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Abstract

Variational Autoencoders (VAEs) in large-scale diffusion
models like Stable Diffusion XL (SDXL) often exhibit ex-
tensive “channel suppression,” where numerous channels
become inactive. This learned behavior, primarily me-
diated by Group Normalization scale parameters, is dis-
tinct from traditional neuron death. This paper investi-
gates the functional role of this suppression. We fine-
tuned the SDXL-VAE on diverse datasets—ImageNette-256,
CIFAR-10, and Google Fonts—and employed a method-
ology involving channel activity tracking, classification of
suppressed channels, and a "nudging” intervention to re-
activate them by modifying GroupNorm scales. Qualita-
tive analysis included activation grids and an adapted Logit
Lens technique. Our experiments reveal that the interven-
tion’s impact is data-dependent: on complex natural im-
age datasets (ImageNette, CIFAR-10), nudging modestly
improved reconstruction quality (MSE, PSNR, SSIM)[cite:
1, 2, 5, 6]. Conversely, on the low-entropy Google Fonts
dataset, nudging did not improve reconstruction but signif-
icantly lowered KL divergence[cite: 3, 4], suggesting that
extensive suppression might be an effective specialization
for simpler data. These findings indicate that learned chan-
nel suppression is a context-dependent mechanism, poten-
tially acting as beneficial pruning on simple data but a re-
coverable loss of capacity on complex data. This work of-
fers insights into VAE training dynamics and paths toward
more robust generative models.

1. Introduction

Variational Autoencoders (VAEs) are a cornerstone of
modern generative modeling, serving critical roles in tasks
such as image synthesis and compression. The VAE of Sta-
ble Diffusion XL (SDXL-VAE) [14], a widely used high-
resolution image generation model, has been observed to
develop extensive regions of inactive or ”suppressed” chan-
nels within its convolutional layers during training or fine-
tuning [5]. As documented by Gilman and others, a sub-
stantial portion of channels, particularly in deeper layers,
can be effectively disabled by the model itself. This phe-
nomenon is primarily mediated by the learned scale param-
eters of the preceding Group Normalization (GroupNorm)
[15] layers, which can reduce the output of entire channels
to near-zero values. This suggests a form of learned struc-
tured network self-modification, which is notably different
from the well-known “dying ReL.U” problem, where neu-
rons become permanently inactive due to consistently non-
positive inputs [12, 1].

The central research question this project addresses is:
Is this self-imposed channel suppression a beneficial op-
timization strategy, a detrimental artifact, or a context-
dependent phenomenon? Understanding this mechanism
is important because it could reveal insights into the learn-
ing dynamics of VAEs, potentially leading to more efficient
network architectures, improved training stability, or better
generalization. If suppression is beneficial, it might repre-
sent an implicit form of network pruning or specialization.
If detrimental, it might limit representational capacity or in-
dicate training issues that need mitigation.

To investigate this, our project aims to:



* Characterize the conditions under which channel sup-
pression emerges during VAE fine-tuning, particularly
in response to different dataset characteristics.

* Determine the functional impact of these inactive
channels on VAE performance, such as reconstruction
quality and latent space properties.

* Explore methods to selectively reactivate (“nudge’)
these suppressed channels and evaluate the conse-
quences on model behavior and performance.

Our approach involves fine-tuning pre-trained SDXL-VAE
models on standard image datasets. We employ a pipeline
that includes dynamic channel activity tracking, classifica-
tion of channels based on their activity levels, targeted inter-
ventions to modify the parameters of suppressed channels,
and qualitative/quantitative evaluation. We present prelim-
inary findings indicating that dataset characteristics signifi-
cantly influence the extent of channel suppression, and we
outline our methods for deeper investigation. Ultimately,
this work aims to shed light on the functional role of this
intriguing emergent behavior in large-scale VAEs.

2. Related Work

Our investigation into learned channel suppression in
VAEs draws upon several areas of deep learning research:

1. Neuron Inactivity and ”Dying ReLLUs”: The “dy-
ing ReLU” problem describes how ReLU neurons can
become permanently inactive if their input is always
negative, effectively halting learning for that neuron
[12, 1]. While related to inactivity, the channel sup-
pression we observe in SDXL-VAE differs signifi-
cantly. It appears to be a learned behavior actively
modulated by the scale parameters of Group Normal-
ization layers rather than a passive consequence of
activation functions and input distributions. Further-
more, this suppression affects entire channels and is
potentially reversible through targeted parameter ad-
justments, a key aspect our intervention methods ex-
plore.

2. Network Pruning and Efficiency: Significant re-
search has focused on network pruning to create
smaller, more efficient models by removing redundant
weights, neurons, or channels [10, 6]. Some tech-
niques aim for structured pruning, removing entire fil-
ters or channels [11]. The observed channel suppres-
sion might be an implicit form of learned pruning,
where the model self-optimizes by down-weighting or
disabling channels it deems unnecessary or detrimen-
tal for the given task and data. Dufort-Labbé et al.
explores how networks can leverage neuron saturation
for efficient pruning, which shares conceptual similar-
ities with learned down-weighting [3].

3. The Lottery Ticket Hypothesis: Proposed by Fran-

kle & Carbin, this hypothesis posits that dense, ran-
domly initialized networks contain sparse subnetworks
(’winning tickets”) that, when trained in isolation, can
achieve performance comparable to the original dense
network [4]. The emergence of widespread suppressed
channels could suggest that the remaining active chan-
nels form such a ”winning ticket” for the VAE’s ob-
jective, rendering the suppressed channels redundant
for the specific data distribution. Our work explores
whether these "redundant” channels can be repurposed
or if their removal is indeed optimal.

4. Normalization Layers and Controllability: Group
Normalization [15], the mechanism we identify as cen-
tral to channel suppression, normalizes features within
groups of channels. Its learnable scale and shift pa-
rameters (v and [3) allow the network to modulate the
output of normalized features. Our focus is on how the
scale parameter ~y can be driven to near zero for spe-
cific channels, effectively silencing them.

5. Artifacts and Redundancy in Generative Models:
Research on Generative Adversarial Networks (GANSs)
such as StyleGAN has investigated sources of image
artifacts, sometimes linked to network capacity or spe-
cific architectural choices [8]. Similarly, work on Vi-
sion Transformers has explored representational re-
dundancy and the role of specific tokens or “registers”
[2]. While our focus is VAEs, these studies highlight
the broader themes of learned representations, redun-
dancy, and model behavior in complex generative ar-
chitectures.

The initial observations by Rudy Gilman on channel sup-
pression in SDXL-VAE provided a direct catalyst for this
project [5]. Our work aims to systematically investigate
and understand this specific phenomenon within the SDXL-
VAE framework.

3. Data

For this project, we utilize standard, publicly available
image datasets to ensure reproducibility and to study the
impact of data characteristics on channel suppression. We
do not collect new datasets. The primary datasets used are:

* ImageNette-256: A 10-class subset of the full Ima-
geNet dataset [7], specifically the version provided by
FastAl that includes resized images. We use images
processed to 256x256 pixels. ImageNette offers di-
verse natural image statistics, making it suitable for
general VAE fine-tuning and as a benchmark for re-
construction quality on natural images. It contains ap-
proximately 13,000 training images and 500 validation
images.

* Google Fonts (genfonts_ data): This dataset
consists of 256x256 pixel rasterizations of charac-



ters from the Google Fonts catalogue. We use
the version available on Hugging Face Datasets
(rcugarte/genfonts_data). This dataset repre-
sents a low-entropy, high-contrast domain, character-
ized by structured glyphs and relatively uniform back-
grounds. It presents a contrasting data distribution to
ImageNette, allowing us to investigate how data com-
plexity influences channel suppression.

¢ CIFAR-10: A widely used dataset comprising 60,000
32x32 color images in 10 classes [9]. For our exper-
iments, we resize these images to 256x256 pixels to
match the input dimensions of the other datasets and
the VAE’s typical operating resolution, presenting a
case of upscaling simpler, lower-resolution images.

Data Pre-processing. The pre-processing steps for all
datasets are standardized to be compatible with the SDXL-
VAE architecture. These steps include:

1. Resizing and Cropping: Images are resized appro-
priately (e.g., shorter side to 256 pixels for Ima-
geNette/Fonts, or directly to 256x256 for CIFAR-10)
using bilinear interpolation and then center-cropped to
256x256 pixels.

2. RGB Conversion: All images are ensured to be in
RGB format.

3. Tensor Conversion: PIL Images are converted to Py-
Torch tensors. This typically maps pixel values from
the [0, 255] range to [0.0, 1.0].

4. Normalization: Pixel values are then normalized from
the [0.0, 1.0] range to [-1.0, 1.0] using the formula (z—
0.5)/0.5. This is a standard input range for many pre-
trained VAESs, including the SDXL-VAE.

Minimal or no data augmentation is used during fine-
tuning of the pre-trained VAEs. The Hugging Face
datasets library is used for loading and initial handling,
and torchvision.transforms for pre-processing.

4. Methods

Our methodology for investigating learned channel sup-
pression in the SDXL-VAE integrates several components:
(1) fine-tuning the VAE on different datasets, (2) track-
ing channel activity and model parameters, (3) classifying
channels as suppressed, (4) applying targeted interventions
to reactivate channels, and (5) visualizing and analyzing
channel behavior. The entire pipeline is implemented in
PyTorch, leveraging the Hugging Face diffusers and
accelerate libraries.

4.1. Model and Baseline Training

The core model under investigation is the SDXL-
VAE [14], specifically using the pre-trained weights from
stabilityai/sdxl-vae available on Hugging Face.

A dedicated model wrapper facilitates loading and, cru-
cially, provides an interface for attaching hooks to arbitrary
layers for activation capturing.

Baseline models are established by fine-tuning the pre-
trained SDXL-VAE on our chosen datasets (ImageNette-
256 and Google Fonts) without any specific interventions
targeting channel suppression. Standard VAE loss is used,
comprising a reconstruction term and a KL divergence term
to regularize the latent space, weighted by a factor Sk

Lvae = Eq(zja) [log p(2|2)] = Brr - Dicr(q(2[2)]p(2))

Typically, p(z) is a standard normal distribution
N(0,I), and gq(z|z) is the encoder’s output distri-
bution (e.g., N(uz,2.)). The reconstruction term,
—E4(zj2)[logp(x]2)], is often implemented as an MSE
loss for Gaussian observation models: Lysg = ||z — 2|3,
where & is the reconstructed input. The performance of
these baseline models serves as a reference against which
models with interventions are compared.

4.2. Tracking Channel Activity

To understand when and where channels become sup-
pressed, we employ two main tracking mechanisms during
fine-tuning:

Activation Monitoring. An activation monitoring com-
ponent attaches PyTorch forward hooks to specified layers
within the VAE. It can capture layer inputs or outputs. For
each hooked layer, it calculates and logs metrics at a defined
tracking interval. Key metrics include:

* Mean Absolute Activation Per Channel: For a given
activation tensor A € REXCXHXW (Batch, Channels,
Height, Width), this metric computes the mean of the
absolute activation values across spatial and batch di-

mensions for each channel ¢ € {1,...,C}:
1 B H W
c= T 17 18/ Ape,hyw
" g 2 e

This results in a vector m € R, providing a measure
of each channel’s overall activity and is the primary
metric used by our channel classifier.

¢ Full Activation Map: The entire activation tensor A
(detached and moved to CPU) is stored. This is used
for qualitative visualization, such as generating the
per-channel activation grids (e.g., as depicted in Fig-
ure 2).

Other statistics like overall mean and standard deviation of
activations are also logged for general monitoring. The data
collected are aggregated and stored, forming the basis for
subsequent classification and analysis.
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Figure 1: Dynamics of Near-Zero Channel Weights During
ImageNette Training (baseline - no intervention). Percent-
age of weights with values below 1 x 108 over 30 training
epochs for various convolutional layers in the SDXL-VAE.
Different layers exhibit varying trends and volatility.

Weight-based Dead Neuron Tracking. While our pri-
mary focus is on GroupNorm-mediated suppression, we
also include a tracking mechanism to monitor the percent-
age of near-zero weights in convolutional and linear layers
directly. Figure [ illustrates the dynamics of these near-zero
weights during ImageNette training, showing the percent-
age of weights with values below 1 x 10~ over 30 epochs
for various convolutional layers. This helps to distinguish
the broader phenomenon of low-magnitude weights from
the specific channel suppression mechanism. This tracker
uses a fixed absolute threshold or a threshold relative to the
mean weight magnitude to classify individual weights as
”dead.”

4.3. Classification of Suppressed Channels

A dedicated channel classification component identifies
channels that have become suppressed, specifically target-
ing Group Normalization layers, as these are hypothesized
to be the primary mechanism for learned channel suppres-
sion.

Its operation involves:

Monitored Layers to Parame-
it builds a map from
layer identifiers (e.g.,

1. Mapping
ters: On initialization,
the activation monitor’s

vae.encoder.downblocks.0.norml.output)

mod-
(e.g.,

to the  corresponding
ule’s scale parameter

GroupNorm
name

vae.encoder.downblocks.0.norml.weight)

and its number of channels within the model. This
allows direct access to the relevant parameters for
intervention.

2. Processing Tracked Data: At each classification step,
it receives the aggregated metrics from the activation
monitor for the current global training step.

3. Thresholding for Inactivity: For each targeted
GroupNorm layer, it uses the mean absolute activation
per channel vector m. If a channel’s value m, falls
below a configurable activation threshold 6, (e.g.,
1 x 10~3), that channel ¢ is classified as “inactive” or
suppressed for that specific GroupNorm layer.

4. Outputting Targets for Intervention: The classifier
outputs a dictionary where keys are layer identifiers.
Each entry contains the actual name of the GroupNorm
scale parameter and a list of indices corresponding to
the channels identified as inactive within that layer.

4.4. Intervention: Nudging Suppressed Channels

Once suppressed channels are identified, an intervention
handler applies targeted modifications to attempt to reacti-
vate them. The primary strategy is a ”gentle nudge” to the
GroupNorm scale parameters:

1. Receiving Targets: It takes the output from the chan-
nel classifier.

2. Accessing
provided

Parameters:
scale parameter

Using the
name (e.g.,

vae.encoder.down_blocks.0O.norml.weight),

it retrieves the actual torch.nn.Parameter ob-
ject v € R® from the model.

3. Applying Nudge: For each inactive channel index
Cinactive 1dentified by the classifier, it modifies the cor-
responding scale value 7,.... The modification typi-
cally involves:

* Multiplying the current scale value by a nudge
factor frugge (6.2, 1.1 or 1.2): v, = Yo e
f nudge -

* Alternatively, adding a small additive nudge
value anudge (€.2., 0.01): Y, = Veieine T Onudge-

The nudged value is then capped at a maximum scale

A i /
value “Ymax (e’g” 2.0): Veimeive — mln(’YCmacnve’rymax)’

4. Intervention Interval: Interventions are applied pe-
riodically, controlled by an intervention interval (e.g.,
every 200 training steps), not at every step, to allow the
network time to adapt.

An alternative strategy, “reset GroupNorm scale,” simply
resets Ve 0 1.0. The goal of these interventions is to
“encourage” the model to reuse these channels and observe
the impact on performance and learning dynamics.

4.5. Visualization and Qualitative Analysis

To gain qualitative insights into what features channels
are learning or how suppression manifests, we use two main
visualization techniques:

Per-Channel Activation Grids. Figure 2 shows exam-
ples of activation grids from an encoder layer for a sam-
ple ImageNette validation image, processed by VAEs fine-



(a) ImageNette-tuned VAE

(b) Google Fonts-tuned VAE

Figure 2: Activation grids from an encoder layer for a
sample ImageNette validation image, processed by VAEs
fine-tuned on different datasets. Flat grey tiles denote
suppressed channels. The Fonts-tuned model (right) sup-
presses a much larger fraction of channels compared to the
ImageNette-tuned model (left).

tuned on ImageNette (left) and Google Fonts (right). This
method visualizes the activation maps captured by the acti-
vation monitor. For a given input image and layer, it plots
the spatial activation map for each channel (or a subset of
channels) as a separate tile in a grid. Each tile is individually

normalized to the [0, 1] range for visualization (typically us-
ing a greyscale colormap such as ‘viridis‘). “Flat grey” tiles,
prominently seen in the Fonts-tuned VAE, indicate channels
with low variance or near-zero activations across their spa-
tial dimensions, visually representing suppressed channels.
This allows for direct comparison of channel activity pat-
terns across models fine-tuned on different datasets.

Logit Lens for VAEs. Inspired by the Logit Lens tech-
nique used to interpret Language Models [ 1 3], we adapt this
concept for VAEs. This approach uses a mini-decoder”
— a small stack of transposed convolutional layers — to
project captured activation maps from intermediate VAE
layers into an image-like space.

* Projection Types:

— Single-channel projection: Takes a single chan-
nel’s activation map (e.g., shape 1 x 1 x H x W),
passes it through the mini-decoder, producing a
small image patch. This helps hypothesize about
the visual concept a specific channel might be
sensitive to or trying to reconstruct.

— Full-map projection: If the number of channels
in an activation map matches the mini-decoder’s
input channel requirement, the entire map (e.g.,
1 x C x H x W) can be projected.

* Mini-Decoder Architecture: The mini-decoder itself
is a simple CNN, typically with a few transposed con-
volutional layers to upsample the feature map, inter-
spersed with ReLU activations, and culminating in a
Sigmoid to produce an output in the [0,1] range, inter-
pretable as an image. Its input channel dimensionality
is configurable based on the projection type.

This technique provides a visual hypothesis about the fea-
tures encoded in specific channels or layers, complementing
the quantitative analysis of channel activity. These visual-
izations are generated periodically during training and can
also be generated during evaluation.

By combining these tracking, classification, interven-
tion, and visualization methods, we aim to build a compre-
hensive understanding of the causes and consequences of
learned channel suppression in the SDXL-VAE.

S. Experiments

To evaluate the functional role of suppressed channels
and the impact of our intervention strategy, we conducted
experiments fine-tuning the SDXL-VAE on three distinct
datasets: ImageNette-256 (natural images), Google Fonts
(low-entropy characters), and CIFAR-10 (upscaled low-
resolution natural images). For each dataset, we compare
two conditions:

* Baseline: Standard fine-tuning of the pre-trained

SDXL-VAE.



* Nudge Intervention: Fine-tuning with our “gentle
nudge” strategy applied periodically to the scale pa-
rameters of Group Normalization layers whose associ-
ated channels were classified as inactive.

Performance is primarily evaluated using reconstruction
Mean Squared Error (MSE), KL Divergence (Dg ), Peak
Signal-to-Noise Ratio (PSNR), and Structural Similarity In-
dex Measure (SSIM). For MSE and D, lower values are
generally better, while for PSNR and SSIM, higher values
indicate better performance.

5.1. Quantitative Results

Table 1 summarizes the key evaluation metrics on the
test/validation splits for each dataset under both baseline
and nudge intervention conditions.

Performance on Natural Image Datasets (ImageNette
and CIFAR-10). For the ImageNette-256 dataset, the
nudge intervention led to slight improvements across all
metrics: MSE decreased from 0.010443 to 0.010396, D,
from 3361.52 to 3351.61, PSNR increased from 25.833 to
25.853, and SSIM from 0.8077 to 0.8086]cite: 5, 6]. The
training loss dynamics, particularly the average epoch re-
construction loss shown in Figure 3(a), also indicate that
the nudge model consistently achieved slightly lower recon-
struction loss during training on ImageNette; a similar trend
was observed for the total training loss.

On CIFAR-10 (upscaled to 256x256), the nudge inter-
vention similarly improved reconstruction quality: MSE de-
creased from 0.002879 to 0.002826, PSNR increased from
31.429 to 31.509, and SSIM from 0.9195 to 0.9210[cite: 1,
2]. The KL divergence was marginally higher for the nudge
model (997.53 vs. 994.63)[cite: 1, 2]. Figure 3(b) illustrates
that the nudge model maintained a lower validation recon-
struction loss throughout much of the CIFAR-10 fine-tuning
process. These results suggest that for datasets with diverse
natural image content, reactivating potentially underutilized
channels can be beneficial for representational capacity and
reconstruction fidelity.

Performance on Low-Entropy Dataset (Google Fonts).
The Google Fonts dataset, characterized by simpler, high-
contrast glyphs, showed a different trend. The baseline
model achieved slightly better reconstruction metrics: MSE
was 0.002451 for baseline versus 0.002470 for nudge,
PSNR was 32.138 versus 32.105, and SSIM was 0.9917
versus 0.9916[cite: 3, 4]. However, the nudge intervention
resulted in a notably lower (better) KL divergence (6313.26
compared to 6363.02 for baseline)[cite: 3, 4]. The vali-
dation total loss curves for Google Fonts, shown in Fig-
ure 3(c), are very close, with the nudge model sometimes
achieving lower total loss, likely benefiting from the re-
duced KL term. This suggests that on such low-entropy

data, extensive channel suppression might be an effective
strategy for the VAE to simplify its latent space, and nudg-
ing channels might slightly impair reconstruction possibly
by reintroducing complexity not essential for the task, even
while improving the KL term.

5.2. Discussion

The experimental results indicate that the impact of
the nudge intervention is data-dependent. For more com-
plex, natural image datasets like ImageNette and CIFAR-
10, nudging suppressed channels appears to provide mod-
est but consistent benefits in reconstruction quality (MSE,
PSNR, SSIM). This supports the hypothesis that some chan-
nels might be prematurely or overly suppressed during fine-
tuning on such data, and reactivating them allows the model
to capture finer details or more diverse features. The train-
ing and validation loss curves (Figure 3(a) and (b)) corrob-
orate this by showing improved reconstruction loss for the
nudge model.

Conversely, on the highly structured and low-entropy
Google Fonts dataset, the nudge intervention did not im-
prove (and slightly worsened) reconstruction metrics, al-
though it did lead to a better KL divergence. This suggests
that for simpler data distributions, the VAE might effec-
tively learn to prune unnecessary channels, and the base-
line model’s extensive channel suppression (as qualitatively
observed in Figure 2) could be a form of beneficial special-
ization. Forcing these channels to remain active via nudg-
ing might reintroduce redundant or less optimal pathways
for reconstruction, even if it aids in achieving a more com-
pressed or regularized latent space as indicated by the lower
Dgr,.

The interplay between reconstruction quality and KL di-
vergence is crucial. The nudge intervention can shift this
balance differently depending on the dataset. The slight in-
crease in KL for CIFAR-10 with nudge, despite better re-
construction, and the significant decrease in KL for Fonts
with nudge, despite slightly worse reconstruction, highlight
this complex relationship.

These findings open avenues for adaptive intervention
strategies. For instance, interventions could be selectively
applied based on dataset complexity, or the nudge factor
could be dynamically adjusted. The qualitative visualiza-
tions from our Logit Lens approach (described in Section
4) are intended to further probe what features these reacti-
vated channels begin to represent, though detailed analysis
of these visualizations is part of ongoing and future work.
The observed dynamics of near-zero weights (Figure 1) fur-
ther confirm that significant portions of the network are sub-
ject to learning-induced inactivity, setting the stage for in-
terventions like ours.



Table 1: Quantitative evaluation metrics for VAEs fine-tuned with and without the nudge intervention. MSE and Dy,
are better lower; PSNR and SSIM are better higher. Best results for each metric within a dataset are bolded. Results for
ImageNette are on its validation split[cite: 5, 6], others on test splits[cite: 1, 2, 3, 4].

Dataset Condition MSE (x1073) | Dgr | PSNR (dB) 1 SSIM 1
ImageNette-256 Baseline 10.443 [cite: 5] 3361.52 [cite: 5] 25.833 [cite: 5] 0.8077 [cite: 5]
Nudge 10.396 [cite: 6] 3351.61 [cite: 6] 25.853 [cite: 6] 0.8086 [cite: 6]
CIFAR-10 Baseline 2.879 [cite: 1] 994.63 [cite: 1]  31.429 [cite: 1]  0.9195 [cite: 1]
Nudge 2.826 [cite: 2] 997.53 [cite: 2]  31.509 [cite: 2] 0.9210 [cite: 2]
Google Fonts Baseline 2.451 [cite: 3] 6363.02 [cite: 3] 32.138 [cite: 3] 0.9917 [cite: 3]
Nudge 2.470 [cite: 4] 6313.26 [cite: 4] 32.105 [cite: 4] 0.9916 [cite: 4]

train/epoch_avg_rec_loss validation/avg_total_loss

N
TR . k 4k k 3k

20k

(a) ImageNette: Train Epoch Avg. Rec. (c) Google Fonts: Validation Avg. Total
Loss (b) CIFAR-10: Validation Avg. Rec. Loss  Loss

Figure 3: Training and validation loss dynamics. (a) Average epoch reconstruction loss during ImageNette fine-tuning. (b)
Average validation reconstruction loss for CIFAR-10. (c) Average validation total loss (Rec. + KL term) for Google Fonts.
In (a) and (b), lower is better, showing a tendency for the nudge intervention to improve reconstruction loss on more complex

datasets. In (c), the total loss curves are very close, with nudge slightly better at certain steps.

5.3. Qualitative Analysis of Channel Dynamics and
Interventions

Beyond quantitative metrics, we performed qualitative
analyses to better understand channel behavior.

Logit Lens Projections. Using our adapted Logit Lens
technique with a full map projection through a mini-
decoder, we visualized the aggregated feature representa-
tions from an intermediate encoder layer. Figure 4 presents
these projections for both ImageNette and Google Fonts
datasets, comparing baseline and nudge intervention mod-
els. For ImageNette (Figures 4a and 4b), the differences
between baseline and nudge projections are subtle, sug-
gesting that while quantitative improvements are observed
with nudging, the overall high-level feature abstraction at
this layer remains largely consistent. The projections cap-
ture abstract textural and structural information from the in-
put image. For the Google Fonts dataset (Figures 4c and
4d), the projections clearly represent the grid of characters.
Again, visual differences between baseline and nudge are
not stark at this aggregated level, aligning with the obser-
vation that extensive channel suppression in the baseline

Fonts model already leads to a highly specialized repre-
sentation. These visualizations provide a global view of a
layer’s feature space; finer-grained analysis would involve
single-channel projections as described in Section 4.

Intervention Dynamics. Figure 5 illustrates the dynam-
ics of inactive channels and the application of the nudge in-
tervention during the fine-tuning of the VAE on the Google
Fonts dataset. The plot tracks the number of channels classi-
fied as inactive over training steps. The ticks indicate when
interventions occurred. We observe that interventions of-
ten lead to a temporary decrease in the number of inactive
channels. However, for a low-entropy dataset like Fonts,
channels may become suppressed again as the model re-
converges, highlighting the strong data-dependent drive to-
wards specialization and sparsity. This visualization under-
scores the ongoing nature of the channel suppression phe-
nomenon and the reactive role of the nudge intervention.

6. Conclusion

This project investigated the phenomenon of learned
channel suppression in the SDXL-VAE, where channels be-



(a) ImageNette Baseline: (b) ImageNette Nudge: (c) Fonts Baseline: Full (d) Fonts Nudge: Full
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Figure 4: Logit Lens full map projections from the VAE encoder layer encoder.down _blocks[ 1 ].resnets[0].conv_shortcut for
a sample input. These visualizations project the entire activation map (all channels) from this specific layer through a mini-
decoder to an image-like representation, offering a hypothesis about the layer’s aggregated feature representation. Comparing
baseline (left column) and nudge (right column) for ImageNette (top row) and Google Fonts (bottom row) can reveal subtle
differences in learned features or attention at this stage of the encoder.
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Figure 5: Dead Channel Decay and Intervention Dynamics
on Google Fonts (Nudge Model). This plot shows the num-
ber of inactive channels detected over training steps (blue
line) and the points at which the nudge intervention was ap-
plied (light blue ticks, scaled for visibility). It illustrates
how interventions aim to reduce the count of inactive chan-
nels.

come inactive primarily due to the scaling down of Group
Normalization parameters. Our core research question ex-
plored whether this suppression is a beneficial optimization
or a detrimental artifact.

Key Findings. Our experiments, involving fine-tuning on
ImageNette-256, CIFAR-10, and Google Fonts, demon-
strated that:

e Channel suppression is highly data-dependent, with
simpler, low-entropy datasets like Google Fonts ex-
hibiting more extensive suppression (qualitatively sup-
ported by activation grids like those in Figure 2).

* Our “gentle nudge” intervention, designed to reacti-
vate suppressed channels, modestly improved recon-
struction quality (MSE, PSNR, SSIM) on complex nat-
ural image datasets (ImageNette-256 and CIFAR-10).
This suggests that for such data, some channel sup-
pression might be premature or limit representational

capacity.

 For the low-entropy Google Fonts dataset, the nudge
intervention did not improve reconstruction but did
lead to a better (lower) KL divergence. This implies
that for simpler data, aggressive channel suppression
might be an effective learned regularization or special-
ization strategy.

These results suggest that the functional role of channel sup-
pression is context-dependent. It may be a beneficial form
of learned pruning for simpler data distributions but could
represent a loss of useful capacity for more complex data.

Limitations. This study is based on the SDXL-VAE ar-
chitecture and a specific ”gentle nudge” intervention strat-
egy. The findings might vary with other VAE architectures
or different intervention techniques. While we qualitatively
analyze channel activity, a deeper quantitative analysis of
the specific features learned by reactivated channels is war-
ranted.

Future Work. Several avenues for future research
emerge:

* Developing more sophisticated, adaptive intervention
strategies, perhaps guided by information-theoretic
measures or the specific characteristics of the dataset.

* Employing advanced interpretability methods to pre-
cisely identify the functional roles of suppressed and
reactivated channels.

* Investigating the impact of channel suppression and
nudging on the downstream performance of diffusion
models that utilize these VAEs.

» Exploring whether these learned suppression patterns
can inform explicit, structured pruning techniques for
more efficient VAEs.



* Formally connecting the observed phenomena to con-
cepts like the Lottery Ticket Hypothesis or information
bottleneck principles.

In summary, our work provides initial evidence that
learned channel suppression in large VAEs is a nuanced,
data-dependent process. Understanding and potentially
controlling this phenomenon offers a promising direction
for developing more robust, efficient, and adaptable gener-
ative models.

Ethical Considerations

The computational resources for this project—including
model training and experimentation—were utilized respon-
sibly. Training was conducted on an NVIDIA RTX 5090
GPU, with the total energy consumption for the presented
experiments estimated at approximately 16 kWh. This en-
ergy was sourced primarily from renewable solar panel
generation, thereby minimizing the carbon footprint as-
sociated with the computational work. All datasets used
(ImageNette-256, Google Fonts, CIFAR-10) are publicly
available, widely adopted in academic research, and do not
contain personally identifiable information or inherently bi-
ased content that would raise immediate ethical concerns
within the scope of this VAE architecture study. Our re-
search focuses on understanding internal model dynamics
and does not involve applications with direct societal im-
pact that would necessitate a broader ethical review at this
stage.

Author Contributions

Oleg Roshka proposed the initial research idea, devel-
oped the core training and evaluation pipeline, and imple-
mented the channel classification, intervention handler, and
Logit Lens visualization components. Zezhi Wang imple-
mented the mechanisms for gathering detailed dead neu-
ron statistics and contributed to the design and implemen-
tation of the per-channel activation grid visualizations. Eu-
genie Shi conducted research into various data augmenta-
tion techniques and explored alternative analytical methods
that could complement our primary investigation, contribut-
ing to the breadth of our background research. All authors
collaborated closely on debugging, refining the experimen-
tal setup, analyzing results, and writing this report. This
project was a significant team effort, with numerous discus-
sions leading to improvements in methodology and inter-
pretation.

Code Availability

The source code for this project, including the im-
plementation of the VAE wrapper, tracking mechanisms,
classifier, intervention handler, and Logit Lens, is pub-

licly available on GitHub at: https://github.com/
olegroshka/vae-channel-dynamics.
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