
Deception classification from video input

Lillian Ma
Stanford University

353 Jane Stanford Way, Stanford, CA 94305
ylma@stanford.edu

Stephanie Vezich Tamayo
Stanford University

353 Jane Stanford Way, Stanford, CA 94305
isvezich@stanford.edu

Abstract

Reliable deception detection is important across a num-
ber of real-life contexts from criminal law to political nego-
tiations. However, human performance is notoriously poor,
and past machine learning work in the domain has largely
leveraged traditional techniques that either rely on labo-
rious handcrafted features or do not leverage the spatial
structure of video inputs. In this research, we explore the
use of image and video Vision Transformers for supervised
deception classification. We also explore the benefit of video
compression techniques to improve memory efficiency. This
resulted in four models: 1) ViT without video compression,
2) ViT with video compression, 3) MViT without video com-
pression, 4) MViT with video compression. All four mod-
els demonstrate superior accuracy to human baselines and
we see modest improvement from both video compression
and video models relative to their uncompressed and im-
age model counterparts. These results suggest that video
models may encode better spatiotemporal structure and that
compression may have a regularizing effect.

1. Introduction
Deception detection is an important task across a va-

riety of domains, from forensics to everyday interactions.
However, humans are notoriously poor at assessing truth-
fulness in interactions, with past studies showing accuracy
rates ranging from 60% to less than 50% [4]. Unlike tasks
like visual perception that have a very high human accu-
racy baseline, social perception tasks like this are difficult
in part because it is impossible for humans to focus entirely
on subtle cues (both verbal and nonverbal) that may indi-
cate whether deception is occurring [5]. Rather, we are
currently multitasking in these interactions–trying to deci-
pher the content of the speech, intuit the speaker’s intention,
generate a response of our own, etc.–which leaves limited
cognitive capacity to attend to deception cues even if they
exist.

Computer vision models, however, have no such compet-

ing sources of cognitive load. Hence, it is possible that they
may be able to exceed the low baseline of human perfor-
mance. In line with this hypothesis, there is a robust body
of existing literature on automated deception detection, cat-
egorized by the classes of features they use and their appli-
cations in Figure 1 [15].

However, to our knowledge, the techniques used largely
vary from statistical analysis to some traditional ML (e.g.,
decision trees, SVM) and deep learning (e.g., CNN, LSTM)
classifiers, and often rely on hand-crafted features [15].
Given recent advances in data-driven learned feature rep-
resentations and the shift away from manual feature engi-
neering, we would like to explore whether we can classify
deception based on video inputs alone.

Specifically, the data we use is a labeled set of video
clips. The input to each model is sampled video frames
of faces in which the subject is telling a truth or a lie, and
the output is a binary classification score corresponding to
the probability that the clip contains a lie. We use CNNs as
a feature tokenizer. We then feed the output as a sequence
of tokens to an image model backbone (ViT-B16) [8] in the
baseline model and a video model (MViTv2) [16] in the
candidate model, both with classification heads. We lever-
age adapter layers between blocks in each of the pretrained
models for parameter-efficient fine tuning. Finally, we ex-
plore video compression as a preprocessing step for better
model efficiency in memory constrained environments.

2. Related Work
There has been a wealth of research on deception detec-

tion tasks in the machine learning literature over the past
decade. Here we discuss high-level trends in: a) the type of
data used, b) preprocessing and feature extraction, c) model
algorithms and architectures. In each section, we discuss
how these trends informed our study design.

2.1. Data

Publicly available video datasets on deception detection
are generally categorized by whether they involve high-
stakes (e.g., criminal records, political negotiations) or low-

4321



Figure 1. Taxonomy of deception detection features, from King and Neal [15]

stakes (e.g., interpersonal conversations, games) scenar-
ios [15]. High-stakes datasets such as the Real-Life Trial
Dataset [18] or the Mock Theft Experiment [1] tend to uti-
lize either professional actors in scripted recordings or op-
portunistic data from real-life sources such as criminal pro-
ceedings. Low-stakes datasets such as Bag of Lies [12] and
Werewolf [13] skew towards convenience sampling meth-
ods such as recording university student study participants
in a lab setting.

In the current study, we utilized the DOLOS dataset,
which is composed of YouTube clips from a game show that
involves telling truths and lies [11]. This dataset had sev-
eral desirable properties for training a model that can gen-
eralize well: 1) it is intentionally balanced on class labels
and gender, 2) it is from a more naturalistic setting (e.g.,
includes multiple angles and scenes, subjects vary in age)
than lab-recorded data, and 3) the deception content covers
a broad range of topics. However, it is limited to the game
show context and does not include high-stakes scenarios;
it would be useful to construct a dataset that varies in this
dimension as well.

2.2. Preprocessing and feature extraction

Video data for deception detection is often split into vi-
sual and auditory modalities. For visual data, researchers
have typically cropped frames to the face of the speaker us-
ing standard libraries such as OpenCV [19] or MTCNN
[24]. They have also applied normalization techniques to
make aspects such as lighting and image resolution more
consistent across examples [20]. In addition to the video
input itself, many studies hand annotate eye gaze, body lan-
guage, etc. to use as additional features. Some of these an-
notation schemes such as MUMIN [2] have been codified
for consistent use across studies.

We followed these common cropping and normalization
approaches to ensure that the frame input passed to each

model focused primarily on facial expressions (rather than
attending to irrelevant scene input or variance in image
facets like lighting). Although audio waveforms have been
shown to include valuable signal for this task both in uni-
modal and multimodal settings, we decided to focus on vi-
sual input only for the scope of the project; however, adapt-
ing the current work to a multimodal setting would be a
natural extension. In addition, though the DOLOS dataset
included annotations of body language, eye gaze, etc., we
also excluded this data from our analysis to keep the mod-
eling focused on visual input. It would be interesting to
explore the incremental value of this metadata.

One area of video preprocessing that has been a notable
gap in the deception detection literature is video compres-
sion. Given the subtlety of the task and the temporal struc-
ture over which facial cues may operate to indicate decep-
tion (e.g., change in eye gaze), longer sequences of frames
may be valuable for this task. However, there is a clear ten-
sion between higher frame sampling rates and memory con-
straints. To better balance this tradeoff, we explored com-
pression as a preprocessing step, which has shown promis-
ing results in other video understanding tasks [23].

2.3. Model algorithms and architectures

Past literature largely treats deception detection as a
fully-supervised binary classification problem, with each
example labeled as deceptive or truthful [4]. More recently,
there has been work to explore unsupervised methods such
as Deep Belief Networks [17] and semi-supervised meth-
ods [10] in order to address the data bottleneck of hand
labeling, but these approaches are still less common.

Historically, traditional ML algorithms for classification
have been used, including decision trees [14], SVM [12],
and logistic regression [7]. More recently, deception re-
searchers have explored deep learning models well suited
for sequences and images such as LSTMs [9] and CNNs

4322



[3]. With the surge in popularity of Transformer-based
architectures in the last 5-10 years, some deception re-
searchers have explored these methods as well, though they
have largely been scoped to ViTs with less exploration of
video native models [11].

Given the strong empirical performance of Transformer-
based architectures across a variety of image and video un-
derstanding tasks, along with the availability of reliable pre-
trained models, we chose to use Vision Transformers as our
backbone models. However, we added several enhance-
ments, described in more detail in the Methods section.
Namely, instead of using raw image patches as input, we
first passed videos through convolutional layers, treating the
CNN as a learnable tokenizer. This was to allow the train-
ing procedure to learn rich spatial structure-aware feature
maps despite the small sample size. We also inserted learn-
able adapter layers between Transformer blocks to enable
parameter-efficient fine tuning for this task. Lastly, we ex-
plored a compression algorithm using VAE to preprocess
the input data. This not only dramatically reduced the mem-
ory and computation required to train, but also slightly im-
proved model performance.

3. Methods

3.1. Image model

For the baseline model, we leveraged source code from
Guo et al. that treats the data as a sequence of images, gen-
erates an embedding for each image, then passes the embed-
dings as a sequence of tokens to a pretrained image model
[11]. Specifically, it first extracts features from the frame
images by using a series of Conv2d blocks. Each block
consists of a Conv2D layer, BatchNorm2d and ReLU. The
architecture is structured with three main Conv2D blocks,
each followed by two additional Conv2D blocks with resid-
ual connections. Average pooling is applied at the end for
global feature extraction, resulting in a feature map of size
64 x 256.

This sequence is then passed to the pretrained model
ViT-B16 (Vision Transformer) [8]. Vision Transformers
adapt the Transformer block architecture to image tasks by
dividing images into a sequence of patches and treating
each patch as a token input. This specific version of Vi-
sion Transformer is a mid-size base model (B) that operates
on 16 x 16 pixel patches (16). Though ViT-B16 typically
expects raw image patches as input, in this case the CNN
works as a learnable tokenizer. In other words, we pass a
sequence of 64 tokens, each of which is a 256-dimension
embedding. Using a CNN as a tokenizer could be benefi-
cial in this case where the dataset is relatively small and the
domain of face classification is fairly specialized because it
introduces inductive bias about image locality.

A positional embedding is added and then passed to ViT-

B16 with a classification head and 4 adapters. Each adapter
is inserted between the attention and feed-forward layer of
the transformer encoder, and consists of dropout (p=0.1),
linear, ReLU, linear, and layernorm layers. This enables
parameter-efficient fine tuning because only the adapter lay-
ers need to be trained while the rest of the transformer en-
coder (mostly) can remain frozen.

While the baseline model showed promising perfor-
mance in Guo et al. [11], it has two key limitations. First,
while the CNN features encode some spatial structure inter-
nally, that resolution is weakened once we pass a sequence
of 64 embeddings to the ViT. Second, ViT-B16 was trained
on images and is not particularly tailored for video tasks.

3.2. Video Model

To address these limitations, we kept a similar over-
all procedure but substituted MViTv2 (Multiscale Vision
Transformer) for the backbone model [16]. MViTv2 is a
variant of Vision Transformers that leverages a unified ar-
chitecture for image and video data. It has been shown
to have strong performance on a variety of visual recog-
nition tasks from image classification to video understand-
ing. This flexibility is achieved primarily through multi-
scale attention, which processes inputs at multiple scales
rather than using fixed-length tokens as in ViT and thus en-
ables the model to capture representations of both coarse-
and fine-grained details.

We adopted an analogous feature extraction pipeline in
our video model. Video frames were first passed through 3
sets of 3 3DConv blocks, followed by 3D average pooling.
Each set of the 3DConv block had a residual connection for
the last two blocks, similar to its 2D counterpart. This con-
figuration explicitly convolved across the temporal dimen-
sion, enhancing the model’s capacity to learn spatiotempo-
ral features. The resulting feature map had shape (N, 256,
4, 4, 4), where N is the batch size, 256 is the channel di-
mension, and the final three dimensions correspond to time,
height, and width. We then flattened the spatial-temporal
dimensions and projected them to a 96-dimensional space
using a linear layer followed by ReLU activation, matching
the expected input size of MViT. Next, MViT-style posi-
tional encodings were added, and the sequence was passed
through four pre-trained MultiscaleBlocks. Each block was
followed by the same adapter layer used in the ViT-based
model, and the output was fed into the same classification
head (Figure 2).

Several additional modifications distinguish this model
from the original. Although we initialized the model with
default pre-trained weights, we chose to unfreeze the Mul-
tiscaleBlocks during training. This decision was informed
by early signs of overfitting when the blocks were frozen,
likely due to the limited adaptability of the fixed adapters.
Moreover, by using MViT’s built-in positional encoding

4323



scheme instead of fixed embeddings, we were able to better
preserve the spatiotemporal structure of the video features.

Figure 2. Video model architecture.

3.3. Video Compression

In addition to using the original 64-length sampled im-
age sequences as CNN inputs, we also experimented with
compressing the video input to enable larger batch sizes.
Using the original cropped jpegs as inputs, the batch size
was set to 4 due to memory limits. This de-stabilized our
training and made tuning more difficult. Additionally, train-
ing speed was slow (over 2 hours for 120 epochs). This
prompted us to explore techniques to reduce this bottleneck.

Namely, we followed the neural compression approach
from Wiles et al. [23], which demonstrated strong per-
formance on downstream classification tasks. The neural
compressor consists of a standard VQ-VAE (Vector Quan-
tized Variational Autoencoder) [22], which encodes input
data into a discrete latent space using a learned codebook
of embedding vectors. This discrete representation can im-
prove interpretability and is often more efficient or better
suited for downstream tasks like compression or generative
modeling compared to traditional VAEs. The decoder can
then take this quantized representation and reconstruct the
original input.

For purposes of compression, we only used the encoder
portion of the compressor. The encoder maps images to a
spatial tensor, where each vector in the tensor is then com-
pared with a sequence of embedding using nearest neigh-
bors. We modified the code base provided by Wiles et al.,
such that the existing encoder-decoder only produces quan-
tized embeddings for each frame. We then stored each clip
as a collection of these chosen embeddings for each image
frame on disk as a .npy file. At training time for video clas-
sification, these .npy files were loaded from disk and fed
directly as tensor inputs to the downstream neural net (see
Figure 4). They were uniformly sampled down to 64 em-

bedding vectors per clip. An example of an original frame
from our sample dataset, as well as its de-compressed frame
using the VQ-VAE decoder, is shown in Figure 3.

Figure 3. On the left is a frame of the original cropped video clip
used in uncompressed models. On the right is the decompressed
image produced by decoding the VQ-VAE embeddings tensor.

We chose to use the pre-trained encoder with a compres-
sion rate of 786, which produces generated tenors of shape
(N, 64, 512 14, 14), where N is the batch size, 64 is the
number of frames, 512 is the embedding size of the VQ-
VAE encoder, 14 x 14 is the new compressed height and
width dimensions. Compared to the size of the previous
jpeg inputs (N, 64, 3, 244, 244), the compressed image rep-
resentations are 56.2% of the original size. Due to its mod-
ified shape, we also modified our downstream baseline and
video’s convolution blocks. The new models each only have
a single group of 3 Conv2D/Conv3D blocks where the last
two blocks have a skip connection. The convolution layers
now have a kernel size of 1 and output channel size of 256,
while preserving the other dimensions. We also apply the
same average pool at the end prior to passing the input to
the ViT/MViT layers/blocks (Figure 4).

Figure 4. Compression model architecture.

The CNN architectural reduction was based on the hy-
pothesis that the VQ-VAE encoder had already captured

4324



rich high-level features, eliminating the need for additional
deep convolutional layers. By simplifying the network,
we significantly lowered memory and computational costs,
which in turn enabled more flexible training and using ad-
ditional model layers. Crucially, this compression strategy
did not result in noticeable performance drop compared to
baseline models trained on the original, uncompressed in-
puts (see Results section).

4. Dataset and Features
We used the DOLOS Audio-Visual Deception Detection

dataset from Guo et al. published at ICCV 2023 [11].
The authors sourced clips from a British reality comedy
game show available for download on YouTube that in-
volves telling lies and truths. They edited the clips to satisfy
two requirements: 1) the clip includes only relevant truth/lie
content in a clear voice free of background noise, 2) the
speaker’s face is visible with no occlusion.

Over 84 episodes, they produced 1427 clips from 213
individuals (141 male, 72 female). The min clip duration is
2 seconds and the max is 19 seconds. The class labels are
fairly balanced with 46% truths and 54% lies. This dataset
was randomly split into 965 train examples (452 truth, 513
lie) 463 validation examples (214 truth, 249 lie).

Each clip was hand annotated with features such as the
gender of the speaker, hand gestures, eye movement, verbal
fluency, etc. However, we did not include these features in
the current analysis. Each clip also included audio wav files
and jpeg image files as the original paper focused on multi-
modal understanding–they built audio only, visual only, and
fusion models–however, we focused on visual input only so
discarded the audio data.

The data repository included image preprocessing scripts
which we used directly. This process uniformly samples
64 images from each video clip. It then crops the im-
ages to faces with the MTCNN face detector [24]. Fi-
nally, they are resized to 224 x 224 pixels and normalized
using mean ([0.485, 0.456, 0.406]) and standard deviation
([0.229, 0.224, 0.225]) values from ImageNet [6]. No data
augmentation was applied.

5. Experiments/Results/Discussion
We trained all models for 120 epochs using binary cross

entropy loss (Equation 1) and the Adam optimizer, with
the exception of the baseline model at 100 epochs for early
stopping.

L = − 1

N

N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (1)

We experimented with learning rates between 1e-3 and 1e-
7, and chose 3e-7 for the findings we reported as it yielded

the best results. We also used 0.8 for exponential decay rate
for momentum, and 0.99 for velocity. This helped stabilize
our training and we saw a more steady decrease of our loss
over time. We explored using L2 regularization to reduce
overfitting, but had little success. Instead, we found that it
was more effective to unfreeze the pre-trained layers of the
respective downstream transformer models. However, due
to memory limitations, this was not feasible for the baseline
model and was only possible using compressed input. This
was also possible in the video transformer model without
uncompressed data due to 3DConv blocks using less mem-
ory for the same input size compared to its 2D counterparts.
We kept a relatively low batch size of 4 for baseline and 8
for our video model. For the uncompressed input models,
we used a batch size of 16. In an effort to keep the training
procedure as fast as possible, we did not do cross validation
but simply maintained a 30% validation set for evaluation.
The results our models are summarized in Table 1.

Given relatively balanced classes, we focused on accu-
racy (Equation 2) and F1-score (harmonic mean of preci-
sion and recall; Equation 3) as our primary evaluation met-
rics.

Accuracy =
Number of Correct Predictions
Total Number of Predictions

=

∑N
i=1 1(ŷi = yi)

N
(2)

F1-score = 2 · Precision · Recall
Precision + Recall

(3)

Table 1. Summary results of model performances and training
times

5.0.1 Baseline image model - uncompressed inputs

This model simply replicates the results found in Guo et
al. [11] with slightly different hyperparameter values (100
epochs vs. 20 to enable better learning, LR of 3e-7 vs. 3e-
4, batch size of 4 vs. 16 to address OOM). The results
were quite similar; we observe 80.71% train accuracy and
61.26% validation accuracy (vs. 61.44% validation accu-
racy in the original paper), and a train F1-score of 0.82 and
a validation F1-score of 0.63 (vs. 0.69 validation F-1 in the

4325



original paper). We see clear evidence of overfitting, as val-
idation loss starts to steadily increase and we see a moderate
train-validation gap (Figure 5).

Figure 5. Image model without compression.

5.1. Baseline image model - compressed inputs

This model retains the image-pretrained backbone and
the same adapter layers but introduces a compression step
in image preprocessing. This allows for a batch size of 16
and enables experimentation with additional encoder lay-
ers. Fewer convolution blocks were also needed, likely con-
tributing to reduced training time and memory usage. Im-
portantly, we saw that the validation accuracy did not suffer
but increased from 61.26% to 63.64%. This is significant
as the training time also decreased substantially from 2.156
hours to just 39.8 minutes. This hints that the VQ-VAE en-
coder is a rich video feature extractor, better than that of the
series of Conv2D blocks used in the baseline model.

We were also able to unfreeze all ViT encoder layers dur-
ing training, which could have contributed to reducing over-
fitting: training accuracy dropped from 80.71% to 67.43%,
closer matching the validation accuracy. Similarly, the
training F1-score decreased from 0.82 to 0.71, but the vali-
dation F1-score rose from 0.63 to 0.69. The validation loss
no longer increased, as it did in the baseline model with-
out compression. Most notably, these results highlight the
benefits of memory-efficient techniques in improving model
performance while reducing computational cost (Figure 6).

5.2. Video model - uncompressed inputs

In this model, we do not compress the video inputs but
replace the ViT pretrained model with MViT v2 and corre-

Figure 6. Image model with compression.

spondingly replace the preceding 2D CNN tokenizer with
3D CNN. Relative to the image model with compression,
we see improvement in validation accuracy, increasing from
63.64% to 66.67%. Validation F1-score is similar at 0.70,
vs. 0.69 in the image model without video compression.
Similar to the baseline model without video compression,
we see evidence of overfitting (82.16% train accuracy vs.
66.67% validation accuracy, and 0.83 train F1-score vs.
0.70 validation F1-score). This led us to wonder whether
the compression technique has a reliable regularizing effect.
Furthermore, the limited performance gain over the base-
line suggests that the 2D Conv blocks and ViT transformer
were relatively effective at extracting features relevant for
lie detection from frame collections, without explicit tem-
poral modeling. This may indicate that collections of static
facial features alone are reasonably informative, potentially
rivaling short video clips in detecting deception (Figure 7).

5.3. Video model - compressed inputs

In the final model, we combine the use of video compres-
sion and the MViT pretrained model with a 3D CNN tok-
enizer. Like the compressed baseline model, we see a slight
improvement in validation accuracy (68.61% vs. 66.67%)
despite the runtime difference of 2.076 hr vs 40.5 min. We
also see comparable validation F1-score (0.70 vs. 0.70) rel-
ative to the video model without compression. Interestingly,
we do not observe as strong of a regularizing effect from
compression as we saw in the image model. There is still
moderate overfitting (84.54% train accuracy vs. 68.61%
validation accuracy, 0.86 train F1-score vs. 0.70 validation

4326



Figure 7. Image model with compression.

F1-score), which is comparable to what we observe in the
video model without compression but less severe than the
image model without compression. This suggests that video
compression may have a slight regularizing effect, but more
research is warranted on the topic. This also adds stronger
evidence of the hypothesis proposed before–that using VQ-
VAE encoder as a pre-processing technique for videos may
be more effective in classification tasks for short clips with
lower frame resolution, while reducing compute resources
(Figure 8).

Figure 8. Image model with compression.

5.4. Qualitative analysis

We examined video clips where the models made incor-
rect classifications. Across all 4 models, 43 clips were con-
sistently misclassified. This is approximately 26% to 32%
of each model’s total false predictions. We did not observe
a significant increase in shared misclassifications between
compressed vs. their non-compressed counterparts. Look-
ing at the data itself, there were no clear visual patterns
distinguishing correctly detected lies from false predictions.
This is not surprising, as it is quite difficult for a human to
detect lies by only looking at the video without sound (Fig-
ure 9). Given this challenge, the compressed video model’s
69% accuracy is impressive. However, we did identify a
potential area for improvement: in some of the falsely pre-
dicted lie videos, the beginning of the video was not cleanly
cut - the clip contained reaction shots of other faces, as
shown in Figure 10. These unintended frames, often show-
ing genuine emotional responses, may have contributed to
misclassification during both training and validation.

Figure 9. Example of truth telling in top row vs. example of lying
in the bottom row.

Figure 10. Example of a wrongly categorized truth clip where the
beginning of the clip is polluted by a reaction shot.

6. Conclusion/Future Work
This research explored the use of image and video Vi-

sion Transformer models (using preceding CNNs as tok-
enizers and adapter layers for parameter-efficient fine tun-
ing) to classify deception in video clips. To address memory
bottlenecks and enable higher frame sampling rates, we also
explored the use of video compression.

Consistent with past ML research on deception de-
tection, we find that these models perform significantly
above chance and human benchmarks. We replicated Guo
et al.’s [11] past results using ViT and no video com-
pression, achieving 61.26% validation accuracy. We im-

4327



proved on these results by adding a compression step be-
fore the image model, which increased validation accuracy
to 63.64%. Using a video model further improved perfor-
mance (66.67% validation accuracy without compression,
68.61% with compression).

These results suggest that both video models and video
compression have a positive impact relative to image mod-
els and uncompressed inputs. Video models are likely ben-
eficial because they can encode both spatial and temporal
structure, whereas the CNN tokenizer process loses repre-
sentation of spatial structure as it outputs a single embed-
ding for each frame. The benefit of video compression is
likely due to the VQ-VAE encoder being able to extract
richer temporal features better than CNN tokenizers, at least
for small clips of human faces. We also see some evidence
that it could have a regularizing effect, though more inves-
tigation is warranted.

There are several future directions that would be interest-
ing to explore with more time. First, it may prove valuable
to extend this approach to a multimodal setting by including
audio waveform inputs, the human annotation data, or tran-
scripts of the spoken content. In addition, the compression
technique we explored could be adapted to the audio modal-
ity to explore whether it further improves performance in a
multimodal setting.

For improving compression classification performance,
one could use the augmentation framework provided by
compressed vision neural net, which provides horizontally
flipped versions of the compressed video inputs. It would
also be worthwhile to experiment with different variational
autoencoders such as Neural Variational Autoencoder [21],
which is a more advanced VAE that can provide high-
fidelity image synthesis, to compare performance. Finally,
it would be valuable to investigate the effectiveness of us-
ing VQ-VAE as a pre-processing step for image and video
data across a range of classification tasks. Variational au-
toencoders, particularly in their vector-quantized form, may
serve as a general-purpose pre-processing technique to re-
duce memory usage and training time, while preserving
task-relevant information for downstream classification.

While there is still significant room for improvement be-
fore it can be used comfortably in high-stakes scenarios
such as court proceedings, the current work illustrates that
Vision Transformers can perform deception detection tasks
reliably better than human baselines and provides several
fruitful directions for future research.

7. Contributions

Lillian worked on the compression model and the video
model tuning. Stephanie worked on the video model. Both
worked on setting up the baseline model, generating the in-
put data, and writing the paper.

Links to public repos that we adapted:
https://github.com/google-
deepmind/compressed_vision - neural
compressor VQ-VAE encoder used to generate compressed
video input
https://github.com/NMS05/AV-Data-
Processing - video input data
https://github.com/NMS05/Audio-Visual-
Deception-Detection-DOLOS-Dataset-and-
Parameter-Efficient-Crossmodal-Learning
- ViT baseline model

References
[1] M. Abouelenien, V. Pérez-Rosas, R. Mihalcea, and

M. Burzo. Detecting deceptive behavior via integration of
discriminative features from multiple modalities. Trans. Info.
For. Sec., 12(5):1042–1055, May 2017.

[2] J. Allwood, L. Cerrato, K. Jokinen, C. Navarretta, and P. Pag-
gio. The mumin coding scheme for the annotation of feed-
back, turn management and sequencing phenomena. Lan-
guage Resources and Evaluation, 41:273–287, 12 2007.

[3] V. Belavadi, Y. Zhou, J. Z. Bakdash, M. Kantarcioglu, D. C.
Krawczyk, L. Nguyen, J. Rakic, and B. Thuriasingham. Mul-
timodal deception detection: Accuracy, applicability and
generalizability. In 2020 Second IEEE International Con-
ference on Trust, Privacy and Security in Intelligent Systems
and Applications (TPS-ISA), pages 99–106, 2020.

[4] A. S. Constâncio, D. F. Tsunoda, H. d. F. N. Silva, J. M. d.
Silveira, and D. R. Carvalho. Deception detection with ma-
chine learning: A systematic review and statistical analysis.
Plos one, 18(2):e0281323, 2023.

[5] H. Delmas, V. Denault, J. K. Burgoon, and N. E. Dunbar. A
review of automatic lie detection from facial features. Jour-
nal of Nonverbal Behavior, 48(1):93–136, 2024.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pages 248–255, 2009.

[7] M. Ding, A. Zhao, Z. Lu, T. Xiang, and J.-R. Wen. Face-
focused cross-stream network for deception detection in
videos. In 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7794–7803, 2019.

[8] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn,
X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer,
G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image
is worth 16x16 words: Transformers for image recognition
at scale, 2021.

[9] S. Fernandes and M. S. Ullah. Use of machine learning
for deception detection from spectral and cepstral features
of speech signals. IEEE Access, PP:1–1, 05 2021.

[10] H. Fu, P. Lei, H. Tao, L. Zhao, and J. Yang. Improved semi-
supervised autoencoder for deception detection. PLOS ONE,
14(10):1–13, 10 2019.

[11] X. Guo, N. M. Selvaraj, Z. Yu, A. W.-K. Kong, B. Shen, and
A. Kot. Audio-visual deception detection: Dolos dataset and
parameter-efficient crossmodal learning, 2023.

4328

https://github.com/google-deepmind/compressed_vision
https://github.com/google-deepmind/compressed_vision
https://github.com/NMS05/AV-Data-Processing
https://github.com/NMS05/AV-Data-Processing
https://github.com/NMS05/Audio-Visual-Deception-Detection-DOLOS-Dataset-and-Parameter-Efficient-Crossmodal-Learning
https://github.com/NMS05/Audio-Visual-Deception-Detection-DOLOS-Dataset-and-Parameter-Efficient-Crossmodal-Learning
https://github.com/NMS05/Audio-Visual-Deception-Detection-DOLOS-Dataset-and-Parameter-Efficient-Crossmodal-Learning


[12] V. Gupta, M. Agarwal, M. Arora, T. Chakraborty, R. Singh,
and M. Vatsa. Bag-of-lies: A multimodal dataset for decep-
tion detection. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW), pages
83–90, 2019.

[13] H. Hung and G. Chittaranjan. The idiap wolf corpus: explor-
ing group behaviour in a competitive role-playing game. In
Proceedings of the 18th ACM International Conference on
Multimedia, MM ’10, page 879–882, New York, NY, USA,
2010. Association for Computing Machinery.

[14] M. Kamboj, C. Hessler, P. Asnani, K. Riani, and M. Aboue-
lenien. Multimodal political deception detection. IEEE Mul-
tiMedia, 28(1):94–102, 2021.

[15] S. L. King and T. Neal. Applications of ai-enabled decep-
tion detection using video, audio, and physiological data: A
systematic review. IEEE Access, 12:135207–135240, 2024.

[16] Y. Li, C.-Y. Wu, H. Fan, K. Mangalam, B. Xiong, J. Malik,
and C. Feichtenhofer. Mvitv2: Improved multiscale vision
transformers for classification and detection, 2022.

[17] L. Mathur and M. J. Matarić. Affect-aware deep belief net-
work representations for multimodal unsupervised deception
detection. In 2021 16th IEEE International Conference on
Automatic Face and Gesture Recognition (FG 2021), pages
1–8, 2021.

[18] V. Pérez-Rosas, M. Abouelenien, R. Mihalcea, and
M. Burzo. Deception detection using real-life trial data.
In Proceedings of the 2015 ACM on International Confer-
ence on Multimodal Interaction, ICMI ’15, page 59–66, New
York, NY, USA, 2015. Association for Computing Machin-
ery.

[19] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov.
Real-time computer vision with opencv. Commun. ACM,
55(6):61–69, June 2012.

[20] L. Sun, Y. Wang, F. Wu, X. Li, W. Dong, and G. Shi.
Deep unfolding network for efficient mixed video noise
removal. IEEE Trans. Cir. and Sys. for Video Technol.,
33(9):4715–4727, Sept. 2023.

[21] A. Vahdat and J. Kautz. Nvae: A deep hierarchical varia-
tional autoencoder, 2021.

[22] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural
discrete representation learning. In Proceedings of the 31st
International Conference on Neural Information Processing
Systems, NIPS’17, page 6309–6318, Red Hook, NY, USA,
2017. Curran Associates Inc.

[23] O. Wiles, J. Carreira, I. Barr, A. Zisserman, and M. Mali-
nowski. Compressed vision for efficient video understand-
ing, 2022.

[24] J. Xiang and G. Zhu. Joint face detection and facial ex-
pression recognition with mtcnn. In 2017 4th International
Conference on Information Science and Control Engineering
(ICISCE), pages 424–427, 2017.

4329


