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Abstract

Fashion inspiration is increasingly shaped by online
visual media, yet participating in aesthetic-driven fash-
ion communities remains financially inaccessible for many
due to the high cost of designer clothing. We propose a
computer vision system that identifies affordable alterna-
tives to high-end fashion by learning multimodal embed-
dings of clothing images and text descriptions. Using the
DeepFashion-MultiModal dataset, we train and evaluate
several embedding models (linear, CNN/LSTM, and fine-
tuned ResNet/DistilBERT) alongside a multi-label classi-
fication pipeline to predict shape, fabric, and color at-
tributes. We explore both cosine similarity and Goodall dis-
tance to assess embedding quality and test two recommen-
dation strategies: one based on nearest-neighbor search in
the learned embedding space, and another using classifier-
predicted attributes. Expert human raters evaluated the sys-
tem’s recommendations, showing a strong preference for
the embedding-based approach. Our results suggest that
multimodal representations can successfully capture nu-
anced style features, offering a scalable solution for democ-
ratizing access to fashion trends.

1. Introduction

The digital revolution has transformed the fashion land-
scape, with social media platforms catalyzing unprece-
dented growth in trend visibility and consumption. Fash-
ion communities flourish across platforms like Instagram,
TikTok, and Pinterest, creating vibrant micro-communities
centered around specific aesthetics and designers. However,
genuine participation in these spaces often faces a signif-
icant financial barrier: designer and luxury items remain
prohibitively expensive for most consumers, even as their
cultural visibility reaches an all-time high.

In response, demand for affordable fashion has surged,
shaping both commercial platforms and social conversa-
tions in the fashion world. Long-standing secondhand
clothing marketplaces like Poshmark, Depop, and Vinted
have reached new levels of popularity, while niche plat-
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forms like Grailed have carved out spaces for avant-garde
resale. An entire genre of content has emerged around sec-
ondhand shopping, especially among Gen Z creators, who
vlog thrift hauls, resell curated finds, and offer styling tips
rooted in affordability. These trends are influenced not just
by economic conditions, but also by a strong sense of nos-
talgia, with styles like Y2K and *70s flared pants seeing re-
newed attention. Despite decades-long advances in visual
search technology, such as Google reverse image search or
Pinterest, most existing systems are limited in scope. These
platforms are often not fashion-specific and return images
from runway shows or old listings for clothes no longer
available for purchase. When they do return viable fashion
alternatives, they tend to be either in the same luxury tier,
which is inaccessible to the consumer, or fast fashion alter-
natives like Shein that are poor quality and environmentally
damaging.

Machine learning has become an increasingly important
tool in the fashion industry. Computer vision models are
used for trend forecasting, recommendation systems per-
sonalize shopping experiences, and visual search tools help
users find similar products from photos. While these tech-
nologies improve convenience, few of them meaningfully
address the affordability gap between aspirational fashion
and realistic access. Visual search might show similar
silhouettes, but the recommendations are often within the
same price bracket or from brands outside a user’s budget.
Our project goal is to build a system that identifies budget-
friendly alternatives with similar aesthetic properties. We
separate this problem into two tasks: building a system to
identify alternatives, and deploying the system on budget-
friendly, second-hand websites. Based on the scope of
CS231N and the timescale of the project, we decided to fo-
cus on the first task.

We approach this problem not just as technologists, but as
fashion enthusiasts who believe that style shouldn’t be lim-
ited by price point. As Gen Z reshapes the fashion economy
through secondhand markets, upcycling, and online com-
munities, there is growing demand for tools that reflect how
people actually engage with clothes. By bridging fashion
inspiration and affordability, we hope to make trend partici-



pation more inclusive and reflective of how people actually
discover and wear clothes today.

2. Related Work

Recent advances in multimodal representation learning
have significantly shaped the landscape of fashion retrieval
systems, enabling both practical applications and futuristic
tools. For example, a study by Park and colleagues [1] fo-
cused on improving instance-level visual search within out-
fit images using convolutional neural networks (CNNs) and
a combination of categorical and instance-level loss func-
tions. Their goal was to retrieve exact product matches un-
der varying poses and lighting conditions. In contrast, our
system will emphasize stylistic similarity rather than exact
duplication, using attribute-based evaluation to capture spe-
cific visual details like sleeve length or neckline.

More recent transformer-based approaches such as Fashion-
VLP [2] expand fashion retrieval into interactive scnearios.
FashionVLP enables users to iteratively refine their search
using natural language, combiding image embeddings with
user input in a unified transformer framework. While this
study optimized retrieval accuracy for commercial, dialog-
based applications, our system will use a static query inter-
face with a focus on visual and textual similarity.

The work of Moro et. al [3] proposes a more scalable
solution to multimodal retrieval by decoupling image and
text embeddings through a two-stage process: pretraining a
vision-language transformer (ViT) and then applying deep
metric learning (DML) to map each modality into a shared
latent space. Their architecture avoids paired inference at
test time and supports fast approximate k-nearest-neighbor
search. Our project adopts a similar efficiency principle,
using cosine similarity in a precomputed embedding space,
but we incorporate interpretability through a classifier that
outputs shape, fabric, and color attributes. This enables us
to evaluate embedding quality not only by cosine distance,
but also by how well the clusters align with meaningful vi-
sual categories.

Similarly, Chia et al. [4]] introduced FashionCLIP, an adap-
tation of OpenAl’s CLIP model [5] trained on fashion-
specific image-text pairs to support zero-shot image re-
trieval and classification. Inspired by this work, we will use
a contrastive loss function to align visual and textual modal-
ities. However, while FashionCLIP was meant to learn a
general-purpose fashion representation, we will focus on
task-specific tuning for finding affordable alternatives.
Beyond technical papers, creative projects such as day-
dream.ing [6] have pushed the boundaries of fashion de-
sign with machine learning. Using diffusion models and la-
tent text-image embeddings, daydream.ing generates novel
fashion visuals from text-based prompts. While they are
not a retrieval system, this company shares our interest in
democratizing fashion and highlights how Al can reshape

visual culture.

Overall, these works illustrate the spectrum of vision-
language systems in fashion, from scalable architectures to
generative artistry. We will attempt to unify some of these
findings, such as contrastive embedding and multimodal re-
trieval, to enable affordable fashion discovery.

3. Data

We are using the DeepFashion-MultiModal dataset [7]]
to train and test our embedding models and classification
models. This dataset includes 43,497 high-resolution
human images with manual annotations of attributes for
clothes’ shapes, fabrics, and colors. The annotations are
defined as follows, where ‘NA’ means the image does not
contain the corresponding category:

Shape Annotations:

0. sleeve length: O sleeveless, 1 short-sleeve, 2 medium-
sleeve, 3 long-sleeve, 4 not long-sleeve, 5 NA

1. lower clothing length: O three-point, 1 medium short, 2
three-quarter, 3 long, 4 NA

2. socks: 0 no, 1 socks, 2 leggings, 3 NA

3. hat: Ono, 1 yes, 2 NA

4. glasses: 0 no, 1 eyeglasses, 2 sunglasses, 3 have a
glasses in hand or clothes, 4 NA

5. neckwear: 0 no, 1 yes, 2 NA

6. wrist wearing: 0 no, 1 yes, 2 NA

7. ring: O no, 1 yes, 2 NA

8. waist accessories: 0 no, 1 belt, 2 have a clothing, 3
hidden, 4 NA

9. neckline: 0 V-shape, 1 square, 2 round, 3 standing, 4
lapel, 5 suspenders, 6 NA

10. outer clothing a cardigan?: 0 yes, 1 no, 2 NA

11. upper clothing covering navel: 0 no, 1 yes, 2 NA

Fabric Annotations:
0 denim, 1 cotton, 2 leather, 3 furry, 4 knitted, 5 chiffon, 6
other, 7 NA

Color Annotations:
0 floral, 1 graphic, 2 striped, 3 pure color, 4 lattice, 5 other,
6 color block, 7 NA

The dataset is sufficiently large that image augmentation
is unnecessary. The images are scaled to 224x224 pixels
and normalized. The textual captions are then padded to the
max sequence length.

4. Methods

Recent advances in text-to-image modeling have enabled
users to better find products from searches, but text queries
leave a lot to be desired in a visual medium such as fashion.
When virality is captured in an Instagram post or advertise-



ment, a user’s description may lose details of the image or
be biased by their own preferences. Therefore, we deter-
mined that using an image-based query would allow for a
more objective comparison and search. However, the text
description still provides useful information, so our final
representation of an image is a multimodal representation
of both an outfit’s image and its textual description.

4.1. Embedding

To build these multi-modal representations, we first had
to choose an embedding model to project image-text item
pairs into a shared latent space.

4.1.1 Baseline: Resnet10/DistilBERT-mini

We started by using a pretrained Resnet model [8]],
Resnet10, to embed images, and a pretrained transformer
model, Distilbert-mini [9], to embed textual descriptions.
We then concatenated each of these embeddings to give us
a 1280-dimensional vector for each of 30,448 image-text
pairs in the training set.

4.1.2 Trained Embedding Models

Next, we trained 3 embedding model types: linear, 2D-
CNN/LSTM, and fine-tuned Resnet1(0/DistilBERT-mini.
We trained the first two models from scratch and fine-tuned
the baseline as our third model. For each embedding model,
we used an 70/20/10 train/validation/test split. We used the
following loss function, inspired by CLIP [3]:
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where:
¢ N is the number of image-text pairs in a batch.

+ Z ¢ R?N*d i the concatenated matrix of image and
text embeddings: the first N rows are image embed-
dings and the next N rows are text embeddings.

e 7 > 0 is the temperature scaling factor.
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is the similarity matrix com-
puted from all pairwise dot products of the embed-
dings, scaled by 7.

¢ S;; is the similarity between the i-th embedding and
itself (its positive pair).

. ngl exp(.9;;) sums over all similarities for the i-th

embedding, including both positives and negatives.

After training each embedding model, 667 training ex-
amples were discarded for not having textual descriptions,
leaving us with a 64-dimensional embedding vector for each
of 29781 image-text pairs in the training set.

4.2. Classification

All classification models are trained with a weighted
cross-entropy loss to account for severe class imbalances
in the labels. The models are trained with a 70/20/10
train/val/test split, and evaluated on loss and per class and
overall accuracy.

The labels that make up the feature vector consist of 11
shape labels, from sleeve length to neckline to whether or
not the navel is covered, a fabric label, and a color label.

4.2.1 Baseline

Our baseline model is a linear regression model. This model
will be made using the SKlearn package, and evaluated
based on accuracy and AUC for each class. A class based
analysis will be performed on the results.

42.2 MLP

Next, we will use a multi-layer perceptron (MLP) [10] on
generated multi-modal embeddings. The model consists of
two blocks of linear layers with a dropout layer, finished
with an multiheaded output layer, one head for each label
to be predicted.

We decided to not experiment with a transformer model
[L1] because we precomputed fused multimodal embed-
dings for our models to use. The power of a transformer
to learn the optimal representation of an input is therefore
unnecessary.

4.3. Embedding Validation
43.1 k-NN

For each embedding vector in the test set, we ran the k-
nearest neighbors algorithm [12] with a distance metric of
cosine similarity, defined as follows:

d
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where:
e u,v € R? are two d-dimensional vectors,
* u - v is their dot product,

* ||ul| and ||v|| are the Euclidean (L2) norms of u and v,
respectively.



We used this algorithm to find the 20 embeddings in the
training set that were the most similar to each test embed-
ding.

4.3.2 Goodall Distance

We wanted to incorporate the ground truth labels into eval-
uating the embeddings. We started by running k-nearest
neighbors on the embeddings, clustering items of clothing
based on their learned representation. Next, we retrieved
the shape, fabric, and color labels for each image in a cluster
and computed the pairwise Goodall distance [13] between
each member.

The Goodall distance is for nominal categorical data, and
it weights matches based on the rarity of a category value.
Matches on rare values are considered more significant than
matches on common ones, making it particularly useful for
our multi-class label vectors with strong class imbalances.
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Here, P;(x;) denotes the empirical probability of observ-
ing category z; in the i-th feature across the dataset. The
distance decreases when matches occur on rare categories,
better capturing the semantic structure of our discrete labels
cosine distance.

Having a lower Goodall distance for a cluster shows that
the articles of clothing in the cluster are more similar based
on their descriptive features, thus a lower Goodall distance
translates to a higher quality embedding.

4.4. Recommendations
4.4.1 Embedding Based Recommendation

Given a user’s image and description of an item, the best
performing embedding model returns a representation. The
reference source, in this case the DeepFashion-MultiModal
dataset, has already been embedded. Then, we return to
the user the top £ = 20 images based on cosine similarity
across the entire dataset.

4.4.2 Classification Based Recommendation

Given a user’s image and description of an item, this will
be converted into an embedding with the same embedding
model as above. However, this will then be passed to the
best performing classifier, which returns a prediction vector.
This prediction will then be compared across the ground
truth shape-pattern-fabric label vector for the dataset, and
then we return to the user this top k£ = 20 images based on
cosine similarity.

We use the classifier here with the hopes of predicting the
features themselves, thus not only giving a higher degree of

interpretability to the resulting recommendations, but with
the hopes of learning additional distinguishing features be-
tween items.

4.4.3 Evaluation

As judging fashion recommendations is nearly impossible
to do algorithmically, we enlisted the help of members of
Stanford FashionX’s executive board to rate 50 images rec-
ommended by each image by quality on a scale of 1-10.
This represents a stand-in for an expert visual diagnostic.
The three judges will each be provided a Google Form of
100 image-caption queries from the dataset, fifty of which
will have recommendations from the embedding-based rec-
ommender and fifty of which will have recommendations
from the classifier based recommender. The judges will be
blind to the model origin. The ratings will then be collected
in a Google Sheet and analyzed.

5. Experiments
5.1. Classification

To correct for class imbalances in many of the labels,
we used a weighted cross-entropy loss that weights based
on the class count versus overall count. We also attempted
to perform a stratified sampling of the dataset so that each
class was equally represented, but that left us without
enough samples to train on.

5.1.1 Linear Regression Model

The linear regression model was trained with the default
sci-kit learn parameters and no regularization.

Sleeve Length | Lower Clothing Length | Socks | Hat

0.333 0.315 0.261 | 0.279

Table 1: Per Label Accuracy (part 1)

Glasses | Neckwear | Wrist Wearing | Ring
0.211 0.247 0.178 0.235

Table 2: Per Label Accuracy (part 2)

Waist Accessories | Neckline | Cardigan

0.191 0.257 0.263 0.231

Table 3: Per Label Accuracy (part 3)

Navel Covered




Overall
0.273

Color
0.451

Fabric Type
0.372

Table 4: Per Label Accuracy (part 4)

5.1.2 Multi Layered Perceptron
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The model was trained for 10 epochs with cross-entropy
loss and an AdamW optimizer [[14] with a learning rate of
le-4. These parameters were tuned manually by iterating
on the model by hand.

Sleeve Length | Lower Clothing Length | Socks Hat

0.7567 0.6648 0.7924

0.6683

Table 5: Per Label Accuracy (part 1)

Neckwear
0.5509

Glasses
0.7193

Wrist Wearing
0.5159

Ring
0.5586

Table 6: Per Label Accuracy (part 2)

Waist Accessories | Neckline | Cardigan

Navel Covered

0.4079 0.6930 0.6769 0.6086

Table 7: Per Label Accuracy (part 3)

Overall
0.6093

Color
0.4607

Fabric Type
0.4567

Table 8: Per Label Accuracy (part 4)

The MLP clearly outperforms the linear regression
model on accuracy, and both of them outperform random
chance. The MLP showed especially strong gains in cat-
egories like sleeve length, neckline, and navel coverage.
However, performance remained lower for visually subtle

or underrepresented labels, such as ring presence or waist
accessories, likely due to persistent class imbalance and
limited visual distinctiveness. Additionally, in many pho-
tos, only parts of the body were visible, with hands espe-
cially missing. This leads to a distinction between some-
thing being predicted as not visible because it is not pos-
sible to be visible and something being predicted as not
visible because it is not there, which is not something our
model accounts for. Only after viewing the recommenda-
tions based on the classified did we realize that the model
only outputs three unique vectors of labels, meaning the
MLP didn’t actually learn the features. Instead, it simply
learned to predict a generic and wide-ranging set of rec-
ommendations that minimizes loss. The only distinction it
appears to be able to make is gender.

5.2. Embedding Validation

5.21 k-NN

For our first experiment on embedding validation, we
computed the cosine similarity between each test embed-
ding vector and its 20 most similar embedding vectors
in the training set. Using these values, we averaged the
cosine similarity across each test embedding’s top-1, top-5,
top-10, and top-20 nearest neighbors. Finally, we averaged
these averages across every embedding in the test set,
yielding the results seen in Figure 2.

Model Top-1 | Top-5 | Top-10 | Top-20
Zero-Shot 0.936 | 0928 | 0.924 0.920
ResNet/DistilBERT

Linear 0.925 | 0.899 0.881 0.859
Fine-tuned 0.803 | 0.776 | 0.761 0.744
ResNet/DistilBERT

CNN/LSTM 0.995 | 0.991 0.989 0.985

Table 9: Avg. embedding similarity at different top-k accu-
racy levels.



Model Avg. Cluster Goodall Distance
Zero-Shot 0.7196
ResNet/DistilBERT

CNN/LSTM 0.6480

Linear 0.6600

Fine-tuned 0.5990
ResNet/DistilBERT

Table 10: Average Goodall distance within clusters for dif-
ferent models
The withheld test set was embedded, then clustered using
k-NN into 40 clusters so each cluster would on average
have 100 samples in it. The labels for these clusters were
then retrieved, and then the Goodall Distance was
calculated.

5.2.2 Goodall Distance
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Figure 1: Distribution of average cluster distances by em-
bedding model

As expected, the larger model size and powerful context of
the fine-tuned transfer learning models led to the best per-
formance, while the generic zero-shot model performed the
poorest. We can also see that when training from scratch,
using models that are better suited to their respective data in
CNNs for images and LSTMs for text outperform the basic
linear model.

Interestingly, the shape of the distribution changes when
using a pretrained model versus training weights from
scratch. We see that the pretrained models have a more
normal distribution whereas when they are trained from



scratch, the models skew left. This is likely because the
pretrained models come with an induced prior over the rep-
resentation space because of their large context, leading to
a spread-out embedding space. Thus, a more normal distri-
bution emerges even with fine-tuning.

5.3. Model Recommendation
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Figure 2: Example top 20 outfit alternative recommenda-
tions for a randomly selected input outfit with embedder-
only method
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Figure 3: Example top 20 outfit alternative recommenda-
tions for a randomly selected input outfit with classifier
method

Method Avg. Rating | Std. Dev. | Max | Min
Embedder 6.8 1.56 9
Classifier 2.2 0.44 5

Table 11: Summary statistics for method ratings.

The embedder-based recommender system was vastly
preferred by the judges to the classification-based recom-

mender system. One judge commented, “The recommen-
dations seem to be based off a single characteristic and not
based on the pieces themselves. Like if a shirt has a scoop
neck and no sleeves and is orange, the model will recom-
mend an image based on one of those characteristics.”

The cause of the performance difference was that the
classifier-based recommender system recommended the
same top items for every query, meaning that the recom-
mendation is not based off of the item at all, meaning the
model isn’t learning how to predict recommendation. In re-
sponse to our judges’ feedback, we looked at many recom-
mendations, and found that the model only predicted three
unique sets of clothing, and one of the sets dominated the
majority of those predictions.

6. Conclusion
6.1. Recommendation Power

Based on our own qualitative analysis and our judges’
verdicts, using the most similar embeddings to recommend
similar clothing proves to have the best results. Despite at-
tempts to correct the class imbalances, the model was un-
able to predict anything but a few discrete sets, suggesting
that the classifier predicted a mix of generic clothing to min-
imize discrepancy in features. This suggests that the embed-
dings were able to capture the nuances of the clothing better
than the vector of labels representing different features of
clothing, meaning the embeddings were able to learn fea-
tures of the clothing other than the ones represented in the
labels. Although this was different from our expectations,
in retrospect this makes sense, as the embeddings are able to
give a complete representation of an item rather than boiling
it down to just a few key indicators.

6.2. Similarity vs Quality

We expected the metrics for similarity and our stand in
for quality in Gooddall distance to show similar results, in-
stead there was a significant discrepancy. Instead, we ob-
served a significant discrepancy between the two. Mod-
els that performed well on cosine similarity, like the zero-
shot ResNet/DistilBERT, produced clusters that were worse
when judged on Gooddall distance. Models like the zero-
shot ResNet/DistilBERT are pretrained on large, general-
purpose corpora and are not explicitly optimized to capture
fine-grained fashion attributes like sleeve length or fabric
type, especially because their layers were frozen. As a re-
sult, their embeddings likely group visually or semantically
broad concepts together while sacrificing distance in their
latent space.

6.3. Interpretability

A key motivation behind our classifier-based recommen-
dation approach was to introduce interpretability into the



system. By predicting shape, fabric, and color attributes,
we aimed to provide not just recommendations but also
understandable explanations for why an item was recom-
mended. An unfortunate consequence of using the higher-
performance embeddings to drive recommendations is that
we lose that interpretability. Especially in a highly personal
and subjective domain like fashion, users are less likely to
trust or rely on recommendations if they cannot understand
why an item was recommended. Since our queries are mul-
timodal, a user could theoretically tune the text portion of
their query until they get better results, but without under-
standing the model’s decision making processes, it becomes
a game of guess-and-check. Therefore, when expanding
this to an application, it would still be worthwhile revisiting
a modeling-based approach from a user-focused perspec-
tive.

6.4. Future Works

Looking ahead, there are several promising directions to
extend this work. One avenue is to integrate our recommen-
dation engine into a real-world interface such as a browser
extension or mobile app that scrapes fashion content and
returns affordable lookalikes in real time from sites like De-
pop or Poshmark. Another is to enhance multimodal inter-
action by allowing users to refine search results filters based
on predicted features like neckline, sleeve length, or fab-
ric type. Additionally, we could incorporate reinforcement
learning or preference-based re-ranking by collecting user
interactions and feedback, allowing the system to adapt to
individual tastes over time. Finally, expanding the dataset
to include more stylistically diverse images and richer cap-
tions could further improve generalization and allow for
recommendations across a broader spectrum of fashion gen-
res.
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