
ChessMates: How good are VLLMs at Chess?

Rahul Chand
Stanford

rahulsc@stanford.edu

Abstract

In this project, I explore the capabilities of open-source
Visual Large Language Models (VLLMs) at chess. VLLMs
have shown impressive performance across various bench-
marks from visual question-answering to image captioning
and understanding. Though this is impressive, such bench-
marks often either fail to test fine-grained visual percep-
tion of VLLMs or their reasoning capabilities. On the other
hand, playing chess requires both a fine-grained visual un-
derstanding of the board and also good reasoning capabil-
ities to select the best moves. Therefore, this project aims to
quantify how good current open-source VLLMs fare at this
challenging benchmark. Github: https://github.
com/RahulSChand/chess_vlm

1. Introduction
Vision Large Language Models (VLLMs or VLMs)

[2] have shown impressive performance across variety of
benchmarks from visual question answering (i.e. given an
image, answer question such as describing the objects in it),
OCR (i.e. given a text-rich image correctly transcribe the
contents) and reasoning (i.e. solve a puzzle or math problem
in the form of an image). Though this is impressive, these
tasks often test one of two things (1) The fine-grained per-
ception ability of VLLMs, that is, how good and accurately
it can pick up the details in the image or (2) Reasoning in
visual space.

Chess is a game which requires both a fine-grained visual
understanding to figure out which board pieces are on which
squares and deep reasoning ability to figure out what the
next move should be. Moreover, chess is a widely popular
game played by millions. This makes it both an interesting,
and more importantly a challenging benchmark to test the
ability of VLLMs. On a high level, this project aims to
answer the following questions

(1) How good are off the shelf VLLMs at chess.
(2) What is the increase in performance you can get via

standard fine-tuning (either full or LoRA [7])
(3) In img-to-img scenario, do autoregressive models

img-to-img models perform better than diffusion models.

2. Literature Review and Background

VLLMs: The emergence of LLMs [3] has revolution-
ized the field of AI. LLMs are autoregressive models based
on transformer architecture trained on a huge corpus of
data. LLMs exhibit impressive few-shot and zero-shot abil-
ity, that is, ability to perform well on tasks either not seen
during pre-training or perform reasonably well after pro-
vided just a few examples. Vision Large Language Models
(VLLMs) extend the strength of LLMs to images. VLLMs
are often trained by tokenizing images into patches (similar
to ViT [4]) and then projecting both image tokens (patches)
as well as text tokens to a shared space. The model is then
trained in a similar autoregresive fashion like other LLMs.

Past few years has seen the release of a number of
VLLMs capable of strong visual reasoning such as GPT-
4V, Gemini, Claude and Llama. Additionally, a number of
open-source VLLMs (some of which are of direct interest to
us since we will test them in this project) such as CogVLM
[15], Pixtral [1], LlaVA [9], SmolVLM [11].

VLLM Benchmarks and Game Playing: There is a
large existing literature around benchmarking of VLLMs,
this section tries to provide a rough overview.

(i) Visual text understanding: Testing VLLMs ability to
extract and understand visual concepts. TextVQA [14],
DocVQA [12].

(ii) OCR: Fine-grained transcription of text in imgs.
MM-Vet [17], OCRBench [5].

(iii) Visual reasoning: Ability to reason in both logic and
visual space. MathVista [10], GQA [8].

(iv) Image generation: Ability to generate images based
on text description. GenEval [6]

Apart from these there is a long history of benchmarks
and models around “AI playing games”, e.g. the fa-
mous Deep Blue which beat Kasparov, AlphaGo that beat
Lee Sedol (move 43), AlphaZero which is super-human at
chess beating engines like stockfish and OpenAI Five, an
AI model that competed at Dota (before OpenAI became
closed AI).

4321

https://github.com/RahulSChand/chess_vlm
https://github.com/RahulSChand/chess_vlm

Figure 1. Input image of shape 384x384 and label (right). The label is created using the following convention. Empty squares: 0. White
pieces: Pawn=1, Knight=2, Bishop=3, Rook=4, Queen=5, King=6. For Black, its the same except with a negative sign. The best move of
black pawn capturing white’s horse (fxe4) is shown in green.

3. Methodology

This section covers the datasets, models and methods
used for exploring performance of VLLMs on chess.

3.1. Dataset

Perceive task: In this task, I benchmark VLLMs on
their ability to correctly read the board positions. Though
there are existing chess datasets available, I decided to cre-
ate my own dataset primarily so that I can control the dif-
ficulty of the benchmark. To create the dataset, I use the
python-chess library and PyQt and randomly place the
32 chess pieces on the board. The board positions and label
are shown in Figure 1. The training dataset has 1024 posi-
tions and evaluation has 128. The evaluation code for this
task is provided in the final “Additional detials” section.

Best move task: For the task of predicting the next
best moves, I first simulate a random number of legal moves
(between 1 to 40) and then use stockfish to find the
next best moves from that position. If I have played an even
number of moves then the next position would be played
by White and otherwise Black. I store this information and
provide it as part of the prompt (i.e. tell the model if its
playing as white or black). The labels (best moves) are in
SAN format, e.g. in Figure 1, the best move for Black is
for the pawn to take the white’s horse. This is represented
in SAN as fxe4. I generate top 10 moves for each position.
Similar to above train-test split is 1024 and 128.

Why are the datasets so small? Due to a combination

of different factors: task difficulty, dataset being extremely
representative with low bias, task and learning difficulty.

3.2. Method

Architecture: For all my experiments, except the final
ones, I use autogressive VLMs shown in Figure 2. VLMs
typically take the input image, tokenize it into patches, often
using ViT, (e.g. SmolVLM creates patches of size 14x14)
and converts these patches into a shared embedding space
with the text tokens (which are tokenized using their own
tokenizer). Imagine a 140x140 input image and a text “De-
scribe the image”, we get a (103, D) input (100 tokens for
the image and assuming each word in the text is tokenized
separately). This is passed into the decoder (typically a
Language Model) which then autoregressively produces the
output (“Image of a car”).

The models are trained using the logprob loss (which in-
creases the probability of the desired token), it can be writ-
ten as,

L = −
N∑
i=1

log pθ(yi | x, y<i) (1)

Where yi is the token we want to predict in the ith posi-
tion. x is made of both the image tokens and the text tokens.
Typically when supervise finetuning VLMs, we don’t want
to train over the prompt, only on the completion. There-
fore the above equation seperates x (prompt + image) and
y (completion). This is accomplished by passing -100 as

4322

label. The more the model gives the correct tokens higher
probability, the lower −log(p) is.

Figure 2. Autoregressive VLM architechure. Picture taken from
the great Lilian Weng blog. In case of QwenVLM, the “Self-
Attention Layers” is a whole LLM (Qwen LM).

Evaluation: I use a mix of open-source (SmolVLM2-
2.2B-Instruct, llava-1.5-7b-hf, Qwen2-VL-7B-Instruct,
Pixtral-12B, llama-3.2-11b-vision) and closed-source
models (GPT-4.1-mini and GPT-4.1).

For evaluation, I pass board position as input and parse
the output into a 8x8 matrix for “Perceive” task and extract
the SAN notation string for the “Best move“ task.

Finetuning: For finetuning, I work with only
SmolVLM2-2.2B-Instruct, llava-1.5-7b-hf, Qwen2-VL-
7B-Instruct since other models are either too big or too
expensive to SFT. For all experiments, I do full SFT (no
lora) and mask the prompt + input image during SFT loss.

Qualitative Analysis: For the third part of the project,
I try to see if given a board image can a image-to-image
model generate what the board would look like after the best
move was played. I qualitatively compare how diffusion
based models (stable-diffusion-xl-refiner) perform com-
pared to auto-regressive/mixed architechure (GPT-4o image
generation).

4. Results
4.1. Perceive task (Table 1)

What does the † legend mean, and how to interpret
the results of SmolVLM/llava?

† indicates that the model outputs the initial (starting)
chessboard position (provided as an example in the prompt

Model Accuracy
SmolVLM 2.2b 7.2†

llava-7b-hf 7.2†

Qwen2.5 7b VL 6.3
Llama 13b 2.0
Pixtral 12b 4.5
SmolVLM 2.2b + SFT 7.8
llava-7b-hf + SFT 0.0
Qwen2.5 VL + SFT 100
GPT-4.1-mini 57.3
GPT-4.1 32.7

Table 1. Perceive task accuracy. Some results are suprising and
counter-intuitive (e.g. Why SFT makes it worse sometimes while
for Qwen makes it perfect?). I provide a thorough explanation in
the “Analyzing Results” setction. † means output is constant.

Prompt Link) for most or all test images. This happens be-
cause (i) These VLMs (like SmolVLM) cannot distinguish
subtle differences between board images and overall ”see”
each input as just the same chessboard (ii) They are poor
at instruction following. As a result, their outputs are of-
ten either invalid (unparsable) or simply repeat the prompt
example matrix. However, since the initial chess position
shares many pieces with most test positions (e.g., always 8
white pawns), this constant output alone gives a non-trivial
baseline accuracy (∼7%).

Why do better models like Qwen2.5 perform worse?
Qwen2.5 is better at differentiating between input im-

ages and does not just copy the prompt. It attempts to gen-
erate a new 8x8 matrix for each board, reflecting some level
of understanding. However, its outputs are often imperfect
(e.g., too many kings, too few pawns), leading to lower
accuracy under strict evaluation, even though the outputs
are more responsive to the input. In contrast, models like
SmolVLM, by always outputting the initial board, “acci-
dentally” match the correct pieces more often due to overlap
with the test data, despite not actually “seeing” the input.

What about Llama/Pixtral?
Although Llama and Pixtral are best in their class, my re-

sults (available in the GitHub repo) show they have similar
limitations as Qwen. They can distinguish different board
images, but their outputs are often similarly flawed (e.g.,
missing pawns, not outputting black pieces etc.). Llama, in
particular, makes frequent formatting errors, such as incor-
rect or missing brackets, requiring lot of manual cleaning.

Results on closed source models
I evaluated GPT-4.1 (strongest general VLM) and GPT-

4.1-mini. Both achieved relatively high accuracy, with mini
surprisingly outperforming the full version. However, even
these models (likely with 100B+ parameters) fail to cross
60% accuracy, highlighting the difficulty of this task.

How does SFT help? Qwen is 100% ??

4323

https://lilianweng.github.io/posts/2022-06-09-vlm/

SFT (Supervised Fine-Tuning) training curves in the Ap-
pendix. I also provide more disucssion about it in the
“Training Dynamics” section. After SFT, SmolVLM shifts
from repeating the same board to predicting from a small
set of boards configurations, suggesting it struggles with the
task and settles on a handful of ”modes” to minimze its loss.
For llava, SFT made outputs unstable and unparsable (e.g.,
missing/extra brackets, wrong matrix sizes etc.).

Qwen after SFT performs the best, achieving perfect ac-
curacy on the test set. I verified that no test board matches
any training board. Notably, Qwen’s training dynamics
resemble “grokking-like” [13] phase transition behavior,
which I discuss in detail later.

Model Top-1 Top-3 Top-5 Top-10
SmolVLM 2.2b 7.08 14.96 21.25 29.99
llava 7b hf 7.08 11.02 13.38 18.89
Qwen2.5 7b VL 11.81 18.89 24.40 34.64
Llama 13b vision 2.00 3.90 5.40 7.03
pixtral 12b 7.81 14.06 17.90 27.30
SmolVLM + SFT 4.72 4.72 5.51 7.08
Qwen2.5 + SFT 3.90 14.06 15.625 18.75
GPT-4.1-mini 20.40 33.80 42.50 54.00
GPT-4.1 43.75 64.00 73.00 78.57

Table 2. Best move prediction. Top-k here equals to if my pre-
dicted move was in the top k best moves according to stockfish la-
bel. Again results are suprising, I provide an explanation of what
is happening in the resutls section.

4.2. Best move task (Table 2)

How to read the table?
Top-1 and Top-3 metrics are the most meaningful. Top-

5 and Top-10 scores are often inflated because, in most
mid-game positions, common moves like advancing cen-
tral pawns (e.g., e4, d4) are frequently among the top op-
tions. As a result, even models that repeatedly suggest such
moves can achieve relatively high Top-10 accuracy, making
this metric less meaningful.

Performance of open-source models
As with the perceive task, smaller models tend to pro-

duce only a few distinct outputs across all positions (see
Table 3). For instance, on 128 test images, SmolVLM’s re-
sponses are limited to just e4, d4, e5, d5. Since central pawn
moves are often reasonable, this yields non-trivial accuracy.
The same pattern holds for llava. Qwen is even more re-
stricted, choosing only between e5 and e4, but is better at
selecting which to use when.

Llama-13b-vision outputs are often unparseable, be-
cause it frequently produces multiple SAN strings or exces-
sive CoT tokens, leading to poor performance. Pixtral, in
contrast, gives correctly formatted answers with reasoning,
but its predictions rarely match the ground truth.

Results on closed source models
GPT-4.1 performs best, in this case as expected bet-

ter than GPT-4.1-mini. Most GPT-4.1 outputs are without
CoT reasoning, so prompting for a step-by-step solutions
might further improve results. I am slightly suprised by the
nearly 45% accuracy, as I had imagined this task to be much
tougher. A more challenging benchmark would be to use
games played by grandmasters, where moves are less trivial
and predictable, this would better test model capabilities.

What about SFT? Why does it not work?
SFT on both SmolVLM and Qwen actually reduces per-

formance. For SmolVLM, SFT causes the model to set-
tle on new “modes” (e.g., always predicting h6, Nxd4, e4),
which perform worse than the previous “central pawn push-
ing” outputs. This drop occurs even as training loss de-
creases. The reasons for this, and for Qwen’s results, are
discussed in the next section

Prompt for Perceive task

You are a Vision Language Model specialized in in-
terpreting data from chess board images. Your task
is to accurately describe the chess board position in
the image using a 8x8 grid output. Each type of
chess piece, both black and white, is represented by
a unique number:
Empty squares: 0
White pieces: Pawn=1, Knight=2, Bishop=3,
Rook=4, Queen=5, King=6
Black pieces: Pawn=-1, Knight=-2, Bishop=-3,
Rook=-4, Queen=-5,King=-6
From the provided chessboard image, convert the
visible board into this 8x8 matrix format. For exam-
ple, the initial chess position would be represented
as:
[[-4, -2, -3, -5, -6, -3, -2, -4],
[-1, -1, -1, -1, -1, -1, -1, -1],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0],
[1, 1, 1, 1, 1, 1, 1, 1],
[4, 2, 3, 5, 6, 3, 2, 4]]
Ensure that your output strictly follows this format

Prompt for Best Move task

You will play as white in this position.
Return the move in SAN notation. Return the move
in the following format boxed{move}. For exam-
ple, if the best move is e4, return boxed{e4}
Answer:

4324

5. Training Dynamics and Analysis
What is happening with SFT?
Recall, that these models are trained using the next token

prediction negative logprob loss.

L = −
N∑
i=1

log pθ(yi | x, y<i) (2)

Here, pi denotes the model-assigned probability of
the correct token at position i. As shown in Figure 3,
SmolVLM’s loss decreases and eventually saturates around
0.01. However, as the loss decreases, the model contin-
ues to produce only a single output for all inputs, effec-
tively getting stuck in one “mode”. This occurs because
the model can reduce its loss by increasing the probability
of, for example, the token “0,” without ever making it the
most likely token. Thus, the loss drops even though the pre-
dictions remain incorrect. My hypothesis is that, due to its
visual backbone’s inability to distinguish input images, the
model becomes trapped in a “basin” of the loss landscape.
SmolVLM fails to get out of this basin.

Figure 3. Loss curve for SmolVLM SFT on perceive task. The loss
saturated at around 0.01

For Qwen, the loss is shown in Figure 4. Here the model
suffers from similar problem as SmolVLM until it suddenly
has a “groking-like” phase transition [13] and comes out
of the basin, once it does that it is able to produce different
outputs for different images, is not stuck in a set of “modes”
and also the loss decrease rapidly and saturates few steps
after. Infact, evaluating the model just before and after this
“grokking-like” phase transition step, results in a large dif-
ference in accuracy. Its as if the model suddenly learns. I
see the same behavior for Qwen 7b across different runs.

What about SFT for best move?
Why does SFT not work for the best move task then?

First, the task in inherently more difficult than transcribing
board positions. I don’t discuss SmolVLM here since if that
model can’t learn to transcribe board pieces using SFT then

Figure 4. Loss curve for Qwen 7b VL on perceive task compared
to SmolVLM. Notice the sudden sharp drop around step 200.
Though not clear from the image, the loss for red becomes much
smaller (0.00001) as compared to green (0.01)

Model Unique Frequency
GT 99 Too Long
SmolVLM 4 {‘e4’:6, ‘d4’:18, ‘d5’:102, ‘e5’:2}
+ SFT 3 {‘e4’:22, ‘Nxd4’:94, ‘h6’:12}
Qwen7b 2 {‘e4’: 53, ‘e5’: 75}
+ SFT 44 Too Long

Table 3. Diversity and frequency of model outputs before and after
SFT. GT = Ground Truth. Unique = Number of unique outputs for
the test set which has 128 images. Frequency = How the outputs
are distributed. So for Qwen7b (before SFT) it only outputs either
e4 or e5 for all the 128 input images. Using e4 53 times and e5 75
times. This shows have models have these “modes” they are stuck
in

what hope does it have to learn the best move. The orignal
Qwen VL loss graph for SFT is shown in Figure 5. As we
can see from the figure, the loss remains huge and decreases
only slightly.

To understand why, I decided to see what happens if I
train on a smaller training set. I ran Qwen on 8, 16, 32 and
64 datapoints. The results for which are shown in Figure 8.
One thing to observe here is that it takes longer and longer
for the model to overfit (or get a reasonably low loss). It
takes 39 epochs for 16 points, 95 epochs for 32 points and
441 (!!) epochs for 64 points.

This suggests to me that the model’s difficulty goes be-
yond simply needing more data or training time. Predict-
ing the best move requires not only accurate recognition of
the board but also a strategic reasoning on top of it, which
the model is not capable of. Moreover, the supervision is
sparse, in the sense that the label is only made of at most
2-3 tokens. And there is little overlap between the structure
of the different labels (e.g. a slight change in board position
will result in a completely different best move whereas for

4325

Figure 5. Loss curve for Qwen SFT on best move task. The model
never has a “grok-like” phase transition. The loss saturates quickly
and the model gives only a few set of outputs for all inputs.

the perceive task the labels remain largely similar). There-
fore each gradient update pushes the model in different di-
rection, so much so that it takes 400+ epochs to even overfit
on 64 points.

6. Image to Image models
For my final experiments, I qualitatively test if img-to-

img models can do the following
(i) Given a chess board image input produce what the

board will look like if the best move was played.

Figure 6. (Left) Input image. (Right) Output of diffusion model
when asked to produce how the board will look like after the
best move by black has been played. Diffusion can’t reason, just
produces the same image with slightly different style on pieces.
Please note the green arrow is not part of input just for demonstra-
tive purpose.

7. Conclusion and Future Work
For this project I wanted to see how VLMs fare at chess.

From my experiments these are some of my takeaways
(i) Open source VLMs, specifically smaller ones still

have some way to go. Small VLMs consistently performed

Figure 7. (Left) Input image. (Right) Output of GPT-4.1 when
asked to produce how the board will look like after the best move
by black has been played. GPT-4.1 suprisingly actually works.
Though it destroys some other board pieces such as the black
queen at c7 is replaced by a rook.

poor and apart from Qwen VL were also unstable to train.
Moreover, training VLMs on task that require both preci-
sion and reasoning is really challenging.

(ii) Closed source models such as GPT-4.1 simultane-
ously show surprisingly strong (better than average human)
performance (such as predicting the best move ∼45% of
time) while also showing worse than human performance on
the transcribing board position task (an average human can
easily get 100% on this while GPT-4.1 only gets ∼40%).

This is a sign of the times we are living in and has been
noted as Moravec’s Paradox (“It is comparatively easy to
make computers exhibit adult level performance on intel-
ligence tests, and difficult or impossible to give them the
skills of a one-year-old when it comes to perception and
mobility”)

Future work: Apart from creating better robust bench-
marks (such as the idea of using board positons from grand-
master games), this project’s future work involves (given the
compute resources) testing how bigger open source VLMs
fare, such as finetuning Pixtral models. Also a more thor-
ough investigation into the SFT training observations made
in previous sections would also be interesting.

8. Hyper Parameters and Appendix
def eval(pred, gt):

gt is ground truth.
pred is predicted output
Both are 8x8 numpy arrays.
mask = gt != 0 # non-zero mask
correct = pred[mask] == gt[mask]
acc = np.mean(correct)
return acc

9. Contributions & Acknowledgments
During the literature review I found out that a recently

published paper in ICLR’25, “ARE LARGE VISION LAN-

4326

Figure 8. Comparison of how long it takes for Qwen 7b VL to get a reasonably low loss on different sized datasets (of sizes 8, 16, 32 and
64).

Value
LR 5e-5
Batch size 8
Optimizer Adam
precision bfloat16
warmup ratio 0.03
LR Scheduler constant

Table 4. SFT hyper-paramters. I use different epochs. For both
SmolVLM and Qwen were traiend for 10 epochs for the perceive
task and for 50 epochs for the best move task.

GUAGE MODELS GOOD GAME PLAYERS?” [16]. To
be fair, I provide how my project differs from them.

[16] also explores VLLMs ability at different games in-
cluding chess. Parts of this paper therefore borrow from it
(particularly their chess UI code to help generate dataset:
Github link). For sake of fairness, I describe how this
project differs from it

(1) Biggest difference is this project finetunes VLLMs
for tasks such as reading the board and finding the best
move to see the improvement over off-the-shelf VLLMs,
whereas [16] doesn’t finetune any models.

(2) [16] has 2 chess tasks, reading the board, finding a
legal move. This paper introduces another task of finding
the best move.

(3) [16] strictly studies Img-to-Text models (models that
can read both text and image but only output text). This
paper takes it a step further and does a brief study on Img-
to-Img models.

All the training and evaluation was done with the help
and generosity of the GPUs on the SAIL cluster.

References

[1] P. Agrawal, S. Antoniak, E. B. Hanna, B. Bout, D. Chap-
lot, J. Chudnovsky, D. Costa, B. D. Monicault, S. Garg,
T. Gervet, S. Ghosh, A. Héliou, P. Jacob, A. Q. Jiang,
K. Khandelwal, T. Lacroix, G. Lample, D. L. Casas,
T. Lavril, T. L. Scao, A. Lo, W. Marshall, L. Martin,
A. Mensch, P. Muddireddy, V. Nemychnikova, M. Pellat,
P. V. Platen, N. Raghuraman, B. Rozière, A. Sablayrolles,
L. Saulnier, R. Sauvestre, W. Shang, R. Soletskyi, L. Stew-
art, P. Stock, J. Studnia, S. Subramanian, S. Vaze, T. Wang,
and S. Yang. Pixtral 12b, 2024.

[2] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin,
C. Zhou, and J. Zhou. Qwen-vl: A versatile vision-language
model for understanding, localization, text reading, and be-
yond, 2023.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan,
P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell,
S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter,
C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess,
J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever,
and D. Amodei. Language models are few-shot learners,
2020.

[4] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale, 2021.

[5] L. Fu, B. Yang, Z. Kuang, J. Song, Y. Li, L. Zhu, Q. Luo,
X. Wang, H. Lu, M. Huang, Z. Li, G. Tang, B. Shan, C. Lin,
Q. Liu, B. Wu, H. Feng, H. Liu, C. Huang, J. Tang, W. Chen,
L. Jin, Y. Liu, and X. Bai. Ocrbench v2: An improved bench-
mark for evaluating large multimodal models on visual text
localization and reasoning, 2024.

4327

https://github.com/xinke-wang/LVLM-Playground

[6] D. Ghosh, H. Hajishirzi, and L. Schmidt. Geneval:
An object-focused framework for evaluating text-to-image
alignment, 2023.

[7] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang,
L. Wang, and W. Chen. Lora: Low-rank adaptation of large
language models, 2021.

[8] D. A. Hudson and C. D. Manning. Gqa: A new dataset for
real-world visual reasoning and compositional question an-
swering, 2019.

[9] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning,
2023.

[10] P. Lu, H. Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi,
H. Cheng, K.-W. Chang, M. Galley, and J. Gao. Mathvista:
Evaluating mathematical reasoning of foundation models in
visual contexts, 2024.

[11] A. Marafioti, O. Zohar, M. Farré, M. Noyan, E. Bakouch,
P. Cuenca, C. Zakka, L. B. Allal, A. Lozhkov, N. Tazi,
V. Srivastav, J. Lochner, H. Larcher, M. Morlon, L. Tunstall,
L. von Werra, and T. Wolf. Smolvlm: Redefining small and
efficient multimodal models, 2025.

[12] M. Mathew, D. Karatzas, and C. V. Jawahar. Docvqa: A
dataset for vqa on document images, 2021.

[13] A. Power, Y. Burda, H. Edwards, I. Babuschkin, and
V. Misra. Grokking: Generalization beyond overfitting on
small algorithmic datasets, 2022.

[14] A. Singh, V. Natarajan, M. Shah, Y. Jiang, X. Chen, D. Batra,
D. Parikh, and M. Rohrbach. Towards vqa models that can
read, 2019.

[15] W. Wang, Q. Lv, W. Yu, W. Hong, J. Qi, Y. Wang, J. Ji,
Z. Yang, L. Zhao, X. Song, J. Xu, B. Xu, J. Li, Y. Dong,
M. Ding, and J. Tang. Cogvlm: Visual expert for pretrained
language models, 2024.

[16] X. Wang, B. Zhuang, and Q. Wu. Are large vision language
models good game players?, 2025.

[17] W. Yu, Z. Yang, L. Li, J. Wang, K. Lin, Z. Liu, X. Wang, and
L. Wang. Mm-vet: Evaluating large multimodal models for
integrated capabilities, 2024.

4328

