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Abstract

In computer vision, adverse visual conditions are chal-
lenging for monocular depth estimation. Both traditional
CNN methods and recent transformer-based methods are
impacted by the degraded input image quality resulting
from insufficient lighting and blurry environments. In this
project, we aim to study different methods to improve ro-
bustness and generalization based on a Dense Predic-
tion Transformers (DPT) model, including fine-tuning using
scale and shift invariant loss, customized consistency loss,
architectural adjustments and regularization. We present
thorough evaluations and discussions using both standard
depth estimation evaluation metrics and visual metrics.

1. Introduction

Depth estimation from 2D images is a fundamental task
for research areas including AR/VR, autonomous driving,
and medical diagnosis. Despite promising progress in re-
cent years, it remains challenging because of the inherent
complexity and uncertainty of real-world scenarios, particu-
larly under visually adverse conditions. Historically, CNN-
based models have been widely used to solve this task [4]].
Eigen et al. first proposed two deep network stacks to solve
single image depth estimation [1]]. In addition to model ar-
chitectures, they introduced Scale-Invariant Error as a mea-
surement metrics. In recent years, transformer-based mod-
els are gradually superseding CNN-based models on vari-
ous image tasks. Ranftl et al. introduced dense prediction
transformers (DPT) that achieved a significant performance
improvement on depth estimation benchmarks [7]].

Adverse visual conditions, such as reduced lighting and
blurred imaging, may negatively impact the performance of
transformer-based models in depth estimations. First, trans-
former is heavily based on self-attention layers. Reduced
image quality directly leads to loss of information in atten-
tion maps. Second, for pre-trained models such as DPT-
hybrid, general-purpose datasets such as ImageNet are of-
ten used [7]. When pretrained models are fine-tuned for
depth estimation tasks, public datasets focusing on day-
time outdoor and indoor scenes such as KITTI Depth and
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NYU Depth are primarily used [6][10][8]. These common
datasets are not specifically collected under adverse visual
conditions.

In this project, we aim to investigate robust depth esti-
mation techniques based on DPT methods. The input for
this task is a 2D 3-channel RGB image from a real scene. It
is either physically captured in an adverse visual condition
or simulates dark and blurred scenarios. Since major pub-
lic depth estimation datasets are primarily collected during
daytime, we plan to simulate dark and blurry environments
using a selected original public dataset. The output for the
task is a 2D 1-channel gray depth map. We aim to examine
model performance under both original environments and
corresponding simulated adverse visual conditions, experi-
ment with different fine-tuning strategies, and study evalu-
ation metrics for these specific visual conditions.

2. Related work

In the previous section, we briefly introduced the histor-
ical development of monocular depth estimation models. In
this section, we present a more detailed overview of related
work and evaluation metrics.

2.1. CNN models

Convolutional neural network (CNN) is powerful for
depth estimation as it captures local and global image pat-
terns efficiently. In the two deep network stacks proposed
by Eigen et al., the first one is designed for global predic-
tion, while the second one is for refinement [1]]. Residual
network is an effective enhancement to CNN architecture.
Laina et al. leveraged residual learning to achieve an end-
to-end state-of-the-art depth estimation method [4]].

2.2. Transformer-based models

Dense prediction transformers (DPT) introduced by
Ranftl et al. are based on vision transformer (ViT)[Z].
There are different variations including DPT-large and DPT-
hybrid, depending on the feature extraction mechanism.
DPT-large extracted “non-overlapping patches followed by
a linear projection”, while DPT-hybrid leveraged a residual
network [7]. They both demonstrated great improvement on



common depth estimation benchmarks evaluated with un-
seen data.

2.3. Standard evaluation

To quantitatively evaluate monocular depth estimation
models, standard metrics from prior works are widely
adopted, including the Absolute Relative Error (AbsRel),
Root Mean Square Error (RMSE), and the accuracy under
threshold ratios 01, do and d3, which measure the percent-
age of predicted pixels within increasing multiplicative tol-
erances of the ground truth depth. These metrics were intro-
duced by Eigen et al. [1]] and have become standards across
datasets such as NYUv2 and KITTL

2.4. Visual evaluation

In addition to standard evaluation metrics, to assess how
well a model preserves structural details visually, partic-
ularly object boundaries, Koch et al. introduced Depth
Boundary Error (DBE) metrics, specifically, DBE Accu-
racy and DBE Completeness [3l]. These metrics evaluate
the edge preservation between predicted and ground-truth
depth maps. They are useful metrics for analyzing model
robustness under adverse visual conditions.

3. Methods

We adopt a two-phase methodology for enhancing depth
prediction under adverse visual conditions, beginning with
a strong transformer-based baseline and progressively in-
corporating domain-specific adaptations. Our approach is
grounded in the MiDaS 3.0 DPT-Hybrid-384 model and
is guided by the goal of improving the structural and
boundary-aware robustness in depth maps derived from im-
ages under adverse visual conditions.

3.1. Problem formulation

Given a single RGB image I € R¥>*WX3  the goal of

monocular depth estimation is to predict a corresponding
depth map D € R¥*W In this project, we predict relative
depth and evaluate it against ground truth Dy, using both
quantitative and qualitative metrics.

3.2. Baseline model: MiDaS DPT-hybrid-384

The baseline method uses pretrained MiDaS 3.0 DPT-
Hybrid-384 model [9], which was trained on a mixture of
indoor and outdoor datasets to estimate relative depth. This
model serves as zero-shot performance on the NYU Depth
Dataset V2, without fine-tuning. To better evaluate its ro-
bustness under adverse visual conditions, we apply con-
trolled data augmentations to the NYU Depth Dataset V2.
We will discuss more dataset details in the next section.
Then we plan to run inference on both the original and
augmented images and compare the predicted depth maps

against the ground truth using different metrics. The com-
parison would help identify the limitation of the baseline
model on both the original and augmented dataset simulat-
ing adverse conditions.

3.3. Supervised fine-tuning with scale-invariant loss

To adapt the model to the domain, we plant to fine-tune
the model on NYU Depth Dataset V2 with both original and
augmented training data, using Scale- and shift-invariant
loss defined by Ranftl et al. [9]:

M

1
Lsi(D, Dgt) = 532 > p(Di = Dy
=1

D; and D, refer to predicted depth and ground truth for
a single sample. M is the number of pixels. p(-) is a spe-
cific loss function such as MSE. In practice, the full loss
often includes further optimizations such as additional reg-
ularization term.

3.4. Consistency regularization for domain robust-
ness

To improve model’s robustness to domain shifts, we im-
plement a consistency-based regularization strategy. Rather
than using contrastive learning in the feature space, we reg-
ularize the model by enforcing consistency between the
output depth maps of original and augmented image pairs.
Given an input RGB image I and an augmented image I
from training sets, we pass both through the model to ob-
tain depth predictions D and D. However, since the MiDa$
model predicts relative depth, we have to apply the scale
and shift alignment first to both outputs using the ground
truth dpeth map Dy, and a foreground mask M, following
the same strategy used in Ranftl et al. [9].

With computed scale s,.; and 54,4 and shift ¢,,; and
tqug» this yields aligned predictions:

Dali,gned = Sori D + tori, Dalz’gned = SaugD + taug

We then compute an L1 consistency loss:

Lconsistency - HDaligned - Daligned‘ |1
The total loss with consistency regularization becomes:

Ltotal = Lssi + aLconsistency

where « is a regularization coefficient. This would en-
courage the model to produce consistent depth estimations
across condition shifts. This method is inspired by contra-
sive adaptation approaches such as NightDepth [2], but im-
plemented in the output depth map space rather than the
feature space, making it align with supervision loss and be
more interpretable.



3.5. Architectural adjustments and regularization

Encoder layer freezing. During fine-tuning, encoder
layer freezing is commonly used for preserving the early
feature extraction mechanism and improving training sta-
bility, especially with smaller datasets. For DPT models,
Ranftl et al. discussed different downstream tasks and how
they benefit from the pretrained encoder [7]].

Decoder regularization. Another strategy to prevent
overfitting and improve generalization is enhanced regular-
ization on the decoder. Ranftl et al. discussed about adding
dropout layer in image segmentation task before the final
classification layer [7]].

We aim to experiment with full encoder freezing and par-
tial freezing of earlier layers. In addition, we experiment
with adding dropout layers after CNN layers within the de-
coder as a strategy to improve model robustness and gener-
alization.

4. Dataset and features

In this project, we leverage NYU Depth Dataset V2 with
the official split for training and testing [6l]. We downloaded
the 2.8 GB labeled dataset from the official NYU Depth V2
Dataset website.

Data splitting and simulation. The original labeled
dataset includes rgb input data and ground truth depth map
data organized as one MATLAB file. We downloaded the
official training and testing splits provided by Silberman el
al. as another MATLARB file [6]. The RGB inputs were con-
verted to JPEGs and the dpeth maps were converted to both
gray PNGs and PFM formats for our evaluation compati-
bility. We organized the data into training and testing sets
respectively by adapting the preparation code| from Lee et
al. [5]. There are 795 640x480 images in training set, 654
640x480 images in test set.

The photos inside labeled NYU Depth dataset are pri-
marily daytime or well-lighted indoor scenes. To simulate
the adverse visual conditions, we leveraged a vanilla image
processing approach:

» Step 1: All RGB values are multiplied by 0.3.
 Step 2: B channel values are increased by 10.

 Step 3: A gaussian blur with std 10 is applied.

Figure[I]shows a sample input from NYU Depth V2 ex-
tracted from MATLAB and its augmented variation. The
perturbation mutates important features such as texture,
color and edges.

5. Experiments

We leveraged |official MiDaS repository to conduct our
experiments. This repo provides base inference script for us

(a) Original input

(b) Augmented input

Figure 1: Example NYU Depth V2 living room input (a)
and the corresponding augmented input (b)[6]

to modify and adapt. The baseline pretrained DPT-Hybrid-
384 model weight was downloaded from MiDasS releases.

MiDaS repo does not release its official train-
ing code.  We developed a training script to load
dpt_hybrid_384 model weight and prepare for
finetuning. For Scale- and shift-invariant loss, we leveraged
ScaleAndShiftInvariantLoss provided within
MiDaS repo issues discussions, to essentially align the
prediction using a learned linear transformation.

In our base fine-tuning setup, we used batch size of 4
according to our VM specifications. We employed Adam
optimizer with weight decay. For learning rate and weight
decay value selection, we conducted experimental training
for 5 epochs. Through this process, we identified Se-5 as
our learning rate and le-4 as a reasonable weight decay as
MiDaS is sensitive to larger values. Our models are pri-
marily trained with 10 epochs, with a few variations: The
vanilla fine-tuning and the consistency loss + partial en-
coder freeze + decoder dropout training used 15 epochs,
and the consistency loss + partial encoder freeze training
used 20 epochs. The major purpose is to observe the loss
trend with more epochs when introducing major architec-
tural changes or loss function changes. For vanilla finetun-
ing, we implemented cross validation with 3 folds. To save
computation resources, other experiments were conducted
with a random train and validation data split without cross
validation.
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6. Results and discussion

In this section we discuss the quantitative and qualita-
tive results from our experiments. Table [I| and Table
summarizes our experiments evaluation results on original
test set and augmented test set. We also inspected DPT-
hybrid-384 performance reported in [7]. DPT-hybrid-384
was pretrained on MIX 6, as a zero-shot result, for NYU set
it achieved 8.69 § > 1.25, i.e., (100 — 8.69)/100 = 0.9131
01. With fine-tuning using KITTI and NYU datasets, the
evaluation on NYU V2 depth shows it matches or outper-
forms state-of-the-art performance [7]. While this states
DPT-hybrid’s ability to achieve strong performance on stan-
dard depth datasets, our experiments focus on evaluating ro-
bustness and generalization under augmented and adverse
conditions.

6.1. Quantitative Results

Standard results. Table |[l|summarizes the performance
of various fine-tuning strategies on both original and aug-
mented NYU Depth V2 test sets.

Compared to the baseline model, all fine-tuned vari-
ants significantly reduce error across all metrics - with Ab-
sRel falling below 0.74 and §; improving from < 0.21
to > 0.25 in general. Among all experiments, the fine-
tuned model with consistency + partial encoder freeze
strategy yields the most consistent and best overall perfor-
mance across both data domains, suggesting that limited en-
coder adaptation along with alignment-based output regu-
larization would strike a good balance between stability and
domain-specific learning. Vanilla fine-tuning also improves
accuracy compared to the baseline, but tends to under-
perform slightly relative to above strategy. Adding dropout
to the decoder appears to mitigate overfitting marginally be-
tween original and augmented data, but high dropout rates
(e.g., 0.5) would degrade performance due to excessive reg-
ularization.

Despite these improvements, the best models retain sig-
nificant errors (e.g., AbsRel ~ 0.66), and standard met-
rics like RMSE and MAE are not always sensitive to struc-
tural robustness under domain shifts. Additionally, the nu-
merical differences between original and augmented inputs
are small or ambiguous, making it hard to draw clear con-
clusions about robustness under adverse conditions using
only standard metrics. To address this, we introduce Depth
Boundary Error (DBE) metrics in the next part.

Visual evaluation results. As stated before in section
2.4, DBE focuses on visual structural details. It includes
accuracy measure (DBE acc) and completeness measure
(DBE comp). Accuracy measure essentially computes the
accumulated distances from the prediction depth map edges
to the ground truth map edges, where completeness fo-
cuses on the reverse direction to accumulate the distances
from ground truth to prediction [3]. We leveraged cv2 and

scipy.ndimage for computing edge maps and distance
maps. Table 2] and Table [3] summarize the performance of
various fine-tuning strategies according to DBE metrics.

Compared with the baseline model, all models yield
smaller accuracy errors and completeness errors on both
original test set and augmented test set. Specifically, Con-
sistency + No freeze model achieved 3.985 accuracy error
and 7.563 completeness error on augmented set, indicating
its potential to outperform other combinations to preserve
structural depth details in adverse visual conditions.

We compared the differences between the error values on
original test set and augmented test set in Table [3| The dif-
ferences values provide additional insight on how a model
performs and generalizes on different visual conditions. We
noticed that Consistency + No freeze achieved the smallest
accuracy error difference and a relatively low completeness
error difference of 0.197. This indicates that this model
is less sensitive to quality loss of the inputs, demonstrat-
ing its potential robustness to perform depth estimation for
adverse visual conditions. Aside from Consistency + No
freeze model, we also observed vanilla fine-tuning method
yields stable performance based on DBE evaluation. It has
a lower completeness error on augmented test set and the
smallest completeness difference.

Our original hypothesis is that layer freezing and dropout
may serve as a stronger regularization to prevent overfitting,
specifically when using a targeted consistency loss mini-
mizing the differences between the predictions on original
and augmented data. In our experiments, Consistency + full
encoder freeze has train loss of 0.1474, val loss of 0.1767.
Consistency + full encoder freeze + 0.5 dropout has train
loss of 0.1801, val loss of 0.1839, which indicates a smaller
gap. However, the DBE analysis results do not fully support
this speculation. While freezing the pretrained weights may
preserve general purpose image features, it is also a trade-
off as layer freezing also restricts the model’s ability to learn
new feature patterns. For dropout, in our experiments, the
training image samples are limited. Therefore, while the
dropout layers on the decoder mitigate the gaps between
train and validation losses in experiments, aggressive regu-
larization causes the model losing certain fine-grained fea-
tures. The overall performance in terms of preserving visual
structures may be degraded.

6.2. Qualitative Results

To complement above quantitative metrics, Figure
presents a visual comparison of predicted depth maps across
several fine-tuning strategies: the baseline, vanilla fine-
tuning, consistency loss without encoder freezing, and con-
sistency loss with 0.5 dropout. Each strategy includes both
original and augmented input predictions, alongside the
ground truth depth maps, for two representative scenes.

In both scenes, the baseline model struggles to capture



Table 1: Standard evaluations from above experiments. For partial encoder freezing, in “consistency loss + partial model
freezing”, we freeze the early encoder layers until model.blocks.9 mlp. In “consistency loss + partial model freezing +
dropout”, we freeze early layers until model.blocks.7 mlp. The hypothesis is that with less freezing layers, the feature extrac-
tion process has more flexibility. Therefore, we are interested in whether regularization in decoder affects the performance.
“Consistency” refers to “Consistency loss”. The decimal number before “dropout” refers to the dropout rate. We provided
model abbreviations to use in later results tables. Specifically, C denotes consistency loss, Ff denotes full freeze, Fp denotes

partial freeze, FO denotes no freeze, DO0.3 denotes dropout layers with 0.3 rate.

Model Dataset AbsRel RMSE MAE 01 [ d3
. Original 1.3178  4.0873 3.0803 0.1967 0.3602 0.4921
Baseline
Augmented 1.1272  3.4964 2.7089 0.2035 0.3684 0.5040
o ) ) Original 0.6646  2.3908 1.8801 0.2760 0.4784 0.6326
Vanilla finetuning (Vanilla)
Augmented 0.6584 23733 1.8672 0.2767 0.4820 0.6373
. Original 0.6701 2.4171 1.8854 0.2869 0.4964 0.6466
Consistency + Full encoder freeze (C+Ff)
Augmented 0.6476  2.3241 1.8203 0.2880 0.4934 0.6506
. . Original 0.6637 2.3799 1.8514 0.2902 0.4998 0.6513
Consistency + Partial encoder freeze (C+Fp)
Augmented 0.6560 23465 1.8332 0.2893 0.4983 0.6534
. Original 0.7330 2.5855 2.0314 0.2547 0.4509 0.5944
Consistency + No freeze (C+F0)
Augmented 0.7298  2.5768 2.0238 0.2578 0.4557 0.5969
. Original 0.7158 2.5755 2.0225 0.2694 0.4709 0.6180
Consistency + Full encoder freeze + 0.3 dropout (C+Ff+D00.3)
Augmented 0.6964 24855 1.9585 0.2688 0.4667 0.6194
. Original 0.7325 2.6315 2.0714 0.2648 0.4625 0.6083
Consistency + Full encoder freeze + 0.5 dropout (C+Ff+DO0.5)
Augmented 0.7061  2.5161 19852 0.2668 0.4630 0.6141
. . Original 0.7257 2.5879 2.0280 0.2594 0.4568 0.6055
Consistency + Partial encoder freeze + 0.3 dropout (C+Fp+DQ0.3)
Augmented 0.7203  2.5665 2.0081 0.2647 0.4634 0.6148

sharp object boundaries and underestimates depth variation,
especially under augmented conditions. The predictions ap-
pear overly smoothed and lose geometric structure details,
aligning with the lower DBE performances.

The consistency + no freeze model, which achieved the
best DBE accuracy and completeness metrics, produces vis-
ibly shaper and more stable prediction across both scenes.
For instance, in the shelving scene, the model accurately
captures the vertical structure and depth gradients under
both original and augmented conditions. Similarly, in the
chair scene, the seat-backs and table edges are better pre-
served compared to the others. These results visually con-
firm the model’s robustness and ability to retain structure
details under domain shifts.

The vanilla fine-tuning model also produces reasonable
outputs with relatively sharp transitions, though its predic-
tions are slightly less stable, showing some smoothing re-
gion, like the seat-backs. This corresponds with its higher
DBE accuracy, indicating the model is conservative in edge
prediction, leading to lower completeness but at the cost of
accuracy.

In contrast, the consistency + 0.5 dropout model suffers

from noticeable over-smoothing and structural degradation,
especially the background. Key edges and object contours
are blurred out. This visually supports the observed tradeoff
in DBE performance: While dropout might reduce overfit-
ting, excessive regularization can diminish the model’s abil-
ity to preserve some structure details for accurate depth pre-
diction.

Overall, none of the strategies perfectly match the
ground truth, which exhibits sharper edges and finer details
in general. These qualitative results underscore the limits
of the standard evaluation metrics, reinforcing the value of
DBE metrics as the main diagnostic tool for structural fi-
delity and generalization under adverse conditions.

7. Conclusion and future work

In this project, we fine-tuned a pretrained Dense Predic-
tion Transformer (DPT) model to study depth estimation for
adverse visual conditions. Upon setting up a fine-tuning en-
vironment using a scale- and shift-invariant loss, we experi-
mented with different techniques to improve model general-
ization and robustness, including an enhanced consistency



Table 2: Visual evaluations using DBE in pixels. “DBE
acc” refers to accuracy error. “DBE comp” refers to com-
pleteness error.

Model Dataset DBE acc DBE comp
. Original 6.665 8.399
Baseline
Augmented 6.953 8.888
Vanilla Original 6.479 7.286
Augmented 6.585 7.433
C+Ef Original 3.818 7.785
Augmented 4.028 8.216
C+Fp Original 5.458 7.677
Augmented 5.589 8.282
C+F0 Original 3.881 7.366
Augmented 3.985 7.563
C+Ff+D00.3 Original 4.013 7.701
Augmented 4.403 8.101
C+Ff+D00.5 Original 4.043 7.842
Augmented 4.350 8.255
iginal .822 7.
C+Fp+D00.3 Origina 3.8 569
Augmented 4.131 7.926

Table 3: Accuracy and completeness error differences be-
tween original and augmented test sets. For both errors, the
original test set value is extracted from the augmented test
set value

Model DBE acc difference DBE comp difference
Baseline 0.288 0.489
Vanilla 0.106 0.147
C+Ff 0.210 0.431
C+Fp 0.131 0.605
C+F0 0.104 0.197
C+Ff+D00.3 0.390 0.400
C+Ff+D00.5 0.307 0.413
C+Fp+D00.3 0.309 0.357

loss for domain robustness, architectural adjustments and
regularization. We leveraged basic image processing meth-
ods to simulate blurred and nighttime environment againt
original NYU Depth V2 data. This provided a foundation
for the comparison between normal and degraded visual
conditions.

We adopted both standard metrics including Absolute
Relative Error (AbsRel), Root Mean Square Error (RMSE),
and the accuracy under threshold ratios d1, d2 and d3, and
visual metric Depth Boundary Error (DBE) for evaluation.
Our results indicated that fine-tuning techniques consis-

Baseline Consistency + No freeze Vanilla finetuning  Consistency + 0.5 dropout

Ground Truth Ground Truth o Ground Truth o Ground Truth
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Figure 2: Comparison of depth maps. Inference results
from baseline model, consistency loss + No freeze model,
Vanilla Finetuning, Consistency loss + 0.5 dropout. We in-
cluded 2 scenes from test set, under dining room class.

tently improve the overall performance of depth estimation.
Specifically, in our context, consistency loss is a powerful
method to minimize the differences between original and
augmented prediction results. This effectively improves
model robustness and generalization. On the other hand,
incorporating encoder and decoder adjustments introduces
tradeoffs. Encoder layer freezing preserves pretrained gen-
eral purpose image features, however, for adverse visual
conditions, more flexible feature extraction mechanism may
be necessary. While decoder dropout layers mitigate the
risk of overfitting, careful design is required to prevent fea-
ture loss caused by aggressive regularization.

Although transformers are powerful for image tasks such
as depth estimation, because of its internal complexity, it
remains challenging to interpret how an individual design
change affects the overall training process and inference
performance. For future work, in addition to progressively
incorporate adaptations through trial and error, we want to
continue exploring a more controlled experimentation de-
sign with isolated variables, and improved model selection
using an integrated loss and evaluation mechanism. Further-



more, larger datasets with more simulated or real adverse
visual data samples would facilitate the study in this field
and help us further understand real-world vision tasks.
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