Enhancing Bearing Quality Control: A CNN-Based Approach for bearing defect
classification.

Mengyuan Huang
Stanford University
mengy88@stanford.edu

Abstract

Convolutional Neural Networks (CNNs) have demon-
strated significant potential for accurate surface defect de-
tection across various materials and products. However,
their success typically hinges on the availability of exten-
sive labeled datasets, which are often costly and difficult
to acquire in real-world industrial settings. This project
addresses the challenge of defect classification with lim-
ited data by exploring various strategies using a relatively
small dataset of bearing images. 1 first establish a shal-
low CNN model as a baseline and then investigate different
techniques to mitigate overfitting inherent in deep learning
processes when data is scarce.

1. Introduction

Bearings are vital components across countless indus-
trial applications, facilitating smooth, efficient motion and
minimizing friction and wear. In electric vehicles (EVs), for
instance, bearings are crucial for the seamless operation of
numerous moving parts, directly contributing to extended
range and improved efficiency. Given their critical role, en-
suring the quality of bearings is paramount.

1.1. Motivation

For this project, I collected bearing images from my fam-
ily’s factory in China to investigate the application of CNNs
for bearing defect detection. Given the nature of the avail-
able images and the course’s time constraints, I focused on
bearing defect classification. My primary goal is to achieve
better than baseline accuracy in detecting surface defects
on bearings, even with a limited dataset. The bearings
with defects are categorized into ten distinct types: {rust,
scale, bruised, bruised-surface, abrasion, scratch, yellow-
rust, dim, black, and holder-scratch}. Dataset also contains
bearing images without any defects.

1.2. Problem Statement

The problem: using CNN model to achieve high accu-
racy on classifying bearing images into ten defect types with
limited image dataset.

Inputs: 1500 * 1500 * 3 channels bearing images (to-
tal of 460 images) captured from industrial cameras, along
with image labels represented as multi-hot encoding. The
order of the defect types list defines the index for each de-
fect category in the encoding. For example, [1,1,0, ..., 0]
represents the image has rust and scale defects. [0, ...,0]
means the image is without any defects.

Figure 1: example bruised bearing surface

Output: predictions to categorize bearing surface de-
fects into one or more of ten categories: {rust, scale,
bruised, bruised-surface, abrasion, scratch, yellow-rust,
dim, black, holder-scratch}. The classification output will
be multi-labeled, as a single bearing image may exhibit
multiple types of defects simultaneously. If no prediction
in output, it means the bearing surface does not have any
defects.

2. Related Work

Traditionally, bearing quality checks are performed man-
ually, a process that is often time-consuming, subjective,
and susceptible to human error. Fortunately, Convolutional



Neural Networks (CNNs) offer a promising solution for au-
tomating and enhancing the accuracy of surface defect de-
tection in various industrial products [3]]. This is an active
and well-researched field. For example, a CNN with max
pooling was proposed for faster steel defect detection [[7].

Other research has demonstrated successful defect detec-
tion using a Faster R-CNN-based feature extraction mod-
ule [[6] and a Fast R-CNN method developed by Girshick to
identify five types of defects [9]. Compared to its predeces-
sor, Fast R-CNN generally consumes fewer computational
resources [2]. While Fast R-CNN was a significant break-
through in object detection, it has been surpassed by subse-
quent advancements in object detection. The overall object
detection landscape has evolved to offer more efficient and
often more accurate solutions. For example Single-Stage
Detectors (YOLO[S8] and SSD[5]), which perform both ob-
ject localization and classification in a single pass, making
them much faster and suitable for real-time applications.

For State-of-the-Art and highly effective defect detection
now, fast R-CNN is still a very strong contender, especially
when high accuracy and precise bounding box localization
are critical. YOLO family (YOLOv7[12], YOLOv10[L1],
etc.) is also extremely popular due to their excellent bal-
ance of speed and accuracy. They are often preferred
for real-time inspection systems where inference speed is
paramount.

For this project, I'll focus on a base CNN model specif-
ically designed for multi-label image defect classification.
More advanced models like Fast R-CNN aren’t necessary
since their object detection capabilities aren’t required for
my task.

I’'ll concentrate on improving accuracy and prevent-
ing overfitting given my limited dataset. There are mul-
tiple strategies to prevent overfitting in small dataset[1].
One strategy I'll employ is data augmentation to boost
the model’s generalization capabilities, which is especially
helpful with small datasets. For instance, techniques like
random image cropping and patching have shown promis-
ing results in deep CNNs [10]. Additionally, I explored
early stopping as a method to combat overfitting on smaller
datasets. This technique prevents the model from sim-
ply memorizing the training data, ultimately making over-
parameterized neural networks more robust to label noise

(4].

3. Methods

For this project, I used a shallow 3-layer CNN for image
surface defect detection where one image can have multiple
types of defects (total 10 types). This is a multi-label clas-
sification problem and my data label is preprocessed to be
multi-hot encoding.

3.1. Model Architecture

The core CNN architecture is similar to single-label clas-
sification. The key difference is the output layer and acti-
vation function. The output layer (fully connected) should
have 10 neurons, one for each defect category.

——— Model Architecture —-—-
DefectDetectionCNN (
(conv_layers): Sequential (

(0) : Conv2d (3, 32, kernel_size=(3, 3)
, stride=(1, 1), padding=(1, 1))

(1) : ReLU()

(2) : MaxPool2d(kernel_size=2, stride
=2, padding=0, dilation=1,
ceil_mode=False)

(3): Conv2d (32, 64, kernel_size=(3,
3), stride=(1, 1), padding=(1, 1)
)

(4) : ReLU()

(5) : MaxPool2d(kernel_size=2, stride
=2, padding=0, dilation=1,
ceil_mode=False)

(6): Conv2d (64, 128, kernel_size=(3,
3), stride=(1, 1), padding=(1, 1)
)

(7): ReLU()

(8) : MaxPool2d(kernel_size=2, stride
=2, padding=0, dilation=1,
ceil_mode=False)

)
(fc_layers): Sequential (

(0) : Linear (in_features=4476032,
out_features=256, bias=True)

(1) : ReLU()

(2) : Linear (in_features=256,
out_features=10, bias=True)

3.1.1 Activation Function

For activation function, instead of traditional softmax,
which is used for multi-class single-label classification
where probabilities sum to 1, I choose to use the sigmoid
activation function for each of the 10 output neurons. sig-
moid output s a probability between 0 and 1 independently
for each neuron, which allow each neuron to predict the
presence or absence of its corresponding defect type, re-
gardless of the other defect types.

1

T irew M

o(x)

3.1.2 Loss Function

The loss function is also crucial to the training. I decide to
use Binary Cross-Entropy (BCE) Loss which is a common



loss function used in multi-label classification problems. It
measures the dissimilarity between the true labels and the
predicted probabilities. BCE loss for this project treats each
of the 10 defect categories as an independent binary classi-
fication problem[2] And the total loss over N samples would
be the average of these 10 individual multi-label losses 3]

C
LG ==Y lyilog(yiy) + (1 — yij)log(1 — 4i)] (2)
j=1
1 C
Lpep = -5 [yilog(yij) + (1 —yi;)log(1 — yij)]
i=1j—1

3)

3.1.3 Training and Evaluation

After training, the sigmoid outputs will be probabilities.
The final output layer chooses a threshold of the probabil-
ity (tf = 5 in this project) to convert these probabilities into
binary predictions (0 or 1) for each defect type. An out-
put greater than the threshold indicates the presence of that
defect.

For metrics, I choose to use micro-averaging accuracy
(Mean Binary Accuracy in the implemented code). It eval-
uate performance on a per-label basis and then aggregate
these results using micro-averaging.

3.2. Reducing memory consumption

Given that my image data size is (1500 * 1500), which
is significantly bigger than traditional image size (i.e. 512 *
512), one technical problem emerges during the training is
memory exhaustion before training finished. For the above
CNN architecture, the model will need 1,145,960,266 to-
tal learnable parameters, which is indeed massive and will
almost certainly cause CUDA out of memory on consumer-
grade GPUs. This parameter count is extremely high even
for very deep, state-of-the-art models like large LLMs. Re-
ducing the image size is impractical, so I need to focus on
model architecture update.

The culprit is the transition from the convolutional layer
to the fully connected layers. After 3 MaxPool2d layers,
the feature map size is 128 channels * 187 height * 187
width. When flatten() this, the model has 128 * 187 * 187
= 4,408,072 features per each image. When feed this into
ann.Linear () it creates over 1.1 billion parameters in
just one layer!

To solve this issue, I decided to update the architec-
ture to use global average pooling (GAP). This is the
most effective and common technique to drastically re-
duce the number of parameters in the classification head,
especially with large input images. Instead of flattening
the entire feature map (128 * 187 * 187) into a huge 1D

vector, we use nn.AdaptiveAvgPool2d((1, 1))
calculates the average value for each of the 128 feature
maps. This reduces each 187 * 187 map to a single value.
Therefore previous tensor (Batch_size, 128, 187,
187) becomes (Batch_size, 128, 1, 1).

——— Modified Model Architecture ---
LightweightDefectDetectionCNN (
(conv_layers): Sequential (

(0) : Conv2d (3, 32, kernel_size=(3, 3)
, stride=(1, 1), padding=(1, 1))

(1) : ReLU()

(2) : MaxPool2d(kernel_size=2, stride
=2, padding=0, dilation=1,
ceil_mode=False)

(3): Conv2d (32, 64, kernel_size=(3,
3), stride=(1l, 1), padding=(1, 1)
)

(4) : ReLU()

(5) : MaxPool2d(kernel_size=2, stride
=2, padding=0, dilation=1,
ceil_mode=False)

(6) : Conv2d (64, 128, kernel_size=(3,
3), stride=(1, 1), padding=(1, 1)
)

(7) : ReLU()

(8) : MaxPool2d(kernel_size=2, stride
=2, padding=0, dilation=1,
ceil_mode=False)

)

(global_avg_pool) : AdaptiveAvgPool2d (
output_size=(1, 1))

(fc_layer): Linear (in_features=128,
out_features=10, bias=True)

After applying GAP, the total learnable parameters re-
duced from 1.1 billion to 94,538.

3.3. Preventing Overfitting

Given my limited datasets, I uses 80% as training sam-
ples, rest for testing/validation set. One concern with lim-
ited this limited dataset size is overfitting. It is crucial to add
evaluation step within the training loop to detect overfitting.

3.3.1 Data Augmentation

From the research work, I choose to add data augmen-
tation to artificially increase the size and diversity of the
training data by applying random transformations. For this
project, I applied flip and rotation to the original images.
The model sees slightly different versions of the same im-
age each epoch, making it more robust. The transforma-
tion is applied on-the-fly, which means they are dynami-
cally added each time an image is loaded from the training
dataset by the Dataloader during training. Because the



transformation are random and applied every time the im-
age is fetched, the model sees a slightly different version of
the same original image in each epoch. Conceptually this
adds extra training data, or more accurately, it significantly
increases the effective size and diversity of the training set,
but without physically more data to take up memory space.

3.3.2 Early Stop

Early stop is also applied so that learning stops when the
model’s performance on the validation set stops improving
or start to degrade. This prevents the model from continuing
to memorize the training data. At the end of each epoch, af-
ter the training loss is calculated, there is a dedicated model
evaluation block that iterates over the test_loader to
calculate validation_epoch_loss. Early stop method
then applied to this validation loss and decides if the train-
ing should continue to prevent having an overfit model.

I also explored K-Fold cross-validation, which should
conceptually provides the most reliable estimate for small
datasets but does take significantly longer to run. Another
alternatives is stratified sampling, but given that my dataset
are imbalanced (e.g, in this project dataset contains signifi-
cantly more “’bruised” defects than all other types), a simple
random split might result in some folds having very few or
no examples of rare classes. Stratified splitting requires that
each split maintains the same proportion of classes as the
original dataset.

4. Dataset and Features

The given dataset is coming from a Chinese factory
which my family runs to supply bearing parts for some EV
factories in China. I obtained the bearing images from in-
dustrial camera in the factory and manually labeled with de-
fect types and defect locations in corresponding json files. I
then resized the image to be 1500 * 1500 with 3 channels.
Given the time constraint, I only acquired 460 images with
10 defect types: {rust, scale, bruised, bruised-surface, abra-
sion, scratch, yellow- rust, dim, black, and holder-scratch}.
Following distributions of each defect types:

——— Defect Type Distribution —---
Count Percentage
No Defects 249 54.13%
bruised 69 15.0%
bruised-surface 61 13.26%
scratch 38 8.26%
black 36 7.83%
abrasion 15 3.26%
scale 14 3.04%
yellow-rust 11 2.39%
rust 8 1.74%
holder-scratch 8 1.74%
dim 6 1.3%

Distribution of Defect Types in Dataset (Including No Defects)

49
54,1

Number of Occurrences

Defect Type

Figure 2: Dataset defect types distributions

There are total of two types of bearing style, but all
dataset images are in the same size after preprocessing:

(a) Style 1

(b) Style 2

Figure 3: Two basic bearing styles

I choose to use the basic 80/20 split for training and test-
ing/validation sets. Therefore I have 368 training samples
and 92 testing/validation samples.




In3.3.1] T have explained the concern for overfitting on
limited datasets and decided to use data augmentation in
training per each epoch. The data augmentation is applied
on-the-fly per each epoch but will not physically add extra
images to the original datasets.

5. Experiments/Results/Discussion
5.1. Hyperparameters

Tused batch_size = 8. This is a smaller batch size
because the image input is quite large so I need to man-
age GPU memory. I set learning.rate = 0.001 .
This is a quite common learning rate since I chose to use
Adam optimizer. It comes from empirical observations and
the design of the Adam algorithm itself. 0.001 with Adam
has been found to be a good balance, and from the training
process I think the result achieved reasonable accuracy. I
chose Adam optimizer for the CNN model because it is a
very common and often effective choice in deep learning.
Adam is an adaptive learning rate optimization algorithm,
and especially a good pick for my model because it allows
me to quickly get a working model and see initial results.
Another good reason for me to choose Adam is because it
is less sensitive to the exact global learning rate value than
plain SGD.

I did not implement cross validation in the model due to
the time constraint as a single-person project. Implement-
ing k-fold cross-validation significantly change the overall
training loop structure. It’s more complex to implement be-
cause it wraps the entire training and evaluation process.
However, I think cross validation is really important to pro-
vide robust evaluation.

5.2. Primary metrics

The primary metrics for the defect detection model are
not just a single accuracy score, because standard accuracy
can be very misleading in multi-label scenarios. In this
project, the image surface can have zero or multiple defects.
Standard “accuracy” is defined as subset accuracy, which
gives the percentage of samples for which the entire set of
predicted labels exactly match the entire set of true labels.
However, this definition is too strict. For example, if an im-
age has “rust” and “’scratch”, but the model predicts “rust”
and ’dim”, it gets 0% subset accuracy, even though one la-
bel is correct. Another reason is that half of the data are
no defects, a model that predicts “no defect” would always
have a very high subset accuracy, which is misleading.

I choose to evaluate performance on per-label basis and
then aggregate results with micro-averaging (Mean Binary
Accuracy). It calculates the global true positives, false pos-
itives and false negatives by summing across all individual
labels and all samples. Then it computes per label correct-
ness from these global counts. It gives a quick overall sense

of performance across all instances regardless of class dis-
tributions.

Another metrics I monitored in the model is validation
loss to detect overfitting and trigger early stopping if possi-
ble.

5.3. More memory management

In addition to reducing GPU memory consumption
caused by large learnable parameters mentioned in[3.2] with
GAP, the model still faces CUDA out of memory issue dur-
ing training. This means the bottleneck is now firmly in
the convolutional layers as a 1500 * 1500 image genuinely
large for CNN models on my environment. I applied an-
other aggressive strategy to use depthwise separable convo-
lutions. This introduce a single filter that applied to each
input channel independently, which is depthwise convolu-
tion. Then a 1 * 1 convolution is used to combine the out-
puts across the channels. This mixes channel information.
This factorization drastically reduces the number of param-
eters compared to standard convolution, making the model
much lighter. The total parameter count drops further from
94,538 to 12,074 in the end. Then the training can perfectly
fit into my current GPU memory.

5.4. Results

I trained model for 50 epoch with following results.
Based on the result below both training and validation loss
generally decrease over the 50 epochs, indicating that the
model is learning and improving. the validation loss con-
verges to a value relatively close to the training loss in the
end, which I think suggesting a good generalization to some
extent.

Initial rapid decrease happened around epoch 1 - 5,
where train loss starts at 0.4188 and quickly drops to around
0.19 - 0.20. this indicates that the model is rapidlly learning
the basic patterns in the training data. For validation loss, it
shows a rapid decrease from 0.2491 to around 0.18 - 0.19.
This is a positive sign I believe, showing the model’s initial
learning is effectively generalizing to unseen data.

In epoch 6 - 20, both training and validation losses con-
tinue to decrease, but the rate of decreases slows down. The
training loss gradually falls from around 0.19 to 0.17. The
validation loss also continues to decrease, but with some
fluctuations. For example, slight increase at epoch 8§, 11,
13, 17, 19, 20. This indicates the model is fine-tuning its
parameters.

In the rest epochs, it seems the model have fluctuations
and plateauing. The train loss continue to decrease, but
slowly. In the end it reaches around 0.15. This suggests
the model is still finding ways to fit the training data bet-
ter. For validation loss, it shows more visible fluctuations
in the rest epochs. For example, 0.1619 at epoch 21 and
0.1609 at epoch 25, then 0.1576 at epoch 29. It also ex-



perienced significant jumps upwards at epoch 23 which has
loss of 0.1850. These upward spikes are the cause of early
stopping counter that frequently triggered.

Overall the consistent decrease in both training and val-
idation losses, particularly in the early stages, which I be-
lieve demonstrates that the model is effectively learning the
underlying pattern.

Training and Validation Loss per Epoch

—®— Train Loss
Vvalidation Loss

Sedel o
L o T3
e ARt s be La 3 90 TR

12345678 91011121314151617181R® R 2 42 R @ 72 @ B(3132333435363738394041424 34445464 7484 B0
Epoch

Figure 4: Train and Validation Loss per Epoch

We can notice that there are some spike in validation
loss, which align with the early stop triggered in the same
epoch. This indicates that those are the key signs of over-
fitting. For epochs that triggered early stopping, they are
likely reached a point where further training on the current
dataset would lead to a decrease in its ability to generalize
to new data, so they should be stopped early. The validation
loss generally tracks the training loss well, and the final gap
between them is not excessively large. For reference, the
train loss is 0.15 and the best validation loss is 0.1492. This
indicates that the model is generalizing reasonably well to
unseen data and not severely overfitting.

The graph below illustrates the value of early stopping.
Without it, training loss will continue to decrease till epoch
50, the validation loss might have ended up higher than its
minimum at epoch 49.

Early Stopping Counter Progression per Epoch

Validation accuracy (Mean binary accuracy) per epoch
stays quite stable. The results are all around 0.95. I think the
stable accuracy doesn’t necessarily mean the model doesn’t
improve much over time, given that the validation loss is
still decreasing. The accuracy is a discrete measure and
can sometimes be less sensitive to small improvements or
changes in the model’s confidence. The loss on the other
hand can decreases significantly with a stable accuracy. I
think this could probably demonstrate cases like “model
prediction for a certain defect type from a probability of
0.51 to 0.99”. In this scenario, the accuracy remains pretty
much the same as long as the probability pass the thresh-
old and categorized as the correct label. But the loss will
decrease significantly. The decreasing in validation loss in-
dicates that the model is still learning and making better and
more confident predictions.

0958 Validation Accuracy per Epoch

—e— Validation Accuracy
0.953
0.952
0.951
0.950

0.949 v

0.948

Validation Accuracy

0.947

0.946

0.945

Epoch

Figure 6: Validation Accuracy per Epoch

Using 0.5 as threshold and output probability samples
with mean binary accuracy across all labels and samples on
test set as shown below. I think the sample shows that the
model predicts pretty well on the no defect cases, which
also takes more than half of the total dataset. Therefore I
can achieve a 95% high accuracy.

Early Stopping Counter
5| --- Patience Limit (10)

Early Stopping Counter Value

o P I ® W@

® K P q
Epoch Number

Figure 5: Early Stopping Counter Progression per Epoch

—-—— Sample Predictions vs. True Labels
3 Samples from Test Set) —--—-

(First

Sample 1 (correct):
True Labels: [0O0O0O0OO0O0O0O0 0 0]
Probabilities: [0.008 0.019 0.108 0.145

0.026 0.051 0.017 0.011 0.072 0.018]
Predicted Labels: [0O0O0O0OO0O0O0OO0 0 0]

Sample 2 (correct):

True Labels: [0O0O0O0OO0OO0O0OO0O0 0]

Probabilities: [0.005 0.014 0.089 0.126
0.02 0.039 0.012 0.007 0.058 0.013]

Predicted Labels: [0O0O0O0OO0OO0O0OO0 0 0]
Sample 3 (wrong) :

True Labels: [0O0O1 00000 0 0]




Probabilities: [0.003 0.008 0.067 0.103
0.014 0.027 0.006 0.004 0.042 0.008]
Predicted Labels: [0OO0OO0OO0OO0OO0OO0O0DO0]

6. Conclusion/Future Work

I think in general this CNN defect detection model
achieves pretty reasonable accuracy with the limited
dataset. With help of GAP and depthwise separable con-
volution layer, I can successfully run the training with the
large image size that fits into a limited GPU memory. 1
also applied early stopping and data augmentation to pre-
vent overfitting introduce by the limited amount of data.

In the future, I think increasing the dataset size will defi-
nitely help to give the model a more reasonable evaluation.
Another prevent overfitting strategy that I think is impor-
tant to have is k-fold cross validation, which should provide
a more reliable and less biased estimate of the model’s per-
formance on unseen data.

7. Contributions and Acknowledgments

This is a single person project. I did all the work de-
scribed in this report. Data coming from a Chinese factory
that produces bearings for an EV manufacturer.

References

[1] R. Caruana, S. Lawrence, and C. L. Giles. Overfitting in
neural nets: Backpropagation, conjugate gradient, and early
stopping. In Advances in Neural Information Processing Sys-
tems (NIPS), volume 13, pages 402—408, 2000.

[2] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen,
M. Tan, G. Chu, V. Vasudevan, Y. Zhu, R. Pang, et al. Search-
ing for mobilenetv3. In Proceedings of the 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), pages
1314-1324, Seoul, Republic of Korea, Oct-Nov 2019.

[3] D. Li, Y. Zhao, X. Liu, C. Yuan, G. Song, and H. Yan.
A surface defect detection based on convolutional neural
network. In 2017 13th International Conference on Natu-
ral Computation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), pages 1939-1944, 2017.

[4] M. Li, M. Soltanolkotabi, and S. Oymak. Gradient descent
with early stopping is provably robust to label noise for over-
parameterized neural networks. In S. Chiappa and R. Calan-
dra, editors, Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research, pages
4313-4324. PMLR, 2020.

[5S] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-
Y. Fu, and A. C. Berg. Ssd: Single shot multibox detector.
In European conference on computer vision, pages 21-37.
Springer, 2016.

[6] Z. Liu, L. Wang, C. Li, and Z. Han. A high-precision
loose strands diagnosis approach for isoelectric line in high-

[7

—

[8

—

[9

—

(10]

(11]

(12]

speed railway. IEEE Transactions on Industrial Informatics,
14(3):1067-1077, 2017.

J. Masci, U. Meier, D. Ciresan, J. Schmidhuber, and
G. Fricout. Steel defect classification with max-pooling con-
volutional neural networks. In 2012 International Joint Con-
ference on Neural Networks (IJCNN), pages 1-6, Brisbane,
Australia, June 2012.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You
only look once: Unified, real-time object detection. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 779788, 2016.

S. Ren, K. He, R. Girshick, and J. Sun. Apple surface de-
fect detection method based on weight comparison transfer
learning with mobilenetv3. In Advances in Neural Informa-
tion Processing Systems, pages 91-99, 2025.

R. Takahashi, T. Matsubara, and K. Uehara. Ricap: Random
image cropping and patching data augmentation for deep
cnns. In J. Zhu and I. Takeuchi, editors, Proceedings of The
10th Asian Conference on Machine Learning, volume 95 of
Proceedings of Machine Learning Research, pages 786—798.
PMLR, 14-16 Nov 2018.

A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and
G. Ding. Yolov10: Real-time end-to-end object detection. In
Advances in Neural Information Processing Systems, 2024.
C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao. Yolov7:
Trainable bag-of-freebies sets new state-of-the-art for real-
time object detectors. arXiv preprint arXiv:2207.02696,
2022.



