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Abstract

This paper proposes a custom loss function to improve
deep learning performance in image segmentation tasks
involving ‘compact’ objects—those with sharp boundaries
and spatial continuity. To promote spatial coherence in pre-
dicted masks, I introduce total variation loss as a regular-
ization penalty during training. Applied to a U-Net archi-
tecture on the AICrowd Mapping Challenge dataset, this
method improves the Intersection-over-Union by 2.2pp on
a held-out test set. This method also showcases better re-
sults in classifying noisy synthetic data, with a margin of up
to 3.6pp on a held-out test set.

1. Introduction

In computer vision, semantic segmentation refers to the
process of assigning a class label to each pixel in an im-
age. In the binary case, this involves generating a probabil-
ity mask that associates each pixel with a value representing
the likelihood of it belonging to a particular class or not. For
an image I , this means that:

∀(i, j) ∈ I, ∃ Pr(yi,j = c) = pi,j ∈ [0, 1] (1)

where (i, j) denotes a pixel in the image I , yi,j is the ran-
dom variable representing the class label at pixel (i, j), and
pi,j is the associated probability that this pixel belongs to
class c.

In this paper, I consider a U-Net architecture [8] which
I train on classifying pixels in an image as either part of
a roof or not. This has an encoder/decoder structure such
that multiple, connected convolutional layers can process
both high- and low-resolution information about each im-
age. A U-Net—and other state-of-the-art classifiers, e.g.,
SegNet [10]—are typically agnostic to the shape of the ob-
ject. They rely on the weights of the model, trained on the
spatial composition of the training masks, to detect similar
patterns in new images. However, when dealing with com-

pact objects,1 it is clear ex ante that bigger clusters of pixels
classified as such objects are likelier to be correct predic-
tions than smaller disjoint regions (possibly due to overfit-
ting).

To account for this, I introduce a novel objective function
that integrates this notion that disjoint regions in the proba-
bility mask should be penalized—distinct from the penalty
regarding whether they are accurate or not. When training
a U-Net on the AICrowd dataset to predict roof masks with
this adjustment, IoU performance increases by 2.2pp on the
test set, and so does robustness to synthetically manipulated
test images. This is driven by more compact and coherent
masks being predicted since small, disjoint roof regions are
strongly penalized.

The rest of the paper is structured as follows. Sec-
tion 2 provides a brief overview of related work in com-
puter vision and image processing. Section 3 introduces
the data I will be using to develop the model architec-
tures for roof segmentation. Section 4 and 5 describe
the models I develop, namely a vanilla U-Net architecture
[8], one with softmax regularization [4], and—my origi-
nal contribution—one with total variation regularization by
changing the objective function. Section 6 presents the re-
sults with regards to robustness to noisy images, Section 7
presents a method to select the relative weight of total vari-
ation in the objective as a learnable parameter, and Section
8 concludes.

2. Related Work
2.1. Past Literature

The intuition that objects appear as bounded, discrete re-
gions in images has long been exploited in image processing
through diffusion-based techniques that denoise or regular-
ize an image while preserving sharp edges. A prominent
example is total variation (TV) regularization [9]. Given an

1I define as compact objects all classes which tend to present them-
selves as coherent, bounded regions in images, such as satellite snapshots
of rooftops.
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image I ∈ RH×W , its total variation is defined as the sum
of differences between neighboring pixels:

LTV(I) =
∑
i,j

|Ii,j − Ii+1,j |+ |Ii,j − Ii,j+1| , (2)

where (i, j) indexes a pixel, and the sum is over all hori-
zontal and vertical neighboring pixel pairs’ real float values.
This penalty encourages local smoothness across the image
while preserving sharp transitions at object boundaries.

To minimize (2) for an image I while preserving its gen-
eral characteristics, Chambolle’s algorithm [2] provides a
computationally efficient solution to the following problem:

minimize
ITV

1

2λ
∥ITV − I∥2 + LTV(ITV), (3)

where ITV is the denoised image and λ ∈ R+ a weight
on the TV loss term—LTV—relative to maintaining the fea-
tures of the ground truth image I .

[4] incorporate this notion that objects appear as com-
pact clusters of pixels by customizing the softmax activa-
tion layer. In particular, they redefine it by adding a TV loss
regularization term. The standard softmax layer for binary
classification solves the following optimization problem:

minimize
A

− ⟨A,o⟩+ ⟨A, logA⟩ (4)

subject to
2∑

c=1

Aci = 1, ∀i = 1, . . . ,HW (5)

where A ∈ [0, 1]2×HW is the prediction mask for classes
c = {1, 2} across all pixels in an image of size H × W .
The model’s output, o ∈ R2×HW , is fed into the softmax,

Figure 1: Predicted Segmentation Masks with and without
TV Denoising

(a) No Denoising
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(b) With TV Denoising
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Notes: The figure displays the predicted probabilities that each pixel is
part of a given class in a 10 × 10 image. The green contours represents
the ground truth mask. Panel (b) manipulates the output of Panel (a) by
optimizing (3) with λ = 1/4 via L-BFGS.

which converts it into per-pixel probabilities. This leads to
the well-known closed-form solution:

Â∗
c =

exp(oc)∑2
c=1 exp(oc)

∈ [0, 1]1×HW (6)

i.e., the softmax function applied pointwise across the class
logits. [4] add a penalty for non-smooth output masks by
modifying the activation layer to instead solve:

minimize
A

− ⟨A,o⟩+ ⟨A, logA⟩+ λLTV(A) (7)

subject to
2∑

c=1

Aci = 1, ∀i = 1, . . . ,HW (8)

where λ ∈ R+ is a regularization hyperparameter, and LTV
is defined as at (2). This modified activation (which enters
the backpropagation) encourages spatial coherence by em-
bedding regularization within the final layer of the network.

2.2. Original Contribution

In this work, I incorporate this intuition—that objects ap-
pear as compact clusters of pixels—directly into the train-
ing objective of my segmentation model, as opposed to
the activation layer. Let fθ(I) be a network that maps
an image I ∈ RH×W×C to a predicted probability mask
P̂ ∈ [0, 1]H×W for a binary class of interest, I define its
total loss as:

Ltotal = LBCE(P̂ , P ) + λLTV(P̂ ), (9)

where LBCE is the standard binary cross-entropy loss,2 P
is the ground-truth mask, and LTV acts as a spatial regu-
larizer with weight λ ∈ R+. Indeed, the added TV term
penalizes local irregularities in the predicted mask, promot-
ing compact, coherent segmentations. Figure 1 provides an
example where TV denoising greatly benefits predictions in
the presence of outliers.

Unlike [4], the penalty term is added directly to the
loss function of the network as opposed to any activation
layer(s). Thus, it solely affects models’ weights via back-
propagation. This approach has two main advantages:

1. Simplicity: It requires no modification to the architec-
ture or inference procedure, unlike variational activa-
tions that involve iterative solvers.

2. Efficiency: Adding the TV term as part of the loss
avoids the computational overhead of solving opti-
mization problems inside the forward pass.

3. Data
The AICrowd Mapping Challenge offers circa 400, 000

labeled, colored images with a resolution of 300× 300 pix-
2Binary cross-entropy loss is defined as:

LBCE = − 1
N

∑N
i=1 [yi log(ŷi) + (1− yi) log(1− ŷi)],

where N is the number of samples, yi is the true label, and ŷi is the pre-
dicted probability.

2
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Figure 2: AICrowd Image downsampling, with Ground
Truth Mask

(a) 300× 300 Resolution (b) 100× 100 Resolution

els to train models for roof segmentation. For compuational
constraints, I limit my analysis to 5, 000 of such images,3

which I downsample at a resolution of 100×100 pixels. Fig-
ure 2 presents an example of the original resolution and the
downsampled one, where the latter clearly contains enough
visual information to detect the boundaries of the roofs. As
standard in the literature, I split the sample into train, vali-
dation, and test sets in proportions of 80%, 10%, and 10%,
respectively.

4. Model Architectures
Figure 3 showcases the baseline architecture of my U-

Net. This entails a symmetric encoder/decoder structure
with residual connections, like [8]. The encoder consists
of two downsampling blocks, each containing two 3 × 3
convolutional layers followed by batch normalization and a
2× 2 max pooling operation. The number of filters doubles
with each downsampling step, starting from 64. The bottle-
neck block includes two convolutional layers with 256 fil-
ters. The decoder mirrors the encoder with two upsampling
blocks, each beginning with a 2 × 2 transposed convolu-
tion (for upsampling), followed by concatenation with the
corresponding encoder feature maps. Thereafter, two 3× 3
convolutional layers with batch normalization are applied.
The network ends with a 1 × 1 convolution and sigmoid
activation to produce the final binary segmentation mask.

Figure 3: U-Net Architecture with Residualized Connec-
tions
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3Specifically, I draw them randomly from the AICrowd validation im-
ages’ dataset given known issues with the training data [1].

From this, I build three variations:

i) U-Net + TV: Applies TV denoising to the U-Net pre-
dictions post-training, solving an analogous to (3),
where I is the predicted mask instead.

ii) RU-Net: Adds a softmax layer solving (7).

iii) LU-Net: Trains the network with (9) as the total loss,
as opposed to LBCE only.

The performance of each model is assessed as per the
average Intersection-over-Union (IoU) they achieve. This
evaluates the overlap between the predicted segmentation
and the ground truth:

IoU =
|Prediction ∩ Ground Truth|
|Prediction ∪ Ground Truth|

(10)

Table 1: IoU across models and datasets

Intersection-over-Union
Model λ∗ Train Validation Test

U-Net – 77.16% 61.63% 61.53%
U-Net + TV 0.09 77.26% 61.73% 61.69%
RU-Net 10−6 75.63% 62.97% 63.47%
LU-Net 10−6 76.90% 63.09% 63.72%

Notes: The table displays the IoU performance of 4 different models on
the AICrowd dataset for roof segmentation. λ∗ is the optimal TV loss
weight, determined by the performance on the validation set.

Figure 4: Prediction Masks on a Test Image

(a) Original Image with Mask (b) U-Net Prediction

(c) RU-Net Prediction (d) LU-Net Prediction

Notes: The figure showcases the predictions on a test image depending on
the model employed, with the specifications in Table 1. Panels (a), (b), and
(c) achieve, respectively, an IoU of 48%, 68%, and 72%.
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=
TP

TP + FP + FN
(11)

where TP , TN , FP , and FN represent the number of true
positives, true negatives, false positives, and false negatives,
respectively. I favor it over other metrics because of the high
level of class imbalances in the AICrowd data.4

Table 1 presents the results across all four models when
λ is picked to maximize IoU performance in the validation
set, as explained in detail in Section 5.

Figure 4 displays the predictions on a test image where
LU-Net and RU-Net vastly outperform the benchmark
model by over 20pp on the IoU metric. The U-Net model
performs poorly (48% IoU), as it predicts a mask filled
with roofs composed of few, scattered pixels that do not
match the original mask (outlined in blue) of Panel (a). The
RU-Net and LU-Net, on the other hand, achieve an average
IoU of 70% by providing more concentrated predictions—
which better match the ground truth.

5. Hyperparameters Tuning
To compare models, I set a fixed learning rate of 5 ×

10−5 with an Adam optimizer [5] across 30 epochs and a
batch size of 16 images. Given the (relative) shallowness
of my overall network, all three models converge quickly
with rather stable validation performance after the first 20
epochs. Figure 5 displays the training and validation IoU
across epochs for all three architectures.

The remaining hyperparameter for my models is λ,
which controls the relative weight of the TV loss in either
the post-processing (U-Net + TV), the softmax layer (RU-
Net), or the model’s objective (LU-Net). I choose λ from a
predefined set Λ by maximizing the validation IoU:

λ∗ = argmax
λ∈Λ

IoUval(λ) (12)

Figure 5: IoU Performance by Epoch, Dataset, and Model

4In the training data, 77.3% of the pixels are not roofs – hence, a naive
model classifying everything as not-a-roof would achieve high accuracy.

That is, λ∗ is the value of λ yielding the highest
Intersection-over-Union on the validation set.

U-Net + TV When applying denoising to the predicted

Figure 6: Selecting λ∗
1, λ∗

2, and λ∗
3

(a) U-Net + TV

(b) RU-Net

(c) LU-Net

Notes: The three panels display the train, validation, and test IoU per-
formance for three different variations of the model. Panel (a) applies
post-processing to the vanilla U-Net predictions for all λ1 ∈ Λ1. Panel
(b) reports the results at the final epoch of the RU-Net architecture for all
λ ∈ Λ2. Panel (c) displays analogous results for the LU-Net architecture
for all λ ∈ Λ3
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mask by solving (3), I sample from:

Λ1 = {0.01, 0.02, . . . , 0.20} (13)

and select λ∗
1 = 0.09 as per (12). Figure 6a displays the

IoU performance given λ ∈ Λ1 for the training, validation,
and test sets separately. The gains from this architecture are
negligible relative to the vanilla U-Net.

RU-Net For this architecture too, the choice of λ∗
2 is data-

driven. I sample from:

Λ2 =
{
10−8, 5× 10−8, 10−7, · · · , 10−5

}
and pick λ∗

2 = 10−6 according to (12). To solve (7), I apply
the same iterative algorithm as [4], with one single iteration
at the final softmax layer. In fact, I slightly tweak the ar-
chitecture of the U-Net in Figure 3 to have a softmax layer
rather than a sigmoid function for each pixel at the end.

LU-Net To select λ∗
3, I sample from:

Λ3 = Λ2

and pick λ∗
3 = 10−6 according to (12).

Figures 6b and 6c display the average IoU performance
on the training, validation, and test datasets of the RU-Net
and LU-Net architectures as λ2 and λ3 are sampled from Λ2

and Λ3, respectively.

6. Robustness to Noise

The primary application of TV denoising is to remove
noise from corrupted images. In this section, I demonstrate
that incorporating a TV term into the loss function of my
architecture improves its robustness to noise. Specifically,
it outperforms the standard U-Net architecture when evalu-
ated on synthetically corrupted data, where noise is added
to the RGB values from a mean-zero Gaussian distribution.

The noise injection process is defined as follows for the
test data:

ṽi,j,c = vi,j,c + εi,j,c, εi,j,c ∼ N
(
0, σ2

)
, (14)

where vi,j,c ∈ [0, 1] denotes the original pixel value at (i, j)
for channel c, and εi,j,c represents Gaussian noise with zero
mean and variance σ2. Figure 7 displays an image in the
AICrowd dataset when exposed to severe mean-zero Gaus-
sian noise.

The RU-Net and LU-Net architectures perform better on
a manipulated test set with varying levels of noise—with a
margin of up to 3.6pp on the held-out test set (when σ =
0.04). Figure 8 displays the test IoU across different noise
levels.

Figure 7: AICrowd Image corrupted by Gaussian Noise
with σ = 0.05

Notes: The figure displays the corrupted version of Figure 2b when in-
jected with mean-zero Gaussian noise as per (14), with standard deviation
σ = 0.05.

Figure 8: Robustness to Gaussian Noise by Model

7. Gradient-Based Hyperparameter Selection
An alternative to a sweep of values for λ3 ∈ Λ3 is that of

gradient-based hyperparameter selection [6, 7, 3]. That is,
to consider λ in the model’s objective—(9)—as a learnable
parameter via gradient descent.5

In order to estimate the gradient step for λ in the LU-Net
architecture, consider the problem as a bilevel optimization
where the U-Net parameters θ are set to solve:

θ∗(λ) = argmin
θ
Ltrain(θ, λ) (15)

= argmin
θ
LBCE(θ) + λLTV(θ). (16)

where Ltrain is defined as at (9) for the training data.
The relative weight λ is, on the other hand, set to mini-

mize validation loss:6

λ∗(θ) = argmin
λ
Lval(θ

∗(λ)) (17)

5For the RU-Net model, [4] provides a derivation of the update rule
for λ via the training loss associated with the softmax layer.

6Trivially, since λ is a regularization term, its performance must be
evaluated on a held-out set and not on the training loss directly.
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where Lval is the binary cross-entropy loss on the validation
data.

As per the chain rule:

dLval

dλ
=

∂Lval

∂λ︸ ︷︷ ︸
direct

+
∂Lval

∂θ∗
dθ∗

dλ︸ ︷︷ ︸
indirect

(18)

The direct gradient is zero (Lval does not explicitly depend
on λ), so:

dLval

dλ
=

∂Lval

∂θ∗
dθ∗

dλ
. (19)

Now, consider one gradient descent step for θ with learning
rate ηθ:

θ′(λ) = θ − ηθ∇θLtrain(θ, λ) (20)

AssumingLtrain is twice continuously differentiable with re-
spect to both θ and λ, by Schwarz’s theorem:

dθ′

dλ
= −ηθ

∂

∂λ
[∇θLtrain] (21)

Algorithm 1 Gradient-Based Hyperparameter Update

Require: Initial parameters θ(0), TV weight λ(0), learn-
ing rates ηθ, ηλ, training data Dtrain, and validation data
Dval

1: for each training iteration t ∈ {1, · · · , T} do
2: Sample mini-batch Btrain ⊂ Dtrain
3: Compute training losses:

LBCE(θ(t);Btrain), LTV(θ(t);Btrain)

4: Compute total loss:

Ltrain(θ(t), λ(t)) = LBCE(θ(t)) + λ(t) · LTV(θ(t))

5: Update network parameters:

θ(t+ 1)← θ(t)− ηθ∇θLtrain(θ(t), λ(t))

6: Sample mini-batch Bval ⊂ Dval
7: Compute validation gradient:

gval = ∇θLval(θ(t+ 1);Bval)

8: Compute TV gradient:

gTV = ∇θLTV(θ(t+ 1);Btrain)

9: Update hyperparameter:

λ(t+ 1)← λ(t) + ηληθ⟨gval, gTV⟩

10: end for
11: return θ(T ), λ(T )

= −ηθ∇θ

(
∂Ltrain

∂λ

)
(22)

= −ηθ∇θLTV (23)

Approximating θ∗(λ) with θ′(λ), the gradient of the valida-
tion loss with respect to λ writes:

dLval

dλ
≈ ∂Lval

∂θ∗
(−ηθ∇θLTV) (24)

≈ −ηθ

〈
∇θLval︸ ︷︷ ︸

validation BCE gradient

, ∇θLTV︸ ︷︷ ︸
training TV gradient

〉
(25)

Therefore, given a learning rate ηλ, the update rule for λ
writes:

λ(t+1) := λ(t) + ηληθ ⟨∇θLval,∇θLTV⟩ (26)

Intuitively, if ⟨·, ⟩ > 0, it means that TV regularization im-
proves validation performance and therefore λ should be in-
creased. Algorithm 1 summarizes the training of the LU-Net
architecture parameters when λ ∈ R+ is a learnable param-
eter.7

8. Conclusion
This paper introduces an image processing heuristic—

TV denoising—to train image segmentation networks on
customized loss functions cognizant of the shape of the ob-
jects they seek to detect. Specifically, I experiment with U-
Net architectures that incorporate TV loss in different ways
for a roof segmentation task. The novel model I introduce,
LU-Net, improves the IoU on the test set by 2.2pp relative to
an analogous network trained only on binary cross-entropy
loss. Further, it maintains a higher performance when tested
on noisy images—with a margin of up to 3.6pp relative to
a vanilla U-Net. This method improves existing architec-
tures accounting for TV loss in segmentation tasks [4] by
providing a methodology which results in (i) comparable
performance, (ii) robustness to noise, and overall (iii) lower
computational costs. Additionally, to reduce the compu-
tational burden of a hyperparameter sweep for the relative
weight of the total variation loss when training the model, I
build on past literature to provide an implicit differentiation
procedure; essentially setting λ as a learnable parameter.

7While not explicitly stated in the algorithm, it may be preferable in
practice to parameterize the hyperparameter as α = log λ and optimize for
it instead. This ensures that λ = exp(α) remains non-negative throughout
training.
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