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Abstract

ScreenShield is a pipeline for detecting, segmentation,
tracking, and inpainting computer monitor screens in video,
balancing both speed and accuracy for latency-sensitive
scenarios such as live stream processing. It uses a finetuned
YOLOvI1 detector capable of 20 ms/frame, a YOLOvII
segmentation model running at 0.15 sec/frame, and Cutie
to track previously identified masks between frames. We in-
paint a blur of the content below the mask and optionally
allow users to customize cosmetic preferences, like border
and/or a logo.

Our finetuned pipeline observes an object detection F1
score of 0.87 and image segmentation F1 score of 0.78,
all the while reducing the runtime from 1.5 sec/frame on
zero-shot baselines to 0.15 sec/frame. By combining opti-
mizations like fast detection, conditional segmentation, and
mask propagation, ScreenShield demonstrates potential for
real time screen blurring. This is particularly useful for
video conferences, corporate livestreams, and matters of
national security.

This low latency pipeline could be used to make on-
device video classification possible, to eliminate possi-
ble leaks at their source, with no need for external stor-
age/transfer which present extra security challenges and in-
creases the number points of failure.

1. Introduction

Companies/agencies in today’s environment try to ap-
pear more authentic in order to appeal to modern audiences
by producing live streams and short-form relaxed content.
While this format is growing in popularity, they pose a
threat to the businesses they seek to promote by risking
private information leaking from the screens of their em-
ployees. Traditionally, these regions are blurred manually
by professional video editors in post. However, due to the
legacy methods for preventing this are becoming impracti-
cal for more frequent releases, a new technology is needed
to edit video footage in real time, protecting company se-
crets.
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Though there have been many breakthroughs in object
detection (YOLO), video segmentation (Meta’s Segment
Anything), and inpainting, there is no single system con-
necting these techniques together while still prioritizing la-
tency. We aim to present a unified framework for object
tracking and segmentation in video—in particular, tracking
objects in video and inpainting on computer monitors.

This could also be applied to the realm of national secu-
rity. When the press covers sensitive areas (e.g. SCIFFs),
cameras are seized and held until the footage is digitally al-
tered to remove security information. Our software would
be able to automatically do these removals, further enhanc-
ing security and efficiency.

2. Literature Review
2.1. Detection

The You Only Look Once (YOLO) models, originally
proposed in 2016 by Redmon et al [[17]], are a series of open-
source models targeting the specific task of image detection.
This CNN based architecture poses object detection as a re-
gression problem to bounding boxes and class probabilities.
Unlike prior R-CNN variants which requires multiple net-
work stages, YOLO performs classification with just one
pass.

Since then, the YOLO model has undergone many itera-
tions, improving speed and accuracy. Recently, YOLOvI11
added a spatial attention module that allows for the model to
better focus on important regions in the image and improve
accuracy on smaller and occluded objects [[13]. It also ex-
plores optimizations in the cross stage partial (CSP) blocks—
a technique used to improve the information encoded in a
feature map. This is done by splitting the feature map into
two paths along channels: one that undergoes transforma-
tion and another that bypasses it, reducing redundant com-
putations and improving training efficiency. YOLOv11 im-
proves computation efficiency further by using two smaller
convolutions instead of a single large one.



2.2. Segmentation

Long et al’s Fully Connected Networks for Image Seg-
mentation paper proposed swapping out the fully connected
layers with convolutions in a network, demonstrating that
FCNs can be trained and output a one-to-one pixel label
[15]]. Additionally, this new architecture made it possible
to handle arbitrary sized input dimensions. They also intro-
duced a skip architecture that allows for merging long range
context with short term detail.

Since then, Facebook Research built off these concepts
and released DINO [[11]] and the Segment Anything Model
(SAM) [14]. Caron et al. observed with their DINO model
that a vision transformer trained without any image labels
naturally learns attention maps that can identify the pres-
ence of an object. Paired with threshold cutoffs, they lever-
aged this property to perform segmentation tasks. SAM
wraps this idea into a promptable interface—given point,
box, or mask prompts, its transformer backbone and mask
decoder output a segmentation. Grounded-SAM extends
SAM by adding a grounding head that accepts text phrases
around which, model generates masks [2].

2.3. Video Tracking

One-shot video object segmentation (OBVOS) proposed
by Caelles et al explores the separation of an object from the
background of a video given a mask of the object on the first
frame [[10]. Using a fully convolutional neural network ar-
chitecture pretrained on ImageNet and finetuned on a video
segmentation dataset, OBVOS learns foreground vs. back-
ground discrimination for a per pixel output and predicts per
frame.

Space time memory networks then added global memory
banks [16]], appending recognized features from subsequent
frames into a global cache. This way, the model grows re-
silient in recognizing images in different permutations or
illusions than the first frame. Cutie builds off that by estab-
lishing a ”permanent” slot for objects, reducing complexity
for persistent features and avoiding object drift over long
video segments [12].

3. Datasets

We used datasets with bounding boxes and segmented
images for image detection and segmentation respectively.
We applied consistent preprocessing across all datasets: re-
sizing images to a fixed resolution (640x640), image aug-
mentation (flipping, color variants, etc.), and normalizing
pixel values.

3.1. Image Detection

* RoboFlow Computer Monitor Dataset: 1,312 com-
puter monitor images with bounding box annotations
using a 69:19:12 training, validation, and test split [1]].

* RoboFlow TV, PC, Monitors Dataset: 1,002 images
spanning various screen types, though slightly out-
dated tech, using a 68:20:12 training, validation, and
test split [3]].

* RoboFlow Office Monitor Dataset: 2,003 desktop
monitor images using a 72:19:9 training, validation,
and test split [6]].

* RoboFlow Screen Dataset: 350 neatly annotated im-
ages of modern laptops and desktop monitors using a
72:19:9 training, validation, and test split [7].

3.2. Image Segmentation

* RoboFlow Screen Segmentation: 350 images with
mask annotations of primarily desk setups. We use a
88:8:4 training, validation, and test split [8].

* Our Roboflow Dataset: 534 images spanning
YouTube videos and high-quality data from the image
detection datasets. Hand annotated by us for screens.
The dataset is split 70:20:10 [9].

* RoboFlow Laptop Screen Detection: 47 images fo-
cused on laptop screens in a range of real-world envi-
ronments. Split used is 87:8:5 [3].

* RoboFlow Laptop Screen Detection (Vivek ver-
sion): 58 images of neatly annotated laptops. Split is
88:8:4 [4].

4. Method

To obscure key regions, we need to identify, refine, and
apply a transformation to each frame of video. No exist-
ing out of the box methods existed for our use case so we
created a custom pipeline divided into 4 steps: detection,
segmentation, tracking, and inpainting. The detection
and segmentation tasks could be done with existing open-
vocabulary object models. However, both suffer from ma-
jor latency issues which make them impractical for our use-
case.

4.1. Image Detection

This step is key to identifying the first frame in which
a monitor is present. We use a traditional, bounding-box
detection model to detect the number of instances and loca-
tions for screens. Once any bounding box reaches our con-
fidence threshold, we transition to the segmentation stage.

4.2. Image Segmentation

Given a frame of interest as input, we feed it into a seg-
mentation model to create a mask for all the instances of
screens within the image. Once complete, it begins the Im-
age Tracking stage.



4.3. Image Tracking

The VOS model takes the last segmented frame and
tracks the previous instances through to the following
frame, adjusting the new mask which it uses as input when
tracking the next frame transition. If the number of in-
stances of screens (from 4.1), we restart stage 2 on that
frame and re-run segmentation on all occurrences (this is
done to include new monitors now in the field of view in
the segmentation mask initialization). Additionally, if the
existing items being tracked can no longer be tracked, we
terminate the Cutie session to reduce overhead.

4.4. Inpainting

Each of the segmentation masks identified on a given
frame represent the regions of a screen and consequently
are inpainted using a Gaussian blur effect on the bounded
pixels. This involves smoothing the image by taking the
average RGB values of its neighbors following a normal
distribution.

In addition, if the user wants to add a logo / border out-
line of the screens, they can set a CLI flag to do so. The logo
is then mounted into mask by computing the centroid of the
mask and scaling it to fit inside the segmentation mask.

5. Experiments
5.1. Evaluation Metrics

To evaluate our object detection and segmentation mod-
els, we utilize the following metrics.

e Precision: The fraction of all predicted bounding
boxes that actually contain a computer monitor screen.

* Recall: The fraction of computer monitors in a scene
that were successfully detected.

* F1 Score: The harmonic mean of precision and recall,
providing a single measure that balances both:

* AP@0.5 (Average Precision at IoU threshold 0.5): The
average precision computed when a predicted bound-
ing box is considered correct if its Intersection over
Union (IoU) with the ground truth is at least 0.5.

* AP@0.5:0.95: The average precision computed over
multiple IoU thresholds from 0.5 to 0.95 with a step
size of 0.05, offering a more comprehensive evaluation
of detector performance.

* Jaccard Similarity (also known as mean Intersection
over Union) to measure how accurately we can identify
the mask for a monitor screen.

MNG

where M is the pixels of the segmentation mask and G
is the ground-truth pixels of the object.

5.2. Image Detection

As a baseline for detection, we used GroundingDINO
with a zero-shot prompt of ”screen” to predict the bounding
boxes of the screens. While this was able to draw reasonable
bounding boxes around monitors, the major drawback of
this approach is latency. On a single T-4 chip, a single frame
takes 0.3 secs per inference.

To solve this issue, we finetuned a YOLOv11 model for
the task. This sped up inference to take only 0.02 seconds
per frame—a 15x improvement. In addition, this model
outperformed zero-shot DINO in every metric by a large
margin, indicating that despite advanced attention based ar-
chitectures showing promise in literature, when it comes to
domain specific tasks, finetuning on a convolutional model
yields better performance.

The full performance metrics of the two models are re-
ported in Table

5.3. Object Segmentation

As a baseline for segmentation, we used DINO-SAM —
a combination of both Grounding DINO and Segment Any-
thing. Again, similar to its performance in object detection,
this worked reasonably, but involved expensive inference—
we observed an inference of 1.2 seconds per frame on a sin-
gle T4 chip.

To solve the latency issue here, we finetuned a
YOLOv11-segmentation model to generate a precise mask
for the screens. This sped up inference significantly, ob-
serving an inference of 0.15 seconds per frame—an 8x im-
provement.

Unlike image detection, YOLOv11’s segmentation per-
formance shows mixed results. The finetuned YOLO model
achieves higher AP scores for both 0.5 and 0.95, indicating
that its confidence scores are more reliable across differ-
ent thresholds. However, DINO-SAM still generates tighter
masks when evaluated at a fixed threshold, as seen with the
higher precision, recall, and mean IoU scores.

The full performance metrics of the two models are re-
ported in Table[2]

5.4. Object tracking

Using a Cutie session, we were able to take steps be-
tween frames without having to recompute the mask in each
frame.

We also experimented with using frame-by-frame seg-
mentation and found higher latency as expected with negli-
gible performance benefits. The increase in time for infer-
ence on these images is extremely important for our desired
use case.



Table 1: Performance of object detection models

Model Dataset #Images #Instances | Precision Recall F1 Score AP@0.5 AP@0.5:0.95 Mean IoU
GroundingDINO (zero-shot) L 0.7750 0.8424 0.8073  0.7750 0.5677 0.8319
Validation 903 1472
YOLOv11 (finetuned) 0.8418 0.9110 0.8750 0.8418 0.7099 0.8963
GroundingDINO (zero-shot) . 0.7709 0.8410 0.8044 0.7709 0.5778 0.8453
Testing 401 648
YOLOV11 (finetuned) 0.8333 0.9028 0.8667 0.8333 0.7083 0.9009

Table 2: Performance of image segmentation models

Model Dataset #Images #Instances |Precision Recall F1 Score AP@0.5 AP@0.5:0.95 Mean IoU
DINO-SAM -shot .8680 0.8211 0.819 7721 . 7541
0-S (zero-shot) Validation 262 391 0.8680 0.8 8198 O 0.5850 0
YOLO (finetuned) 0.7301 0.7915 0.7395 0.7774 0.5995 0.6866
DINO-SAM (zero-shot) . 0.8236 0.8002 0.7903 0.7640 0.4914 0.7091
Testing 134 203

YOLO (finetuned) 0.7572 0.8531 0.7781 0.7732 0.6087 0.7220
Additionally, due to hardware constraints we had to re- Above we show qualitatively the outputs of our pipeline

duce the Cutie’s max_internal _size from 480 to 240, slightly through the steps of object detection, image segmentation,

degrading the accuracy of cutie tracking. and inpainting.

5.5. Pipeline
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So yeah this is my usual work station

you'll have a Fixed Income desk handling the bond executions)
o —

(b) Moving camera tracking
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Ryan has a simple setup as well Figure 3: YOLOvVI11 segmentation after mask propagation

Figure 2: YOLOvI11 segmentation mask First, we run fine-tuned YOLOv11 detector on each in-



put frame to create monitor bounding boxes. Figure [T dis-
plays the multiple identified bounding boxes identified in a
single frame.

Next, once the detector finds at least one monitor, we
pass this into our YOLOv11 segmentation model. In [2]
we see the initial segmentation mask produced on the first
frame with a detected monitor and in 3] the mask for a later
frame via Cutie. Image (a) demonstrates Cutie’s track-
ing ability on a stationary camera, while image (b) shows
off Cutie’s tracking on a moving camera. This means not
requiring any re-segmentation to create the second frame
which saves computation.

Finally, we inpaint each detected screen region with a
Gaussian blur under the mask. [ (a) shows output when just
blurring the masks. [5|(a) demonstrates user-supplied logo
overlaid at the mask center and [5](b) white border outline.

S
“Hvou’ll have a Fixed Income desk handling the bond executions)

(a) Gaussian-blur inpainting only.
Figure 4: Inpainting stages: (a) blurred screen region
We integrate all these stages continuously, creating a

low-latency pipeline. A demo video output of the pipeline
can be viewed at:

* Original input clip: https://youtu.be/QP8muGb9pRc

¢ Pipeline output with blurred inpainting:
https://youtu.be/-ISK1XjPA-g

* Pipeline output with logo and blurred inpainting:
https://youtu.be/nOgEO0KYxv0

-
o=

So yeah this is my usual work station

(a) Blur + logo overlay.

Ryan has a simple sétup as well

(b) Blur + border outline.

Figure 5: Inpainting stages: (a) logo addition, (b) border
outline

6. Conclusions

Overall, the pipeline works as intended with high accu-
racy and low latency. YOLO detection models outperform
zero-shot prompt models in accuracy and speed. YOLO
segmentation finetuned models are slightly less accurate
than their open-vocabulary peers. This is likely due to the
shortage of high-quality training data for the segmentation
task. Cutie performed very well at stepping the segmen-
tation maps between frames, even with many instances of
screens being tracked simultaneously.

Future areas of work could include:

* Mask Flickering: Occasionally, there is 1 frame in
which the mask disappears, leaving the screen visi-
ble before resuming tracking. This could be solved by
adding a post-processing step to mask a frame where
there are masks immediately before and after it se-
quentially.

* Device Types: refining the detection and segmentation
models to track specific types of screens, for example
recognizing phones/tablets as distinct categories to ex-
empt from obfuscation.


https://youtu.be/QP8muGb9pRc
https://youtu.be/-lSK1XjPA-g
https://youtu.be/nOqEOoKYxv0

* On Device Application: Applying this pipeline be-
tween the capture and save to storage steps of a vision-
enabled device. This would increase security in high-
risk scenarios, as the only copy of a video / photo taken
has had the sensitive material removed. With newer
phone models shipped with in-built GPUs (e.g. iPhone
16), this could possibly be built in to employer-issued
work phones to prevent the photographing and leaking
of sensitive / intellectual property materials.

* Logo Realism: Re-orienting and blending the logo
so that it matches the orientation of the screen and
the lighting of the original scene. Currently, we are
just dropping the logo on top of the blurred inpainting
within the segmentation mask, but thoughtfully inte-
grating the logo makes the final result less distracting
and adds a polished, professional appearance.
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Figure 6: A side-by-side comparison of DINO and YOLO object detection performance on examples in which YOLO fails.

DINO Detections YOLO Detections

Our YOLO model struggles mainly with background
monitors, more blurry and out of focus. This is permissible
for our usecase as false negatives on already blurry images
do not cause security concerns.
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