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Abstract

Aligning keypoints between electro-optical (EO) and
synthetic aperture radar (SAR) satellite imagery is crucial
for rapid disaster response but remains challenging due to
fundamentally different imaging modalities. In this work,
we use coarsely geo-referenced EO—SAR tile pairs from the
SpaceNet 9 Challenge (approx. 400 tie-points) as input
and train convolutional models to predict pixel-wise key-
point heatmaps. We first benchmark a Vanilla U-Net base-
line, then shift to a residual blocks (ResU-Net) approach
which improves stability on our limited dataset. Finally,
we introduce cross-modal attention—letting SAR and EO
features explicitly attend to one another at each encoder
scale—which yields a further reduction in keypoint local-
ization error compared to both Vanilla U-Net and standard
ResU-Net. Our best model achieves a 43.0% decrease in
End Point Error on held-out tiles. Future work will expand
the training set and explore real-time inference, with the
goal of accelerating life-saving mapping tasks in disaster
scenarios.

1. Introduction

Accurate sensor fusion of Synthetic Aperture Radar
(SAR) and electro-optical (EO) satellite imagery is essen-
tial for reliable change detection and damage assessment
in large-scale disaster response. In the aftermath of earth-
quakes, floods, or other major events, optical imagery is of-
ten are limited due to cloud cover, smoke, or inadequate
lighting, whereas SAR imaging can penetrate clouds and
collect data both during the day and night. By aligning or
“coregistering” SAR and EO images, emergency respon-
ders gain a more complete and complementary view of
the affected region, allowing rapid damage mapping and
informed allocation of resources [6]. Despite its impor-
tance, precise SAR - EO coregistration remains challeng-
ing because the two modalities record fundamentally differ-
ent imaging physics: EO sensors capture reflected visible-
spectrum radiance, while SAR sensors measure microwave
backscatter intensity. This leads to divergent contrast pat-

terns, speckle noise in SAR, and occlusion artifacts in op-
tical images, causing traditional feature-matching methods
to fail in many real-world scenarios [6].

Manual annotation of keypoint correspondences be-
tween SAR and EO over hundreds of square kilometers is
labor-intensive and prone to error [6]. Our motivation is
to develop a deep-learning approach that learns modality-
invariant representations to automatically detect and match
keypoints, thereby reducing human workload and acceler-
ating end-to-end registration pipelines.

The input to our algorithm is a pair of coarsely geo-
referenced GeoTIFF images—one RGB optical and one
single-channel SAR—covering the same area of interest
(AOI) at roughly 0.3-0.5 m ground sampling distance.
Each GeoTIFF includes metadata that guarantees coarse
alignment [6]. We preprocess by tiling each image into
512 x 512 patches containing candidate keypoint regions.
Given a tile pair (Iopt, Isar), our U-Net-based network
with cross-attention modules outputs a per-pixel likelihood
heatmap H, whose peak corresponds to the predicted key-
point match. In other words, the final output is a set of pre-
dicted coordinate pairs {(z{P", yP') < (aPAR, yPARYY
for each tile. Figure[I]illustrates an example of cross-modal
keypoint matching between SAR and EO imagery.

In the remainder of this paper, Section 2 reviews related
work on multimodal registration and deep keypoint match-
ing. Section 3 details our U-Net with cross-attention ar-
chitecture, loss formulation, and training procedure. Sec-
tion 4 describes data preprocessing, tile generation, and fea-
ture extraction. Section 5 presents quantitative and qualita-
tive experiments on SpaceNet 9 test sets, including ablation
studies on hyperparameters and architectural choices. Fi-
nally, Section 6 concludes and outlines future directions,
such as extending to other sensor pairs (e.g., SAR - hy-
perspectral) and incorporating geometric consistency con-
straints.

2. Related Work

Computer vision for remote sensing has advanced
quickly thanks to more multimodal imagery and the use
of transformer models. We group prior work into three



Figure 1. Example of cross-modal keypoint matching between
SAR and EO imagery.

categories: (i) transformer-based segmentation and change
detection, (ii) attention-augmented and lightweight CNN
fusion, and (iii) multimodal registration and feature-based
alignment. Below, we describe key papers in each group.

Transformer-Based Segmentation and Change De-
tection

Transformers have gained traction in recent years for
their performance when deployed at scale, and different ap-
proaches tackle remote sensing problems. FTransUNet [10]
combines a CNN branch with a transformer branch. It uses
Squeeze-and-Excitation and Adaptively Mutually Boosted
Attention (Ada-MBA) to fuse features at multiple levels.
On the WHU-RS19 dataset, it gets very high accuracy, but
it needs about 150 million parameters and around 48 GB of
GPU memory, so it is slow to train. BIT [2]] cuts down on
tokens by turning image patches into smaller semantic to-
kens before feeding them to the transformer. This saves a
lot of computation: on LEVIR-CD, BIT reaches about 85
% mloU with roughly half the FLOPs of a full transformer.
Dahal et al. [4] compare MaskFormer (with a Swin-Large
backbone) to a U-Net CNN that uses a special weighted
loss. On the iSAID dataset, they show that with the right
loss, a 42 million-parameter U-Net can reach within 7 % of
MaskFormer’s 88 % mloU while cutting inference cost in
half. These papers show that transformers are very good at
looking at long-range and cross-modal context but can be
too big or slow for real-time use.

Attention-Augmented and Lightweight CNN Fu-
sion

Innovation continues with CNNs, particularly when
focused on incorporating principles such as attention.
MAResU-Net [9] adds Linear Attention Mechanisms
(LAM) into U-Net skip connections. It uses a ResNet-34
backbone to get global context with less computation. On
the ISPRS Vaihingen dataset, MAResU-Net achieves about
83.3% mloU while using around 60 % fewer parameters
than big transformers. Xiao et al. [[17] propose Enhanced In-
terlayer Feature Correlation (EFC), which replaces the stan-

dard FPN. They use two modules—Grouped Feature Focus
(GFF) and Multilevel Feature Reconstruction (MFR)—to
boost small-object detection mAP by 1.7-3.1 % on Vis-
Drone and UAVDT, while reducing GFLOPs by up to 42.7
9. SuperYOLO [20] adds a super-resolution stage (resid-
ual dense blocks) before YOLO detection. This improves
small-object mAP by 5-8 % on DOTA and HRSC. These
models show that you can get many of the benefits of trans-
formers but with much lower cost: MAResU-Net balances
accuracy and memory, EFC focuses on interlayer links, and
SuperYOLO uses super-resolution to help detection.

Multimodal Registration and Feature-Based Align-
ment

Sensor fusion remains an active area of research. PSR-
Net [L8] treats registration as a two-way regression prob-
lem. It uses a Twins-SVT backbone with two branches (one
for each modality) to get features at three scales. Then a
Progressive Cross-Modal Transformer refines the deforma-
tion field step by step, using a consistency loss that keeps
the two directions aligned. On the HMRSIR dataset, PSR-
Net cuts endpoint error by 52-69 % compared to older
methods, but it uses about 300 GFLOPs and 120 million pa-
rameters, which is very heavy. CIRSM-Net [[16] adds SAR
physics into the feature extraction and uses a cyclic LSTM
optimizer guided by RIFT2 supervision. On SENI1-2 and
WHU-OPT-SAR, it halves endpoint error. Both PSRNet
and CIRSM-Net are top of the line but require a lot of com-
putation. Older feature-based methods are still useful when
compute is limited: Yu et al. [19] use “triangular features”
from road intersections and get over 80 % correct matches
even under strong radiometric changes (Potsdam and Nia-
gara). Chen et al. [3]] propose ISIFT, which is an iterative
loop of SIFT and RANSAC. On TerraSAR-X vs. Landsat-
8, ISIFT reduces RMSE by about 30 %. Roadcross works
well in cities but fails outside of road networks; ISIFT is
simple but can break when there is little texture.

Discussion

Transformer methods like FTransUNet, BIT, and Mask-
Former are the best when you have enough compute. BIT’s
token reduction and FTransUNet’s Ada-MBA are especially
clever. But they need a lot of memory and take a long
time to run. Attention-augmented CNNs like MAResU-
Net, EFC, and SuperYOLO get much of the same benefit
without such high cost—MAResU-Net’s linear attention,
EFC’s GFF/MFR, and SuperYOLO’s super-resolution all
show good trade-offs. For registration, PSRNet’s bidirec-
tional refinement is top-performing but heavy, while road-
cross and ISIFT are lighter and still work well when data or
compute is limited (often combined with manual checking).
Overall, most people use a mix of automated methods plus
manual validation; fully unsupervised end-to-end registra-



tion is still an open challenge.

3. Data

In this project, we leverage the SpaceNet 9 dataset,
which consists of high-resolution multi-modal satellite im-
agery and associated ground-truth tie-points specifically
curated for cross-modal registration tasks in earthquake-
affected regions. The primary data modalities are:

e Optical (Electro-Optical) Imagery: Three-band
(RGB) GeoTIFFs at approximately 0.3-0.5 m spatial
resolution, provided through the Maxar Open Data
Program [14]]. These images capture the visual
(chemical-reflectance) properties of the Earth’s surface
shortly before or after seismic events.

* Synthetic Aperture Radar (SAR) Imagery: Single-
band GeoTIFFs at approximately 0.3—0.5 m resolution,
supplied by UMBRA [8]. SAR data measure physi-
cal (backscatter) properties of the same areas, collected
via side-looking geometry, enabling cloud-penetrating,
day-night acquisition.

Each Optical-SAR pair corresponds to one Area of In-
terest (AOI). For the development (training) set, there are
three image pairs, each accompanied by a CSV of manually
labeled tie-points manually labeled by SpaceNet 9 organiz-
ers.. Each AOT’s tie-point CSV contains roughly 100-150
point correspondences—that is, pixel locations in the opti-
cal image matched to pixel locations in the SAR image. In
total, the training set includes approximately 400 tie-points
across the three scene pairs.

Dataset Size

 Training Imagery: 3 optical + 3 SAR GeoTIFFs, each
about 13,000 x 13,000 pixels (approximately 1.69 x
108 pixels per image).

* Tie-Points: The challenge curated a list of approxi-
mately 100-150 tie-points per AOI for a total of 400
tie-points.

 Tile-Based Subsets: For training keypoint detectors,
we extract 512 x 512 pixel tiles, with each tile contain-
ing a labeled tie-point. Each 512 x 512 patch spans
approx. 150 m x 150 m on the ground (at 0.3 m per

pX).

Pre-Processing and Special Treatment To train deep
networks for cross-modal keypoint detection and to esti-
mate pixel-wise transformation maps, we performed the fol-
lowing preprocessing steps:

SAR Image with Keypoint

Figure 2. Sample EO and SAR tiles generated during data process-
ing. Notice the keypoint is slightly offset in each image (hence the
registration problem).

Tie-Point Tile Extraction For each labeled tie-point, we
extract a 512 x 512 patch from both optical and SAR im-
ages, containing the optical pixel coordinate (for training
the SAR detector) or containing the SAR pixel coordinate
(for training the optical detector). Figure [2] shows a pair of
512 x 512 tiles extracted from optical (left) and SAR (right),
with a manually labeled keypoint highlighted.

Heatmap Label Generation From each tile pair, we cre-
ate a single-channel 2D Gaussian heatmap centered on
the corresponding keypoint location in the target modality.
Each heatmap occupies the same 512 x 512 grid, producing
a floating-point label map where values peak at 1.0 at the
ground-truth keypoint and decay toward 0 at distant pixels.
These heatmaps serve as regression targets for U-Net—style
keypoint detection networks, compelling the model to pre-
dict a continuous keypoint likelihood rather than a discrete
coordinate.

Normalization & Augmentation Optical tiles are nor-
malized per channel to zero mean and unit variance, using
training-set statistics computed over all extracted 512 x 512
crops. SAR tiles (single-channel) are likewise normalized.
Basic data augmentation (horizontal/vertical flips, 90° rota-
tions) is applied on the fly during training to improve ro-
bustness to orientation changes.

Dataset Splitting The full tile dataset (approximately 400
pairs) is randomly split 80% / 20% into training/validation
and test sets, ensuring that no tile from the same AOI ap-
pears in both sets.

4. Methods

There are multiple challenges associated with satel-
lite coregistration. Cross-modal mismatch motivates a
network that can learn modality-invariant features, since
SAR and EO imagery exhibit distinct contrast mechanisms,
noise characteristics, and spatial distortions. Secondly, our



dataset is small (400 tile pairs), suggesting we avoid ex-
tremely large models like Vision Transformers. Finally, our
methodology must remain scalable, allowing us to incorpo-
rate additional SAR-EO pairs without a complete overhaul
of the pipeline.

In our approach, we experiment with three model fam-
ilies: 1) Vanilla U-Net, 2) MAResU-Net, 3) MAResU-Net
variants with cross-attention.

4.1. Input, Output, and Loss

Each training example consists of a pair of coarsely geo-
referenced tiles,
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We concatenate them into a single 4-channel tensor:
X = [Iops; Isar] € RAX¥512x512
The network predicts a heatmap
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whose peak indicates the predicted keypoint location. Each
ground-truth keypoint (z*,3*) is encoded as a Gaussian
heatmap
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4.2. Vanilla and Residual U-Nets

Because our dataset is small (400 tile pairs), Vision
Transformers are unlikely to outperform. We therefore use
U-Nets for coregistration. A U-Net’s encoder downsam-
ples via convolution and pooling to capture context, while
its decoder upsamples and fuses encoder features through
skip connections to produce a pixel-wise heatmap [12]]. Ex-
tending beyond Vanilla implementations, Residual UONets
(ResU-Nets) improve feature extraction and training sta-
bility [7]. These ResU-Nets are implemented in different
forms throughout this report.

H*(z,y))".

4.3. Baseline Architectures

The SpaceNet 9 Challenge sponsors supplied reference
implementations for several baselines: KeypointArchitec-
ture, SiameseU-Net, and MAResU-Net [6]]. KeypointAr-
chitecture is a U-Net—based baseline that concatenates SAR
and EO channels and regresses a single-channel heatmap
[13]. SiameseU-Net uses two parallel encoder—decoder

streams—one for SAR, one for EO—merging their feature
maps in the decoder, which encourages modality-specific
feature learning before fusion [5]. MAResU-Net extends
ResU-Net by inserting multi-scale attention modules at
each skip connection: spatial attention captures long-range
context within a modality, while channel attention high-
lights complementary features shared between SAR and EO
[9]. These baselines provide a spectrum—from simple U-
Net to dual-stream fusion and attention-augmented mod-
els—against which we benchmark and refine our MAResU-
Net modifications.

We used the sponsor’s reference code as a foundation,
evaluating each baseline on our dataset before extend-
ing it. Beyond running their implementations, we inte-
grated cross-validation, richer data augmentation, and an
improved tile-extraction pipeline. Although these mod-
els gave us a head start, most of the work—particularly
the MAResU-Net cross-attention modifications—was de-
veloped from scratch.

4.4. Multistage Attention ResU-Net (M AResU-Net)
(9]

After establishing baseline results with simpler U-Net
variants, we adopted MAResU-Net because it explicitly
addresses two coregistration challenges: capturing long-
range context across high-resolution tiles (512x512) and
maintaining efficiency on our limited dataset ( 400 scenes).
Vanilla U-Net skip connections relay only local features,
while full non-local attention softmax(QK ")V over N =
H x W pixels scales as O(N?), which is prohibitive for
N = 5122

MAResU-Net uses a Linear Attention Mechanism (LAM)
to approximate the softmax kernel under unit-norm queries

and keys ||¢;|| = ||k;|| = 1. Instead of computing
N Tk
T .
[softmax(QK ") z_: T s

we apply a first-order Taylor expansion exp(q,” ki) =~ 1+
q; k;, yielding
Zj v + (qz—r Zj k; UJT)

D KVIZ )

which can be computed in O(N) time by precomputing
>, kj and 3= kj v/ [9, Eq. (12)]. This captures global
feature interactions without quadratic cost [9]].

Each attention block also includes: - Channel Atten-
tion: softmax(XX ") X over C channels (cost O(C?N),
but C' < N). - Spatial LAM: Project X € RE>**W into
queries @, keys K, and values V' € RN >4 yia 1x1 convo-
lutions, then apply D(Q, K, V).



The summed channel- and spatial-attention outputs pass
through a final 1x1 convolution, producing a refined feature
map F' € REXHXW,

MAResU-Net’s encoder is ResNet-34, which ex-
tracts multiscale features {Fy, Fy, F5, Fy} at resolutions
{1/2,1/4,1/8,1/16}. Each F}, is refined to F}, via an at-
tention block. In the decoder, Fy is upsampled and con-
catenated with Fj, followed by two 3x3 convolutions; this
process repeats until a full-resolution keypoint heatmap
is reconstructed. By inserting LAM at multiple scales,
MAResU-Net fuses global context and local detail, making
it well-suited for SAR-EO registration [9]].

4.5. Improving on MAResU-Net

With MAResU-Net as a foundation, we explored archi-
tectural variants to improve performance.

ResU-Net 18/34/50 We varied the ResNet backbone
depth within ResU-Net. ResU-Net-18 uses ResNet-18’s
four stages (18 conv layers), reducing parameters (approx.
11M) and mitigating overfitting [7]. ResU-Net-34 employs
ResNet-34’s stages (34 layers, approx. 21M params), bal-
ancing expressivity and generalization[7]. ResU-Net-50
uses ResNet-50’s bottleneck blocks (50 layers, approx. 34
M params), providing richer features at the expense of over-
fitting and longer training [7]. Empirically, ResU-Net-34
achieved the best trade-off between accuracy and stability

[7].

Cross-Modal Fusion (MAResU-Net + CrossAttn) In
addition, we focused on building a model that could fuse the
two modalities with cross-attention. Our CrossAttn vari-
ants enable SAR and EO features to inform each other at
every scale, rather than processing them in isolation. At
each encoder stage, we combine the SAR and EO feature
channels into a single representation. We then separate
that representation back into SAR and EO streams and let
each stream “attend” to the other—so SAR features learn
which EO patterns are most relevant, and vice versa. The
two attended outputs are merged and passed forward, al-
lowing the network to discover shared structures (such as
edges or corners) that appear in both modalities. This cross-
modal attention encourages the model to build representa-
tions that bridge the gap between SAR’s backscatter pat-
terns and EO’s visual cues, improving keypoint matching
compared to attending within each modality alone.

4.6. Implementation Details & Training

Model code draws from the following libraries:
torch (core PyTorch[l1l]), torch.nn (layers such
as Module, Conv2d, Softmax, Parameter),
torchvision.models (pretrained ResNet

backbones[1]]), torch.nn.functional (aliased
as F for activations and pooling). Data loading and tile
extraction were adapted from the SpaceNet 9 repository
(TensorFlow and PyTorch). We reused the sponsor’s
KeypointArchitecture and SiameseU-Net code with minor
edits. MAResU-Net’s attention blocks were reimplemented
in PyTorch—following [9]. CrossAttn code (feature
splitting, dual-attention passes, and fusion) was written in
PyTorch as part of this project.

5. Experiments, Results and Discussion
5.1. Evaluation Metrics

We evaluated model performance using both quantitative
registration metrics and qualitative assessments. In particu-
lar, our primary quantitative metrics were:

End-Point Error (EPE)

1o pre
EPE = N;Hpﬁ ‘- p¢,, Q)

where pP™°? is the predicted keypoint location (in pixel co-

ordinates) and pft is the ground-truth location, and N is the
number of keypoints in the test set [15].

Percentage of Correct Keypoints (PCK) at Thresh-
old ¢

N

1 re:
PCK(H) = S I(p"™ = pffa<t), @
i=1

where I(-) is the indicator function. We report PCK at ¢ =
10 pixels (PCK(10)) and ¢ = 20 pixels (PCK(20)).

5.2. Overfitting Analysis & Mitigation

Overfitting was a significant concern given the limited
number of unique AOIs (only three training scenes). Al-
though each tile was large (512x512 pixels), the risk of
memorizing scene-specific textures remained high. We im-
plemented several strategies to reduce overfitting:

e Data Augmentation: We applied random flips and
90° rotations to each tile, ensuring the model learned
rotationally invariant keypoint features rather than
scene-specific patterns.

 Validation-Based Checkpointing: During training,
we regularly evaluated performance on a held-out set
of validation tiles. Whenever validation metrics im-
proved, we saved a “best model” checkpoint, prevent-
ing later epochs from overfitting to the training tiles.



5.3. Initial Trials

To identify the most promising architecture,
we trained each of the three base implementa-
tions—KeyPointArchitecture, SiameseUNet, and

MAResU-Net—for 50 epochs under seven learning rates:
1x1072, 5x1073, 1x1073, 5x 1074, 1x107%, 5x107°,
and 1 x 1075, All models used the same fixed
train/validation split, mean-squared error (MSE) on
predicted heatmaps as the loss function, and reported
tie-point EPE (in pixels) on the validation set after 50
epochs. Data augmentation and cross-validation were not
applied at this stage. As shown in Figure 3] MAResU-Net
consistently outperformed the other baselines, achieving
end-point errors below 80 px at a learning rate of 5 x 1072,
compared to around 110 px for KeyPointArchitecture
and SiameseUNet_Pixelwise. These preliminary results
motivated us to refine the MAResU-Net architecture.
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Figure 3. Validation EPE (pixels) after 50 epochs for each baseline

at various learning rates. MAResU-Net (red) shows superior per-
formance, especially at lower learning rates.

5.4. MAResU-Net Variants

Having selected MAResU-Net as our foundation, we
compared three encoder backbone depths—ResUNet-18,
ResUNet-34, and ResUNet-50—under the same training
settings. Each model was trained for 50 epochs using
AdamW, a batch size of 4, and learning rates swept in
{5 x107%,1 x 1074, 5 x 10~°}. Figure [ plots valida-
tion EPE versus learning rate for each variant. ResUNet-34
achieved the lowest RMSE at 1 x 10~4, balancing represen-
tational capacity and generalization.

5.5. Cross-Attention Variants

Next, we evaluated cross-attention extensions of
MAResU-Net. We implemented CrossAttn_v3 variants
based on ResUNet-18, ResUNet-34, and ResUNet-50, each
trained for 50 epochs with learning rates in 1 x 1072, 5 x
1073, 1x 1073, 5x 1074, 1x 1074, 5x107°,. All models
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Figure 4. Validation EPE (pixels) after 50 epochs for MAResU-

Net variants (ResUNet-18, ResUNet-34, ResUNet-50) across
three learning rates. ResUNet-34 (red) performs best at 5 x 107°.

used the same batch size (4) and optimizer (AdamW). Fig-
ure [l shows that MAResU-Net34_CrossAttn achieved the
lowest validation RMSE (= 80 px at 5 x 10~°), outper-
forming its non-attention counterpart and other depth vari-
ants. This confirmed that cross-modal fusion at each skip
connection yields more accurate keypoint predictions.

Mean Distance vs. Learning Rate
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Figure 5. Validation EPE (pixels) after 50 epochs for cross-
attention variants. MAResU-Net34_CrossAttn (red) outperforms
other depths and non-attention baselines at 5 x 1075,

5.6. Final Training

For the final evaluation, we trained the selected archi-
tectures—KeyPointArchitecture, SiameseUNet_Pixelwise,
MAResU-Net34, and MAResU-Net34_CrossAttn—using
five-fold cross-validation and on-the-fly data augmentation
(random flips and rotations). Each fold was trained for 50
epochs with the learning rate that produced the best valida-
tion results in earlier trials (e.g., 5 X 10~5 for MAResU-
Net34_CrossAttn). We saved the best model checkpoint
per fold and computed test-set metrics (end-point error and
PCK) for each. Table[I]and [2]reports the average and stan-
dard deviation across folds, demonstrating that MAResU-



Net34_CrossAttn achieves the lowest mean end-point error
and highest PCK.

5.7. Quantitative Results

Through the final training, the MAResU-Net (with Cross
Attention) outperforms the baseline implementations. The
EPE across each of the models is shown in Table 1. Ad-
ditionally, the Percentage of Correct Keypoints is shown in
Table 2.

Table 1. Final test-set performance: End-Point Error (EPE) (mean
+ std across 5 folds).

Model EPE (px) |
KeyPointArchitecture 155.3 +16.4
SiameseUNet_Pixelwise 144.6 £4.0
MAResU-Net34 105.3 + 8.8
MAResU-Net34_CrossAttn  88.5 +-9.4

Table 2. Final test-set performance: PCK(10) and PCK(20) (mean
+ std across 5 folds).
Model PCK(10) 1
KeyPointArchitecture 49% + .68%
SiameseUNet_Pixelwise 49% =4 .68% 2.47% +2.31%
MAResU-Net34 0.74% 4+ 0.68% 3.70% £+ 1.51%
MAResU-Net34 CrossAttn  2.22% + 1.83% 4.69% + 1.35%

PCK(20) 1
1.48% + 1.03%

5.8. Qualitative Results

Qualitative evaluation revealed that model performance
varies significantly across different landscape types. In
urban regions—dense with features such as building cor-
ners, roads, and other man-made structures—both SAR and
EO imagery contain strong, complementary cues, and the
model often achieves sub-pixel or single-pixel accuracy.
Conversely, in flat or sparsely textured areas (e.g., deserts,
agricultural fields), SAR backscatter offers few distinctive
reflections, leading to large alignment errors.

5.9. Discussion

The MAResU-Net with cross-attention achieved a 43%
reduction in error compared to the KeyPointArchitecture
and a significant improvement over the baseline MAResU-
Net. The following sections analyze its strengths and short-
comings.

Failure Case Analysis: In regions with minimal texture,
SAR imagery struggles to provide reliable keypoint cues,
since SAR relies on surface geometry to generate strong
reflections. Figure [6] shows an outskirt tile with very low
contrast: the EO image clearly displays faint road lines,
whereas the SAR image is nearly featureless. In these cases,
our model’s predicted keypoint can be off by up to ~ 300
pixels. To improve performance in such settings, future

work might involve annotating even minor SAR features
(e.g., subtle elevation changes or low-contrast edges).

Optical

Figure 6. Failure case in a flat region with low contrast. EO (left)
shows faint road lines, but SAR (right) lacks distinguishable fea-
tures, resulting in a large End-Point Error (= 300 px).

Success Case Analysis: By contrast, in dense urban en-
vironments, the model can lock onto sharply defined cor-
ners of buildings and road intersections. Figure [7] illus-
trates an urban tile where the predicted keypoint aligns
within 2-3 pixels of the ground truth (EPE ~ 2 px). Such
high-precision localization demonstrates that, given suffi-
cient distinctive features in both SAR and EO, the network
effectively leverages cross-modal cues. With larger train-
ing volumes covering a broader range of urban layouts, we
expect similarly high accuracy across more AOIs.

500

Figure 7. Success case in an urban region. The model matches
building corners between EO (left) and SAR (right), achieving an
End-Point Error of = 2 px.

6. Conclusions and Future Work

In this report, we demonstrated that integrating cross-
modal attention into Residual U-Net architectures yields
substantial gains in keypoint matching accuracy for
SAR-EO registration tasks. On our SpaceNet 9 test folds,
the MAResU-Net34_CrossAttn model achieved an average
end-point error (EPE) of 88.5 + 9.4px, representing a 43%
reduction compared to the KeyPointArchitecture baseline



(155.3 £ 16.4px). This improvement underscores the value
of explicitly allowing SAR features to attend to EO features
(and vice versa) at multiple scales, which helps the network
learn shared structural cues that are otherwise difficult to
capture in single-stream or within-modality attention mod-
els.

Despite these gains, several failure modes remain.
Cross-attention models still struggle in large, featureless re-
gions, where both SAR and EO modalities provide limited
distinctive cues. In such regions, the network’s heatmap
predictions can become ambiguous, leading to large local-
ization errors. Moreover, because our training set com-
prises only 400 tile pairs from three AOIs, the model occa-
sionally overfits to sensor-specific noise patterns or scene-
specific terrain features. In future work, incorporating ad-
ditional scenes from varied environments and landscapes
would help. We also expect that deeper architectures (e.g.,
ResUNet-50) will benefit more from larger datasets, as their
increased capacity can then be fully exploited without over-
fitting.

7. Contributions and Acknowledgments

This project was not a part of any research outside of
CS231N. This paper drew off two code repositories. The
SpaceNet 9 Challenge organizers provided starter code.
That starter code is only available to challenge participants.
The original code will been provided in a folder labeled
”Challenge-Provided Resources.” Additionally, this starter
code drew from the MAResUNet Github repository. That

repository can be found
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