGB
vs depth), temporal modeling (with or without LSTM), and
encoder initialization (random vs pretrained).

4. Results

We evaluate our model using both quantitative and qual-
itative analysis to measure classification performance, in-
terpret model behavior, and compare against relevant base-
lines. All evaluations are conducted on a held-out test set
consisting of 202 labeled sequences. This section outlines
the metrics, training details, ablation experiments, and our
analysis of learned behavior.

4.1. Evaluation Metrics

Our primary evaluation metric is classification accuracy
on the test set:

N
1
Accuracy = N E 1[0 = v,
i=1

where g; is the predicted locomotion class for test example
i, and y; is the ground-truth label. We also analyze confu-
sion matrices to understand class-specific performance and
identify common misclassifications.

4.2. Training Details and Hyperparameters

We trained all models using the Adam optimizer with a
learning rate of 1 x 1073, selected based on preliminary
grid search over {1072,1073,10~%}. A mini-batch size of
32 provided a good trade-off between convergence stability
and GPU memory usage. Each model was trained for 20
epochs with early stopping based on validation loss. No ad-
ditional cross-validation was performed due to the stability
of our dataset, but we used a held-out 15 percent validation
set.

The depth encoder was initialized randomly, while the
RGB encoder used pretrained ResNet18 weights from Ima-
geNet. We applied basic data augmentation (random hori-
zontal flip and color jitter) on RGB images to reduce overfit-
ting and improve generalization to lighting and terrain tex-
ture variation.

4.3. Ablation Study

To assess the contribution of each architectural compo-
nent, we conduct a detailed ablation study across seven
model variants, summarized in Table [l Our final model

Table 1: Classification accuracy (%) on the test set across
model variants.

Model Input Modalities LSTM Accuracy
Al RGB only X 88.3
A2 Depth only X 91.5
A3 RGB + Depth X 92.6
A4 RGB + Depth v 93.6
B1 RGB only (pretrained) X 95.7
B2 Depth only (pretrained) X 97.9
B3 (Ours) RGB + Depth (pretrained) v 98.7

(B3) uses both RGB and depth inputs, a recurrent LSTM
module for temporal aggregation, and a pretrained ResNet
backbone for RGB encoding.

From these results, we observe several important trends.
First, depth-only models (A2, B2) consistently outperform
RGB-only counterparts (A1, B1), suggesting that depth im-
ages provide more reliable cues for locomotion classifica-
tion in our simulated domain. This is expected, as depth
captures geometric structure invariant to illumination or tex-
ture—making it highly effective for distinguishing between
actions like climbing over a bin or crawling under a bar.
RGB alone, while helpful for capturing semantics (e.g.,
floor material or obstacle type), suffers under challenging
visual conditions such as shadows or uniform textures.

Combining RGB and depth inputs (A3, A4, B3) gener-
ally leads to improved performance over single-modality
inputs. The additional semantic information from RGB
frames complements the spatial structure in depth, which
helps resolve certain edge cases where geometry alone may
be ambiguous (e.g., distinguishing a climbable bin from a
high step).

Temporal reasoning through the LSTM module (A4, B3)
further improves performance by maintaining short-term
motion memory. This enables the model to disambiguate vi-
sually similar states based on motion context—such as dif-
ferentiating a crouched posture during crawl from the start
of a climb. It also promotes smoother, more temporally con-
sistent predictions across frame sequences, reducing flick-
ering in locomotion mode selection.

Pretrained encoders (B1-B3) provide a substantial boost
across all configurations. Compared to training from
scratch (A1-A4), models with pretrained ResNet back-
bones learn more effective visual representations with fewer
data, achieving faster convergence and higher final accu-
racy. This highlights the importance of leveraging transfer
learning even in simulated environments with limited visual
diversity.

Overall, our full model (B3) achieves the highest test ac-
curacy of 98.7%, demonstrating the effectiveness of com-
bining depth and RGB inputs, temporal modeling, and pre-

x
2 0.8
- 0.6
Qo —
53
le]
= 0.4
Q N
2 0.2
(5]
-0.0

Crawl Climb
Predicted Label

Walk

Figure 6: Confusion matrix on test set using our full RGB-
D + LSTM model.

trained encoders for egocentric locomotion classification.

4.4. Confusion Matrix Analysis

Figure [6] presents the normalized confusion matrix for
our final model (B3) evaluated on test examples. The clas-
sifier demonstrates strong performance across all three lo-
comotion classes, with accuracies exceeding 98% per class.
The model classifies crawling behavior with the highest pre-
cision (99%), while minor confusion is observed between
walk and crawl, likely due to transitional postures or low-
angle egocentric views. Climb predictions remain robust,
benefiting from distinctive geometric cues captured in the
depth modality. Overall, the model exhibits consistent and
high-confidence predictions with minimal cross-class mis-
classification.

4.5. Qualitative Results

To understand what cues the model uses, we visualize
sample RGB-D inputs with predicted labels in Figure [7]
Walk predictions typically show open terrain and upright
view, while crawl corresponds to tunnel-like perspectives.
Depth is especially helpful for climbing detection, reveal-
ing large vertical surfaces or discontinuities in the ground.

4.6. Inference Efficiency

We benchmark inference latency across models in Ta-
ble 2] using a single NVIDIA RTX 3060 Ti GPU. Our
lightweight CNN + LSTM classifier achieves real-time in-
ference at 4.4 ms per frame, making it suitable for onboard
control in closed-loop robotic systems.

To contextualize our efficiency claims, we compare
against recent vision-language models (VLMs) that perform
a similar high-level planning task from egocentric vision.

(a) Walk (b) Crawl (c) Climb

Figure 7: Qualitative examples from the test set showing
RGB-D input and predicted locomotion mode. Each exam-
ple corresponds to a correct prediction by our B3 model.

Table 2: Average inference time (ms) per frame (NVIDIA
RTX 3060 Ti).

Method Architecture Time (ms)
CommonSense [4] GPT-40 2500
SpatialBot [3]] Phi-2 + SigLIP 46380
Ours (B3) CNN + LSTM 4.4

CommonSense VLM [4]] was proposed as a high-level lo-
comotion planner for quadruped robots, using GPT-40 to
generate symbolic actions from RGB-D inputs. Spatial-
Bot [3]], a state-of-the-art VLM for spatial reasoning, uses
RGB-D inputs with the Phi-2 language model and SigL.IP
vision backbone to infer spatial relations and action plans.

In both cases, VLMs are prompted with egocentric vi-
sual inputs and task instructions to infer locomotion actions.
While powerful, these models are computationally heavy
and exhibit significant latency at inference time. For refer-
ence, the prompt templates used for both VLM baselines are
provided in Appendix [A] As shown in Table 2} our super-
vised CNN + LSTM approach offers more than 500x faster
inference than VLM-based methods, without sacrificing ac-
curacy.

4.7. Failure Cases and Discussion

Figure[§]illustrates common failure cases observed in our
final model. Misclassifications typically occur near subtle
transition points between locomotion modes. For example,
the model occasionally predicts crawling slightly too early
or climbing slightly too late. These errors often stem from
inconsistencies in training labels, where mode transitions
are not precisely aligned across demonstrations. Addition-
ally, environmental factors such as shadows or textureless
surfaces can degrade depth reliability, and RGB frames in
low-light or overexposed scenes further exacerbate ambigu-
ity.

Despite these challenges, the model performs consis-
tently well across most test scenarios. The use of pretrained
visual encoders improves robustness to out-of-distribution
textures and lighting, while depth provides strong spatial

(a) Crawl predicted early before (b) Climb predicted late at the
obstacle. obstacle.

Figure 8: Representative failure cases from the test set. Mis-
classifications typically arise near transition zones due to la-
beling ambiguity or sensor noise.

priors. Finally, temporal smoothing via LSTM helps sta-
bilize predictions across frames, reducing mode flickering
commonly seen in frame-wise baselines.

4.8. Overfitting and Mitigation

While training accuracy converges quickly due to the rel-
atively clean labels, we observe minimal overfitting on the
validation set. Pretrained backbones and moderate augmen-
tations (jitter, flips) mitigate this risk. We deliberately ex-
clude stronger augmentations like cutout or random erasing
to avoid domain shift away from realistic robotic percep-
tion.

5. Conclusion

In this work, we proposed a lightweight and efficient lo-
comotion mode classifier for humanoid robots using ego-
centric RGB-D perception. Our approach combines a CNN-
based encoder, temporal reasoning via LSTM, and mul-
timodal inputs (RGB and depth) to achieve accurate and
real-time decision-making. Through extensive ablations,
we showed that depth-only models provided strong spa-
tial awareness, RGB-only models were sensitive to lighting
and texture, and their combination offered moderate gains
by introducing semantic context. Temporal modeling with
LSTM further improved stability in ambiguous transition
zones by incorporating short-term history.

Our best model (B3), which integrates pretrained
CNN encoders, dual-modality input, and LSTM memory,
achieved 98.7% accuracy on the test set. It also signifi-
cantly outperformed state-of-the-art vision-language plan-
ners such as SpatialBot and CommonSense VLM in infer-
ence speed by over 500x, making it suitable for real-time
deployment in control loops.

6. Future Work

While our model performs well in simulation, extend-
ing its robustness to real-world environments remains an
important direction. Future efforts could focus on domain
adaptation using sim-to-real transfer techniques, data aug-
mentation with photorealistic renderings, or fine-tuning on
real-world egocentric datasets. Improving robustness under
perceptual noise—such as motion blur, camera tilt, or over-
exposure—would further enhance real-world reliability.

Additionally, integrating high-level language-
conditioned control could enable more interpretable
and flexible planning. Rather than fixed classification, a
language-guided policy could allow dynamic goals like
“climb to the top bin” or “crawl under the bar.” Finally,
scaling to more complex scenes and supporting additional
locomotion modes (e.g., jump, sidestep, or squeeze) would
broaden applicability to more diverse terrains and missions.

7. Contributions & Acknowledgements

I, Tae Yang, performed all aspects of this project inde-
pendently. This includes conceptualization, literature re-
view, simulation environment setup, camera modeling and
data collection, model design and implementation, exten-
sive ablation studies, result analysis, and manuscript prepa-
ration.

I acknowledge the use of the ‘robosuite‘ framework [15]]
for setting up the MuJoCo simulation environment and the
‘ToddlerBot* [[12]] humanoid robot model as the foundation
for the simulated agent.

References

[1] D. Belter and P. Skrzypczyniski. Terrain analysis for rough
terrain mobile robots using proprioceptive sensors—a re-
view. Robotics and Autonomous Systems, 85:172-201, 2016.

[2] J. Bohren, R. B. Rusu, E. G. Jones, E. Marder-Eppstein,
C. Pantofaru, M. Wise, B. Gerkey, K. Conley, W. Meeussen,
and J. K. Salisbury. Towards autonomous robotic systems for
emergency response. In 2010 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 592-597.
IEEE, 2010.

[3] W. Cai, I. Ponomarenko, J. Yuan, X. Li, W. Yang, H. Dong,
and B. Zhao. Spatialbot: Precise spatial understanding with
vision language models, 2025.

[4] A.S. Chen, A. M. Lessing, A. Tang, G. Chada, L. Smith,
S. Levine, and C. Finn. Commonsense reasoning for legged
robot adaptation with vision-language models, 2024.

[5] H. Fu, B. Hannaford, D. Fox, and J. Miiller. Coupling hier-
archical planners and control policies for active locomotion
perception. In Conference on Robot Learning (CoRL), 2021.

[6] A. Jain, E. Weng, B. Ichter, T. Zhang, A. Srinivas, I. Mor-
datch, and S. Levine. Learning visual foresight for locomo-
tion planning on challenging terrain. In Robotics: Science
and Systems (RSS), 2023.

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

(15]

M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and
S. Schaal. Fast, robust quadruped locomotion over chal-
lenging terrain. In 2010 IEEE International Conference on
Robotics and Automation (ICRA), pages 2665-2670. IEEE,
2010.

Y. Liu, K. Lu, D.-A. Huang, C. Finn, T. Darrell, and L. Fei-
Fei. Language models as zero-shot planners: Extracting ac-
tionable knowledge for embodied agents. Transactions on
Machine Learning Research (TMLR), 2023.

X. B. Peng, G. Berseth, K. Yin, and M. van de Panne. Learn-
ing motor control primitives for humanoid locomotion. In
Robotics: Science and Systems (RSS), 2019.

N. Rudin, J. He, J. Aurand, and M. Hutter. Parkour in
the wild: Learning a general and extensible agile locomo-
tion policy using multi-expert distillation and rl fine-tuning,
2025.

M. Savva, A. X. Chang, A. Dosovitskiy, T. Funkhouser, and
A. Gupta. Habitat: A platform for embodied ai research. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 9339-9347, 2019.

H. Shi, W. Wang, S. Song, and C. K. Liu. Toddlerbot:
Open-source ml-compatible humanoid platform for loco-
manipulation, 2025.

L. Wellhausen, R. Ranftl, and M. Hutter. Rough terrain loco-
motion with a quadrupedal robot using height maps and deep
reinforcement learning. IEEE Robotics and Automation Let-
ters, 6(2):2874-2880, 2021.

T. Ye, J. Zhang, K. Fu, A. Zeng, D.-A. Huang, E. Yumer,
L. Fei-Fei, and S. Savarese. Egocentric vision-based affor-
dance learning for locomotion planning. In Conference on
Robot Learning (CoRL), 2022.

Y. Zhu, J. Wong, A. Mandlekar, R. Martin-Martin, A. Joshi,
K. Lin, A. Maddukuri, S. Nasiriany, and Y. Zhu. robosuite:
A modular simulation framework and benchmark for robot
learning, 2025.

A. Vision-Language Prompt Templates 0.6 meters and its height is less than

or equal to 0.6 meters, choose climb -

A.l. SpatialBot Prompt If none apply, choose the safest option
Important constraint: Never choose

We use the following prompt for inference with Spatial- climb if there is space underneath the

Bot[m; obstacle. Prefer crawl instead in such

cases Return your answer only in walk,

Given the RGB and depth image, decide crawl, or climb.

what locomotion mode the robot should use

to move forward safely and efficiently. The model receives both RGB and depth images in
The robot can choose between ‘walk’, base64-encoded format and is queried through the OpenAl
'crawl’, or ’'climb’. If the path ahead API

is clear for at least 0.6 meters, choose '

'walk’. If there is a low obstacle or

gap that the robot can crawl under and

it is within 0.6 meters, choose ’'crawl’.
If there is an obstacle that the robot
can climb (robot height 0.6m) and it

is within 0.6 meters, choose 'climb’.
Otherwise choose the safest mode. Always
choose the locomotion mode in advance,
switching at least 0.6 meters before
reaching an obstacle or gap. Answer ONLY
with the word: walk, crawl, or climb.

The input consists of two images: a head-mounted RGB
image and a corresponding depth image encoded in RGB
format.

A.2. GPT-40 Prompt
We use the following detailed prompt with GPT-4o [4]:

You are a high-level decision-making
module for a humanoid robot navigating
complex terrain. The robot must choose
one locomotion mode: walk, crawl, or
climb. The robot receives two inputs:

1. An egocentric RGB image from a
head-mounted camera 2. A depth image,
where pixel values range from 0 (black,
0.0 meters) to 255 (white, 2.0 meters).
Pixel value 128 is approximately 1.0
meter away Robot context: The robot’s
height is about 0.6 meters The camera is
mounted at the head, so it 1is also about
0.6 meters above the ground Use the depth
image to analyze the space directly in
front of the robot and detect obstacles
or free space. Focus on whether there is
open space on the floor, raised obstacles
with space underneath, or full-height

barriers Interpretation rules: - If the
lower region of the image is bright and
unobstructed, the floor is open - If a

dark band floats above a bright floor,
that indicates a raised obstacle with
empty space below - If the obstacle is
dark from bottom to top and touches the
ground, estimate if its height is less
than or equal to 0.6 meters Decision
logic: - If there is open space for
0.6 meters, choose walk - If there is a
raised obstacle with a gap of at least
0.3 meters underneath, choose crawl -
If there is a grounded obstacle within

