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Abstract

Waste misclassification contributes significantly to land-
fill overuse and methane emissions, yet existing recycling
systems lack real-time, scalable tools for accurate sorting
detection and feedback to waste generators. In this work,
we develop and benchmark deep learning models for image-
based waste classification using the TACO dataset. We
compare custom CNNs, ResNet34, and Vision Transform-
ers (ViTs), evaluating classification accuracy, inference per-
formance, and deployment feasibility. Our results reveal
that architectural improvements significantly outweigh data
augmentation benefits, with ViTs achieving the highest F1
score through superior spatial relationship modeling, fol-
lowed by ResNet34 and baseline CNNs. Surprisingly, class
imbalance was not the primary limiting factor—inherent vi-
sual distinguishability varies across waste categories re-
gardless of sample size. All models exceed real-time pro-
cessing requirements, and their sub-millisecond inference
times enable cost-effective edge deployment. This work
demonstrates that computer vision can provide economi-
cally viable solutions for waste management infrastructure,
from centralized sorting facilities to distributed smart bins,
supporting improved recycling rates and reduced landfill
emissions.

1. Introduction

Improper waste sorting significantly contributes to land-
fill expansion and greenhouse gas emissions. In the United
States, landfills are the third-largest source of anthropogenic
methane, a greenhouse gas over 25 times more potent than
CO; over a 100-year period [15]. Each year, over 146 mil-
lion tons of municipal solid waste are landfilled [14], much
of which could be recycled or composted if properly sorted.
However, contamination in recycling streams—caused by
incorrectly sorted waste—frequently renders entire batches
unrecoverable. U.S. curbside recycling programs report av-
erage contamination rates between 17% and 25% [8]], with
some studies estimating that only 21% of recyclable mate-
rials from households are successfully recovered [9].
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Unlike utilities such as electricity or water, waste man-
agement lacks a direct, linear feedback mechanism for con-
sumers. Individuals rarely see the downstream impact of
their sorting decisions, making behavior change difficult.
As aresult, systems that automate or assist in accurate waste
classification at the point of disposal can play a key role in
improving diversion rates and reducing landfill dependence.

This project addresses that opportunity by developing a
computer vision model capable of classifying waste items
from images to waste categories (e.g. Can, Paper, etc.). We
investigate the use of Vision Transformers (ViTs)—an un-
derexplored architecture in this domain—and compare their
performance to established CNN baselines like ResNet,
DenseNet, and MobileNet. Our work aims to evaluate both
classification accuracy and deployment feasibility, with the
broader goal of contributing to more sustainable and data-
driven waste management systems.

Despite the growing application of convolutional neural
networks (CNNs) to waste classification, most current ap-
proaches rely on traditional architectures trained on rela-
tively small, imbalanced datasets. These models perform
well in ideal conditions but often struggle with real-world
waste streams that include visual clutter, deformation, and
contamination. At the same time, Vision Transformers
(ViTs) have demonstrated strong performance in large-scale
image recognition tasks due to their ability to model long-
range spatial relationships—but remain underexplored in
the context of waste sorting.

This project aims to fill that gap by evaluating the effec-
tiveness of ViTs for multi-class waste classification. We
benchmark their performance against standard CNNs in
terms of classification accuracy, robustness to class imbal-
ance, and deployment efficiency (e.g., inference latency and
model size). Specifically, we investigate whether ViTs can
generalize better to rare classes and messy real-world data,
and whether their higher computational cost is justified by
gains in accuracy that could meaningfully improve recy-
cling recovery rates in real-world deployments in high and
low compute-availability contexts.



2. Related Work

Recent work has applied deep learning, especially con-
volutional neural networks (CNNs), to image-based waste
classification. Models such as DenseNet [3], ResNet [2],
and MobileNet have been fine-tuned on public datasets like
TrashNet [13], TACO [10], and WaRP [7]. These datasets
range from clean, single-object scenes (TrashNet, 6 classes)
to complex, cluttered real-world litter scenes (TACO, 60+
classes). For simple classification tasks, accuracies of-
ten exceed 95%, but performance drops on fine-grained or
noisy datasets—e.g., Sayem et al. [[12] reported 83.1% ac-
curacy across 28 waste categories using a dual-stream CNN
trained on WaRP.

Efforts to enable real-world deployment have focused
on lightweight models like MobileNetV2, which achieved
approximately 90.7% accuracy and 0.6s inference latency
on Raspberry Pi hardware [4]. Detection architectures
such as YOLOVS have also been adapted for conveyor belt
sorting in MRFs, with inference times under 20ms per
frame [7]. Hybrid segmentation-classification pipelines,
such as SAM + MobileNetV2, offer modularity and per-
formed robustly on mixed waste streams with accuracy
ranging from 86-97% [6]. ResNet variants (e.g., ResNet-
50) have also served as strong backbones in prior stud-
ies, often achieving over 94% accuracy on small-to-medium
datasets like TrashNet [2]].

Despite the rapid progress of CNN-based methods, rela-
tively few studies have explored the use of Vision Trans-
formers (ViTs) for waste classification. Recent work by
Sayed et al. [11] and Kumar et al. S]] shows that ViTs can
offer competitive accuracy—particularly when pretrained
on large-scale data—but often require more training sam-
ples and computation than traditional CNNs. For exam-
ple, ViT-base achieved around 88% accuracy on a 28-class
waste dataset, slightly outperforming baseline CNNs. How-
ever, these models remain underused due to their computa-
tional demands and the limited size of most trash datasets.
Our motivation in this work is to evaluate the viability of
ViTs in waste classification by leveraging modern data aug-
mentation and transfer learning to compensate for small
dataset size, with the goal of testing their generalization on
contaminated, cluttered, and real-world trash images.

Table 1: Reported Accuracy and Inference Speed by Model
Type

Model Dataset Accuracy (%) Time Notes

ResNet-50 TrashNet 93-96 ~120ms  Strong baseline
DenseNet-121 TrashNet 95-99 ~100ms  High accuracy, clean data
MobileNetV2 Huawei Trash 90.7 0.6s Edge deployment

YOLOv8n ‘WaRP 85-90 mAP ~15ms  Real-time detection

SAM + MobileNetV2  Mixed 86-97 0.3-1s  Segmentation + classification

3. Methods
3.1. Baseline: CNN

We utilized a Convolutional Neural Network (CNN) as
the baseline model to establish performance benchmarks.
The baseline CNN model consists of three convolutional
blocks, each containing a convolutional layer, batch nor-
malization, ReLU activation, and max pooling, followed by
a fully connected classification layer.

3.2. ResNet-50 Architecture

ResNet-50 (Figure [I) is a 50-layer deep convolutional
neural network that uses residual blocks with skip connec-
tions to enable efficient training of very deep models. Each
block employs a bottleneck structure with three convolu-
tional layers. These bottleneck blocks are stacked in four
main stages, following an initial convolution and pooling
layer. In the end, it uses a softmax activation to predict
probabilities across 27 superclasses.

Mathematically, a residual block can be described as:

y = F(x,{W;}) +x

where x is the input to the block, F is the residual function
(a stack of three convolutional layers with weights {T;}),
and y is the output. The bottleneck structure is:

F(x)=Ws-0(Wy-o(W; -x))

where W7y, Wy, and W3 are the weights of the 1 x 1, 3 x 3,
and 1 x 1 convolutions, and o denotes the ReLLU activation.
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Figure 1: ResNet-50 architecture

3.3. Vision Transformer (ViT)

Vision Transformer (ViT) (Figure |2)) is a transformer-
based architecture that processes images as sequences of
16 x 16 pixel patches. Each patch is linearly embed-
ded and combined with positional encodings before passing
through transformer encoder layers containing multi-head
self-attention mechanisms. The final [CLS] token embed-
ding is fed through an MLP head to produce predictions,
using softmax activation to classify images into 27 waste
superclasses.



Formally, given an image x € R¥*WXC it is split into
N patches, each flattened and linearly projected:

Zoy = [X;E; XiE; .. ;xéVE] +E,0s

where x; is the i-th patch, E is the patch embedding matrix,
and E,, is the positional encoding.
Each transformer encoder layer applies:

z; = MSA(LN(z;—1)) + 21

z; = MLP(LN(z))) + 2,

where MSA is multi-head self-attention and LN is layer
normalization.
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Figure 2: ViT architecture

3.4. Evaluation Metrics

Common applications for waste classification algorithms
are in waste material recovery facilities (MRFs) to run live
for robotic sorting operations. As a result, sorting accuracy,
the inference latency, inference FLOPs, and confusion ma-
trix will be important to monitor. Due to dataset and pop-
ulation class imbalance, monitoring precision-recall (PR)
curves will also be necessary to tune the model for desired
outcome.

Accuracy:

N
1
Accuracysuper = N E ]I(gzuper _ y;uper)
i=1

Where:

¢ N is the total number of annotations

super

. .
7

is the predicted supercategory for annotation ¢

(0
* 4" is the ground-truth supercategory for annotation
7

Precision and Recall:

TP TP

Precision = ————— Recall = ———
recision = 7 eca TP+ FN

F1-Score:

Precision - Recall

Fr=2-
! Precision + Recall

Confusion Matrix:
The confusion matrix C' € N27%27 i5 defined as:

where C;; counts the number of samples with true class ¢
and predicted class j.

FLOPs: For reference, the number of floating point op-
erations (FLOPs) for a convolutional layer is:

FLOPScon2a = 2 - Hout - Wout - Cin - Cout - K*
and for multi-head self-attention:
FLOPsysa =2+ N%-d - h
where h is the number of attention heads.

3.5. Loss Function

We employed Binary Cross-Entropy with Logits Loss as
our primary loss function due to the multi-class nature of
our classification task. The loss function is mathematically
defined as:

C
L= 3 e log(olr ) +H(1 i) log(1-o(x,.)]

i=1 c=1

where N is the batch size, C is the number of classes,
Yi,c is the true label, z; . is the raw logit output, and o rep-
resents the sigmoid function. This formulation effectively
handles class imbalance and provides stable gradients dur-
ing backpropagation, making it particularly suitable for our
diverse waste category dataset.

4. Dataset and Features

We used the Trash Annotations in Context (TACO)
datasetﬂ an open-source dataset designed for waste detec-
tion and classification. TACO contains 1,500 images with
4,784 annotations across 60 categories organized into 28
super-categories, which serve as our classification labels.
The dataset features images from various environments with
an average of 3.19 annotations per image, making it partic-
ularly suitable for real-world waste classification applica-
tions. An example of the image data is as follows (Figure
3). The dataset was randomly split into training (70%), val-
idation (20%), and test (10%) sets.



Figure 3: Image Example

4.1. Dataset Statistics & Characteristics

Our exploratory data analysis revealed a significant class
imbalance across super-categories (Figure 4), with “plas-
tic bag & wrapper” representing the most frequent cate-
gory (850 annotations) while “Battery” had only 2 annota-
tions. This imbalance necessitated careful data processing
and augmentation to ensure effective model training.

The dataset also exhibits substantial variation in image
dimensions (Figure 5), with widths ranging from approxi-
mately 1000 to 6000 pixels and heights from 500 to 5000
pixels. This diversity in image resolution requires standard-
ized resizing for consistent input to our CNN model.
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Figure 4: Annotations per Supercategory

4.2. Data Preprocessing & Data Augmentation

* Data Cleaning: We removed annotations labeled as
”Unlabeled litter” to improve classification precision.
This resulted in the removal of 517 annotations affect-
ing 269 images (10.81% of all annotations), leaving us
with a cleaner dataset of 4,267 annotations.

* Dimension Standardization: Given the significant vari-
ation in image dimensions, we implemented consistent
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Figure 5: Number of Images per Image Shape

resizing (224 x 224) to standardize inputs for CNN, en-
suring optimal feature extraction across all images.

e Data Augmentation: To address class imbalance,
we applied data augmentation techniques to super-
categories with fewer than 100 annotations. For each
image in these underrepresented classes, we gener-
ated 10 augmented variants using a sequential pipeline,
which combines multiple transformations applied in
random order, including variability in noise, blur, ori-
entation, brightness, contrast, and rotation.

5. Experiments/Results/Discussion
5.1. Baseline Model + Non-Augmented Data

The baseline CNN model was trained for 10 epochs us-
ing a batch size of 32 and the Adam optimizer with learn-
ing rate 1 x 10~%. The data used for these experiments is
the original, non-augmented dataset containing 1,500 im-
ages (prior to any data augmentation). The results of this
baseline model are presented in Table 2.

Performance on the small subset suggests signs of over-
fitting, indicating that the baseline architecture has suffi-
cient capacity and could benefit from training on a larger
dataset. However, when scaled to the full dataset, the
model’s training performance declined, and generalization
deteriorated significantly.

Several factors may contribute to this poor performance.
First, as revealed in our exploratory data analysis (EDA),
class imbalance is a serious issue. To address this, we plan
to retrain the baseline model on the augmented dataset and
incorporate stronger regularization techniques to mitigate
overfitting. Second, the classification task itself is inher-
ently challenging: trash objects are often small and can
blend into complex backgrounds. To address these chal-
lenges, we will apply transfer learning using ResNet and



Vision Transformers to leverage pre-trained representations
and improve feature extraction for such difficult cases.

Table 2: Baseline CNN Model Performance

Metric Validation (%) Test (%)
Precision 1.69 0.51
Recall 0.31 0.07
F1 Score 0.52 0.13

5.2. Baseline Model + Augmented Data

To address the poor performance observed with the non-
augmented dataset, we applied data augmentation tech-
niques to expand our training data. The augmented dataset
contained 9,090 additional images generated through var-
ious transformations, bringing the total combined training
dataset to 10,140 images. The baseline CNN model archi-
tecture remained unchanged, maintaining the same hyper-
parameters: 10 epochs, batch size of 32, and learning rate
of 1 x 10~* with the Adam optimizer.

The training results demonstrated substantial improve-
ment over the non-augmented baseline. Training precision
progressed from 0% in the first epoch to 50.1% by the fi-
nal epoch, while validation precision increased from 0% to
40.8%. The final test precision achieved 24.7%, with re-
call of 9.4% and F1 score of 12.3%, representing signifi-
cant improvements from the non-augmented baseline which
achieved only 0.5% precision, 0.07% recall, and 0.1% F1
score.

Despite this notable improvement, the overall perfor-
mance remains suboptimal for practical deployment. De-
tailed analysis of the confusion matrix (Figure [§) reveals
that class imbalance is not the primary factor limiting per-
formance, contrary to initial hypotheses. Specifically, sev-
eral high-support classes demonstrate surprisingly poor re-
call rates: Plastic bag & wrapper (49 samples) achieves only
16.3% recall, Bottle (40 samples) reaches 17.5% recall, and
Bottle cap (27 samples) attains 11.1% recall. Conversely,
some low-support classes perform remarkably well: Pop
tab (10 samples) achieves 20% recall and Lid (10 samples)
reaches 30% recall.

This performance pattern contradicts what would be ex-
pected if class imbalance were the dominant issue. If in-
sufficient training data were the primary limitation, high-
support classes should outperform low-support classes con-
sistently. The observed results suggest that certain waste
categories possess inherently more distinguishable visual
features regardless of sample size, while others present fun-
damental recognition challenges even with adequate train-
ing data.

The mixed performance across support levels—such as
Paper (11 samples) achieving 0% recall despite low support,
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Figure 6: CNN Baseline Confusion Matrix

and Can (23 samples) reaching 17.4% recall with medium
support—further confirms that model architecture limita-
tions, rather than data quantity alone, are constraining per-
formance. The baseline CNN’s limited representational ca-
pacity appears insufficient to capture the complex visual
patterns necessary for robust waste classification.

These findings indicate that architectural improvements
are essential for advancing performance. More sophis-
ticated models with enhanced feature extraction capabili-
ties, such as Vision Transformers (ViT) with their atten-
tion mechanisms and pre-trained representations, may bet-
ter handle the nuanced visual distinctions required for accu-
rate waste categorization across diverse environmental con-
ditions and object orientations.

Table 3: Baseline CNN Model Performance

Dataset Precision (%) Recall (%) F1 (%)
Non-Augmented 0.51 0.07 0.13
Augmented 2471 9.41 12.29

5.3. ResNet + Augmented Data

Next, we utilized ResNet for the architectural improve-
ments. We chose the pretrained model because of its rep-
resentations learned from large-scale image datasets. The
ResNet model consists of a pretrained ResNet backbone
and a fully connected classification layer. Since our CNN
baseline exhibited clear overfitting issues, we incorporated a
learning rate scheduler and early stopping to regulate train-
ing dynamics. To further resolve overfitting and reduce
computational consumption, we used ResNet34 instead of
ResNet50. Each experiment is trained with a starting learn-
ing rate 5e-4 and trained for 20 epochs.

Table 4 displays the results of our ResNet models. The



ResNet implementation demonstrated substantial improve-
ments over the baseline, with ResNet34 achieving 63.4%
precision, 45.0% recall, and 49.8% F1 score. The train and
validation loss curves in Figure 8 shows that ResNet shows
improved ability in learning compared to the CNN model.
However, the curves also indicate persistent overfitting be-
havior, with validation loss plateauing around epoch 3 while
training loss continued its downward trajectory, despite uti-
lizing regularization techniques. The moderate recall values
suggest that while ResNet achieved reasonable precision, it
struggled to identify a substantial portion of true positive
instances across waste categories.

The ResNet confusion matrix reveals significant im-
provements over the CNN model. High-support classes
that struggled with the CNN model demonstrated mod-
erate gains: Plastic bag & wrapper improved from 22%
to 41% recall, Bottle increased from 13% to 48% recall,
and Bottle cap rose from 19% to 33% recall. Addition-
ally, ResNet maintained strong performance in previously
well-performing low-support categories, with Pop tab and
Lid achieving perfect 100% recall. This pattern indicates
that ResNet’s enhanced feature extraction capabilities suc-
cessfully addressed many of the representational limitations
observed in the baseline CNN, though certain categories
with inherently challenging visual characteristics continue
to present classification difficulties regardless of architec-
tural sophistication.
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Figure 7: ResNet Confusion Matrix

5.4. ViT + Augmented Data

Similar to ResNet, we utilized the backbone of the pre-
trained ViT with a fully connected layer for classification.
The ViT model was trained using identical experimental
settings to ResNet, with a learning rate of 5e-4, 20 train-
ing epochs, and the same learning rate scheduler and early
stopping mechanisms. According to Table 4, ViT achieved

the highest overall performance among all tested architec-
tures, reaching 69.1% precision, 59.7% recall, and 60.7%
F1 score, representing notable improvements over both
CNN and ResNet. These results demonstrate that ViT’s
transformer-based architecture with self-attention mecha-
nisms can more effectively capture complex spatial relation-
ships and discriminative features within waste images com-
pared to traditional convolutional approaches. However, the
training and validation loss curves in Figure 8(c) reveal that
ViT also exhibited overfitting behavior.

While the ViT model outperforms ResNet in overall
evaluation metrics, the confusion matrices in Figure 8 re-
veal a more nuanced picture. ViT shows marked improve-
ments in certain categories such as “Bottle” (recall: 47.5%
vs. 40.0%) and “Bottle cap” (precision: 81.8% vs. 77.8%),
as well as “Unlabeled litter” (recall: 30.4% vs. 26.1%),
where it demonstrates better true positive rates and fewer
misclassifications. However, for other categories like “Plas-
tic bag & wrapper” (recall: 44.4% vs. 53.1%), “Cigarette”
(precision: 55.6% vs. 83.3%), and “Other plastic” (preci-
sion: 30.0% vs. 75.0%), the improvements are less consis-
tent, with ViT occasionally exhibiting higher false positive
rates or a drop in class-wise precision and recall compared
to ResNet. This mixed performance suggests that while ViT
captures global patterns better at the aggregate level, it may
still struggle with specific fine-grained classes that are visu-
ally similar or underrepresented in the training data.
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Figure 8: ViT Confusion Matrix

Table 4: ResNet and ViT Performance on Test Data

Model Precision (%) Recall (%) F1 Score (%)
ResNet34 63.4 45.0 49.8
ViT 69.1 59.7 60.7
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5.5. Model Size and Inference Characteristics

An important aspect of these models in production is that
they need to run locally at acceptable framerates for deci-
sion making like robotic sorting. A model developed by
Ghazi et al. demonstrated a real-time inference speed of
33.61 frames per second, indicating its viability for deploy-
ment in industrial waste sorting environments where high-
throughput performance is required [1]]. Here, we examined
the model parameter size, inference latency/framerate and
memory requirement of each of the three models tested on
a Google T4 GPU.

Characteristic ViT-B/32 ResNet34 Custom CNN
Total Params 87. M 21.4M 51.5M
Trainable Params 30.96M (35.3%) 21.4M (100%) 51.5M (100%)
Model Size (MB) 3344 81.7 196.4
Batch32 Inference Time (ms/img) 2.60 1.34 0.642
Throughput (FPS) 384.5 748.3 1558.2
GPU Memory (MB) 492.8 110.4 644.6

Table 5: Model Size Comparisons

The Custom CNN demonstrates exceptional computa-

tional efficiency with the highest throughput at 1558.2 FPS
- more than 4x faster than ViT-B/32 and over 2x faster than
ResNet34. This is particularly impressive given its infer-
ence time of only 0.642 ms/image. ResNet34 strikes an ex-
cellent balance, being the most parameter-efficient model at
just 21.4M parameters while maintaining competitive per-
formance with 748.3 FPS throughput. Notably, even the
ViT-B/32, despite having the highest parameter count at
87.7M and slower inference at 2.60 ms/image, still achieves
384.5 FPS - well above the 30-60 FPS threshold typically
required for real-time industrial sorting applications. This
suggests that the superior classification performance of ViT
(60.7% F1 score) may justify its computational overhead in
centralized MRF deployments where accuracy directly im-
pacts recovery rates and contamination levels.

While all models comfortably exceed real-time require-
ments on a T4 GPU ($500-800 used), there’s significant po-
tential for cost-effective edge deployment through model
optimization. The sub-3ms inference times across all ar-
chitectures suggest that with quantization and pruning tech-
niques, these models could run on much cheaper hardware
like NVIDIA Jetson Nano ($99) or Google Coral ($60), rep-
resenting a 10x cost reduction while still maintaining real-
time performance. For residential applications requiring
ultra-low power consumption, the Custom CNN’s efficiency
makes it particularly attractive - with INT8 quantization po-
tentially reducing its size to under 50MB while maintaining
acceptable accuracy on sub-$20 microcontrollers. Even the
ViT model, through knowledge distillation or model com-
pression, could potentially be deployed on mid-range edge
devices ($100-200) for scenarios where its superior accu-
racy justifies slightly higher hardware costs. This scala-
bility across the hardware spectrum enables a tiered de-
ployment strategy: Large ViT models in centralized facil-
ities where T4-class or more performant GPUs are already
amortized across high-volume sorting, and lightweight ver-
sions of ViT or ResNets in thousands of battery-powered
smart bins providing real-time contamination feedback to
residents at minimal per-unit cost.

6. Conclusion/Future Work

This study demonstrates the potential and challenges of
deep learning for waste classification using real-world im-
ages from the TACO dataset. Our comprehensive evalua-
tion of CNNs, ResNet34, and Vision Transformers (ViTs)
reveals important insights about model architecture, data
requirements, and deployment feasibility. While data aug-
mentation improved CNN baseline performance from 5.0%
to 18.8% test accuracy, this architecture proved fundamen-
tally limited in capturing the complex visual patterns re-
quired for waste classification. Contrary to initial hy-
potheses, class imbalance was not the primary limiting fac-
tor—several high-support classes performed poorly while



some low-support classes achieved strong recall, suggesting
that inherent visual distinguishability varies significantly
across waste categories.

ResNet34 demonstrated substantial improvements,
achieving 49.8% F1 score while maintaining excellent
computational efficiency at 748.3 FPS on a T4 GPU.
Vision Transformers achieved the highest performance
at 60.7% F1 score, validating their superior ability to
model long-range spatial relationships in cluttered waste
images. Critically, all three architectures exceed real-time
processing requirements by significant margins, with
even ViT achieving 384.5 FPS, well above the 30-60
FPS threshold for industrial sorting. This computational
headroom, combined with the potential for 10x hardware
cost reduction through edge deployment on devices like
NVIDIA Jetson Nano or Google Coral, makes widespread
deployment economically feasible.

Future work should address the persistent overfitting ob-
served across all architectures through advanced regular-
ization techniques, self-supervised pretraining on unlabeled
waste facility footage, and synthetic data generation for rare
categories. Incorporating multispectral imaging could en-
able finer plastic grade discrimination, while active learning
pipelines could continuously improve models using produc-
tion feedback. The strong performance-to-cost ratio demon-
strated here suggests that computer vision can play a trans-
formative role in waste management infrastructure, from
centralized MRFs to distributed smart bins, ultimately con-
tributing to improved recycling rates and reduced methane
emissions from landfills.
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