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Abstract

We present DashGuard, a hierarchical attention-based
deep learning framework for traffic accident prediction
from dashcam video footage. Our approach combines spa-
tial feature extraction through EfficientNet with temporal
modeling via a novel hierarchical transformer architecture
that processes multimodal inputs—RGB frames and optical
flow fields—through temporal attention mechanisms. The
hierarchical design captures both fine-grained local mo-
tion patterns and broader contextual dependencies critical
for collision detection. We introduce a crash-focused sam-
pling strategy that concentrates frame selection around crit-
ical temporal windows, improving detection of subtle pre-
collision cues. Evaluated on the NEXAR Dashcam Colli-
sion Prediction Dataset containing 1,500 real-world driv-
ing scenarios, our method achieves a ROC-AUC of 0.79 and
72% accuracy, outperforming baseline approaches using
standard transformers and CNN-only architectures. Abla-
tion studies demonstrate that incorporating optical flow fea-
tures and hierarchical temporal modeling both contribute
meaningfully to performance, establishing the effectiveness
of our multimodal spatio-temporal approach for accident
prediction in real-world driving scenarios.

1. Introduction
Early collision prediction from dashcam video is a crit-

ical challenge in computer vision with profound implica-
tions for autonomous vehicle safety and Advanced Driver
Assistance Systems (ADAS). Being able to predict immi-
nent accidents seconds before they occur would timely in-
terventions that could prevent up to 90% of crashes [1].

Traffic accidents claim approximately 1.20 million lives
globally each year [9]. Having a robust early collision pre-
diction system could greatly improve public trust in ADAS
and self-driving technologies.

Development of collision prediction systems face a few
fundamental challenges. The rarity of accidents creates
severely imbalanced datasets, making it difficult for models
to learn meaningful patterns [3, 4]. Accidents often contain

subtle visual cues that are difficult to detect amidst com-
plex scenes [9]. Finally, real-world driving environments
involve numerous agents, complex geometries, and are fur-
ther complicated by varying road and weather conditions,
making robust scene understanding a challenging task.

This project aims to explore novel approaches to video
classification applied to the NEXAR Dashcam Collision
Prediction Dataset [9].

1.1. Problem Statement

The primary problem addressed in this study is the pre-
diction of traffic incidents, specifically accidents or near-
misses, from dashcam video footage. Given the inherent
complexities and diverse scenarios present in real-world
driving, as captured by the NEXAR dataset (e.g., varied
lighting, weather conditions, and camera artifacts), the task
is to develop a robust system capable of identifying precur-
sors to such critical events.

1.1.1 Inputs

The input to our system is a dashcam video clip. Although
the lengths of these clips can vary, they are typically around
40 seconds in duration, consistent with the NEXAR dataset.

1.1.2 Outputs

Video frames sampled from the input video clip are pro-
cessed to extract visual and motion features (e.g. optical
flow). These spatio-temporal features are then fed into a
predictive model that outputs a probability score. This prob-
ability score represents the likelihood of an accident or near-
miss occurring within the input video clip and is then used
to classify the video clip into one of two categories:

• Positive Label: Indicates an accident or a near-miss.

• Negative Label: Indicates normal, uneventful driving.

The performance of this binary classification will be
evaluated primarily using the Receiver Operating Charac-
teristic - Area Under Curve (ROC-AUC) metric.
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2. Related Work
Development of collision prediction systems faces a few

fundamental challenges. The relative rarity of accidents cre-
ates imbalanced data sets, making it difficult for models to
learn meaningful patterns [4, 3]. Accidents often contain
subtle visual cues that are difficult to detect in complex sce-
narios [9]. Real-world driving environments involve numer-
ous agents in a diverse set of road and weather conditions,
which make scene understanding a challenge.

Chan et al. [4] introduced the Dynamic-Spatial-
Attention Recurrent Neural Network (DSA-RNN), estab-
lishing the paradigm of combining object detection, at-
tention mechanisms, and temporal modeling. This work
demonstrated that spatial attention could focus on relevant
objects while LSTM-based modeling captured long-range
dependencies, achieving 74.35% mean Average Precision
for accident localization on the Dashcam Accident Dataset
(DAD).

Similarly, Zeng et al. (CVPRW 2017) proposed an
agent-centric model: a soft-attention RNN that modeled in-
teractions between an “ego” vehicle and other agents (or
static regions). They introduced the EpicFail dataset (3000
internet videos of accidents) and approached accident pre-
diction by jointly localizing when and where a crash might
happen [16].

Other models emphasize both appearance and mo-
tion. Two-stream CNN architectures (one stream for RGB
frames, one for motion data such as optical flow) allow us
to encode spatio-temporal cues which may not be avail-
able from appearance alone. For instance, Kataoka et al.
(ICRAW 2018) created the NIDB near-miss dataset (6200
dashcam videos) and showed that a two-stream CNN could
effectively distinguish varying danger levels [7]. These
models “capture the temporal feature of an image sequence”
by fusing spatial and temporal streams to enhance motion
representation. Another example of this came from Shi et
al. (TRC 2024), where they combine CNN-based optical-
flow inputs with a vision transformer to achieve high accu-
racy on large crash datasets [11].

More recent work replaces RNNs with temporal Trans-
formers or attention layers to capture long-range dependen-
cies, merging CNN backbones with self-attention. For ex-
ample, AccidentBlip used a custom transformer architec-
ture to look at how frames change over time. It achieved top
performance on the DeepAccident dataset, showing it can
accurately predict and detect accidents in real-world driv-
ing without extra sensors. [10].

Recent advances incorporated attention mechanisms for
improved temporal modeling, methods for modeling inter-
object relationships, such as Relation Networks [6], and
Reinforcement Learning for interpretable decisions. The
DRIVE model [3] demonstrated deep reinforcement learn-
ing potential, achieving state-of-the-art performance while

providing visual explanations. Other contributions include
uncertainty quantification [2], multi-modal fusion strate-
gies, and computationally efficient architectures such as the
LATTE model [17].

Despite progress, challenges remain. Achieving reliable
anticipation seconds before events while relying on visual
data remains an open problem. Modeling temporal depen-
dencies across diverse conditions is a significant challenge.

This project aims to explore novel approaches to video
classification applied to the NEXAR Dashcam Collision
Prediction Dataset [9].

3. Methods
Our approach to video-based incident detection involves

an initial baseline model followed by a series of enhance-
ments to better capture spatial and temporal dynamics, cul-
minating in a multimodal Transformer-based architecture.
This section details the methodologies employed, from fea-
ture extraction to classification.

3.1. Baseline Model

The baseline model was designed to establish an initial
performance benchmark by treating the problem as an im-
age classification task on sampled video frames, followed
by feature aggregation. Let an input video clip be denoted
by V .

3.1.1 Frame Selection and Feature Extraction

From each input video clip V , a set of Nbase = 32
frames, Fbase = {f1, f2, . . . , fNbase

}, is selected. We uti-
lize a pre-trained InceptionV3 Convolutional Neural Net-
work (IncV3), denoted as ΦIncV 3, as a fixed feature ex-
tractor. This leverages transfer learning from its training on
the ImageNet dataset. For each frame fi ∈ Fbase, Incep-
tionV3 processes the frame (resized to 299× 299 pixels) to
produce a high-dimensional feature vector vi ∈ RDIncV 3 ,
where DIncV 3 = 2048 is the feature dimension from the
InceptionV3’s pre-logit layer.

vi = ΦInceptionV 3(fi)

The feature vectors {v1, v2, . . . , vNbase
} extracted from

the 32 frames are then aggregated into a single video-level
feature representation, Vfeat, by element-wise averaging.
This results in a single tensor Vfeat ∈ RDIncV 3 representing
the entire video clip.

3.1.2 Classification

The aggregated video-level feature tensor Vfeat is subse-
quently passed through a sequence of fully connected linear
layers. These layers, followed by activation functions, map
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Figure 1. DashGuard multimodal spatio-temporal architecture used to predict the probability of a road accident. 32 uniformly sampled
frames are used to create optical flow fields, and 32 non-uniformly-sampled frames (focused around the crash) are independently passed
in to the CNN feature extractor. The two streams of output are then concatenated for each frame and then passed into a hierarchical
transformer to predict the crash probability.

the video features to a probability score indicating the like-
lihood of an incident. If we denote the classification head
as gcls, the output probability p is:

p = σ(gcls(Vfeat))

where σ is the sigmoid activation function, ensuring the out-
put is a probability between 0 and 1.

3.2. DashGuard Architecture

To improve upon the baseline, we introduced several
modifications aimed at enhancing feature representation, in-
corporating motion information, and leveraging temporal
relationships across frames (see Figure 1).

3.2.1 Enhanced Frame Sampling Strategy

Initial observations indicated that Nbase = 16 frames might
be insufficient to capture critical moments in some videos.
We increased the number of sampled frames to Nprop = 32
per video. Furthermore, given that the training data in-
cluded timestamps for crash events, we implemented a non-
uniform ”crash-focused” sampling strategy. For a video
with a known crash time tcrash, a specified ratio of frames
are densely sampled within a temporal window centered
around tcrash. The remaining frames are sampled from
the rest of the video to maintain context. This ensures that
frames immediately preceding, during, and following the
event are more likely to be included, providing the model
with more relevant visual information for these critical mo-
ments. If a crash time is not available (e.g., for test data or
negative samples), uniform sampling is used as a fallback.
All frames are resized to 299× 299 pixels.

3.2.2 Feature Extraction with EfficientNet

While our baseline model employed InceptionV3 for
feature extraction, our proposed architecture adopts

EfficientNet-B3 (ENB3) as the backbone CNN for supe-
rior performance and efficiency. EfficientNet offers several
compelling advantages over InceptionV3 for our collision
detection task [14]. First, EfficientNet-B3 achieves 81.1%
top-1 accuracy on ImageNet with only 12 million param-
eters and 1.8 billion FLOPs, compared to InceptionV3’s
78.8% accuracy with 24 million parameters and 5.7 bil-
lion FLOPs [14, 13]. This represents a significant improve-
ment in computational efficiency—approximately 3× fewer
FLOPs for higher accuracy. Second, EfficientNet’s com-
pound scaling methodology systematically balances net-
work depth, width, and input resolution using a principled
approach, optimizing performance for given computational
constraints [14]. This is particularly beneficial for video
analysis where processing multiple frames requires efficient
feature extraction. Finally, EfficientNet’s architecture lever-
ages depthwise separable convolutions and modern normal-
ization techniques, enabling it to capture more complex spa-
tial patterns relevant to collision scenarios while maintain-
ing computational efficiency suitable for real-time applica-
tions [14].

3.2.3 Optical Flow for Motion Representation

To explicitly incorporate motion information, we com-
pute dense optical flow between consecutive frames. The
intuition is that incidents like accidents or near-misses
are often characterized by sudden and atypical mo-
tion patterns. For a sequence of Nprop RGB frames
{f1, f2, . . . , fNprop

}, we calculate Nprop − 1 optical flow
fields {o1, o2, . . . , oNprop−1}, where oi represents the flow
from fi to fi+1. We use the Farneback algorithm [5] for
this purpose. Each 2D optical flow field oi = (dxi, dyi) is
then converted into a 3-channel image representation suit-
able for input to a CNN. The dx and dy components are nor-
malized to the range [0, 255] and placed into two channels,
with the third channel set to zero. This normalized flow
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image, fflow
i , is then processed by the same pre-trained

EfficientNet-B3 model ΦENB3 (acting as a fixed feature ex-
tractor) to obtain a flow feature vector ui ∈ RDENB3 :

ui = ΦEfficientNet−B3(f
flow
i )

This results in Nprop − 1 flow feature vectors.

3.2.4 Multimodal Feature Fusion

Our model leverages both appearance (RGB) and motion
(optical flow) information. For each of the Nprop time steps,
we aim to create a combined feature vector. The RGB fea-
tures, vj = ΦENB3(fj) for j ∈ {1, . . . , Nprop}, are ex-
tracted from the temporally sampled RGB frames. The opti-
cal flow features {u1, . . . , uNprop−1} are Nprop−1 in num-
ber. To align these with the Nprop RGB features, we pad
the sequence of flow features. Specifically, a zero vector
of dimension DENB3 is prepended to the flow feature se-
quence, resulting in u′

j ∈ RDENB3 for j ∈ {1, . . . , Nprop},
where u′

1 = 0 and u′
j = uj−1 for j > 1. The RGB fea-

ture vj and the corresponding padded flow feature u′
j are

then concatenated to form a combined multimodal feature
vector xj ∈ R2·DENB3 for each of the Nprop timesteps:

xj = [vj ;u
′
j ]

The dimension of this combined feature vector is
Dcombined = DRGB +DFlow = 2048 + 2048 = 4096.

3.2.5 Hierarchical Temporal Transformer

To capture multi-scale temporal patterns in collision sce-
narios, we employ a novel hierarchical transformer that
processes the sequence of combined feature vectors X =
{x1, x2, . . . , xNprop

} at two complementary temporal res-
olutions. Unlike standard transformers, our hierarchical
approach recognizes that collision detection requires both
fine-grained local motion analysis and broader temporal
context understanding.

Our architecture consists of two parallel transformer
branches: a local transformer processing all consecutive
frames to capture detailed motion patterns, and a global
transformer operating on a temporally downsampled se-
quence to model longer-range dependencies. This dual-
scale design suits collision prediction where critical events
unfold rapidly (requiring local analysis) while being pre-
ceded by gradual contextual changes (requiring global anal-
ysis).

The hierarchical processing follows:

Flocal = Tlocal(X) (1)
Fglobal = Tglobal(Downsample(X)) (2)
Ffused = Fusion(Flocal,Align(Fglobal)) (3)

where Downsample(·) reduces temporal resolution for
global processing, and Align(·) restores the global features
to match the original sequence length. The fusion operation
combines the multi-scale representations to leverage both
local motion details and global temporal context for colli-
sion prediction. The final prediction is then computed:

pprop = σ(gcls(GlobalAvgPool(Ffused)))

Key parameters: input dimension Dcombined = 4096,
model dimension 512, 8 attention heads, 3 layers per
branch, feed-forward dimension 1024, dropout 0.3.

3.3. Training Objective

Both the baseline and the proposed model are trained for
a binary classification task (incident vs. non-incident). The
objective is to minimize the Binary Cross-Entropy (BCE)
loss between the predicted probability p and the true label
y ∈ {0, 1}:

L(y, p) = −[y log(p) + (1− y) log(1− p)]

This loss function is commonly used for binary classifi-
cation tasks and penalizes confident incorrect predictions
more heavily.

4. Dataset and Features
4.1. Dataset

We conduct our experiments using the Nexar Collision
Prediction dataset [9], a real-world dashcam video dataset
containing 1,500 training videos captured from vehicle-
mounted cameras. Each video represents a driving scenario
with binary collision labels, where positive samples contain
actual collision events and negative samples show normal
driving conditions. The videos capture diverse driving envi-
ronments, weather conditions, and traffic scenarios, making
this a challenging real-world computer vision task.

Each video is accompanied by temporal metadata includ-
ing time of event and time of alert timestamps
that precisely indicate when collisions occur within the
video sequences, enabling temporal-aware modeling ap-
proaches.

For our experimental setup, we partition the original
Nexar training set using a stratified split to maintain class
balance:

• Training/Validation Set: 90% of data (1,350 samples)
for cross-validation

• Test Set: 10% of data (150 samples) for final evalua-
tion

Within the training/validation partition, we employ 5-
fold cross-validation, where each fold maintains an 80/20
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Figure 2. A visualization of the optical flow fields obtained from a pair of frames from a video in the training set. The arrow length is
proportional to a pixel’s estimated movement between frames.

train/validation split (960 training samples and 240 valida-
tion samples per fold). This approach ensures robust model
evaluation while preserving sufficient data for final testing.

All video preprocessing extracts 32 frames per sequence
at 300×300 resolution. For temporal modeling experiments,
we implement crash-focused frame sampling that concen-
trates 70% of frames around the collision timestamp within
a 5-second window, with the remaining 30% providing
broader temporal context. Optical flow features are com-
puted between consecutive frames, resulting in 31 flow vec-
tors per video sequence.

The dataset maintains class balance across all
splits through stratified sampling, ensuring consistent
collision/non-collision ratios during training and evaluation
phases.

4.2. Data Preprocessing and Feature Extraction

The primary input to our model consists of the sequential
frames from the video clips.

1. Raw Pixel Data: The 1280 × 720 RGB frames serve
as the raw input. These frames inherently contain fea-
tures related to object appearance, environmental con-
text, and road conditions.

2. Optical Flow: To capture motion information from
the video frames, we computed optical flow fields.
Using OpenCV, optical flow was calculated between
each consecutive pair of sampled frames. This process
generates a 2D vector field where each vector repre-
sents the apparent motion of image brightness patterns.

A visualization of what the optical flow looks like for
a sample in our training set is shown in Figure 2.

5. Results and Discussion

5.1. Hyperparameters and Training Setup

We employed a consistent set of hyperparameters across
all experiments to ensure fair comparison. Our models used
a batch size of 16, chosen to balance memory constraints
with gradient stability for sequence modeling. We imple-
mented the OneCycleLR scheduler [12] with a maximum
learning rate of 8 × 10−7, starting from an initial rate 25×
lower and ending at a rate 100× lower than the peak. This
aggressive learning rate schedule was selected through pre-
liminary experiments showing superior convergence com-
pared to standard schedulers for our video understanding
task. We used the AdamW optimizer [8] with a weight de-
cay of 1× 10−3 for regularization.

We tracked the validation loss, validation performance,
and learning rate throughout training. Figure 3 plots the
validation ROC-AUC and binary cross-entropy loss across
epochs, alongside the scheduled learning rate. These curves
show that performance stabilizes around epoch 30, aligning
with our selected training horizon of 40 epochs. The steep
rise and fall of the learning rate promotes rapid convergence
early on, followed by fine-tuning in later stages.

For model architecture, we set the transformer dimen-
sion to 512 with 8 attention heads across 3 layers, providing
sufficient model capacity while maintaining computational
efficiency. All models were trained for 40 epochs with gra-
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Figure 3. Training and validation loss (left), validation AUC (center) and LR schedule (right) curves for the DashGuard model.

dient clipping at norm 1.0 to prevent instability. We em-
ployed 5-fold cross-validation on 90% of the dataset, with
each fold maintaining an 80/20 train/validation split while
preserving class balance across all splits. The remaining
10% was reserved as a held-out test set for final model eval-
uation. This cross-validation approach ensures robust per-
formance estimation while preventing data leakage between
training and final testing phases. Hyperparameters were ini-
tially selected based on common practices for video trans-
formers and refined through pilot experiments on a subset
of data.

5.2. Evaluation and Metrics

Our primary evaluation metric is the Area Under the Re-
ceiver Operating Characteristic Curve (ROC-AUC), which
measures the model’s ability to rank positive (accident/near-
miss) examples higher than negative (normal driving) ones.
We also report overall classification accuracy as a secondary
metric.

All models were trained using binary cross-entropy
(BCE) loss, which penalizes the divergence between pre-
dicted probabilities and ground-truth labels.

5.3. Performance Analysis

Table 1 shows the test set performance for ablation stud-
ies of various model configurations using ROC-AUC and
accuracy. Our best-performing model combines optical
flow features with an EfficientNet backbone and a hierar-
chical transformer head, achieving a test ROC-AUC of 0.79
and an accuracy of 0.72. This model outperforms both
baselines: one using fully connected (FC) layers instead
of a transformer, and another using an InceptionV3 back-
bone instead of EfficientNet. Interestingly, while the In-
ceptionV3 + OpticalFlow + Transformer variant achieves a
slightly higher ROC-AUC of 0.80, its classification accu-
racy is lower at 0.71, suggesting a slight trade-off between
AUC performance and decision accuracy.

Overall, these results demonstrate that modeling motion

Figure 4. Confusion matrix for EfficientNet + Hierarchical Trans-
former model on collision prediction test set. The model achieves
71.6% accuracy with 47 false negatives (missed crashes) and 38
false positives (incorrect crash predictions).

(via optical flow) and temporal structure (via transformers)
contributes meaningfully to performance. The combination
of modern CNN backbones and hierarchical temporal rea-
soning proves most effective for predicting near-accident
events from dashcam video.

In addition to ROC-AUC and accuracy, we include a
confusion matrix (Figure 4) to visualize the distribution of
true versus predicted labels on the test set. The model cor-
rectly identifies 103 of 150 collisions (true positives) and
112 of 150 non-collision cases (true negatives). It also gen-
erates 47 false negatives (missed collisions) and 38 false
positives (false alarms).

5.4. Failure Mode Investigation

To better understand our model’s failure modes, we in-
spected the false positives and false negatives from the clas-
sified examples in our test set.
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Model Test AUC Test Accuracy
Optical Flow Features + InceptionV3 + Hierarchical Transformer 0.80 0.71
Optical Flow Features + EfficientNetB3 + FC Layers 0.70 0.65
EfficientNetB3 + Hierarchical Transformer 0.76 0.67
DashGuard (Optical Flow Features + EfficientNetB3 + Hierarchical Transformer) 0.79 0.72

Table 1. Ablation study results on collision prediction for the DashGuard model.

Figure 5. An example of a false negative case. The driver nearly
collides with a car in a neighboring lane, but the collision is
avoided and the driver continues driving at an uninterrupted speed.

5.4.1 False Negatives

A recurring pattern in false negative cases (i.e., missed col-
lisions or near misses) is the presence of brief but subtle
events, such as a vehicle swerving abruptly into the lane and
correcting itself without any impact. These moments often
last only for a few moments, making them difficult for the
model to distinguish from ordinary driving. Our process of
sampling only only 32 frames per video also makes it more
difficult to capture brief interactions that occur between the
sampled frames.

Figure 5 shows a representative example, where a ve-

hicle in the adjacent lane briefly crosses into the driver’s
lane, but no collision occurs and the driver proceeds unin-
terrupted. Since the driver’s speed is constant, the motion
data provides no distinguishable features from regular driv-
ing, and the understanding of the situation being a ”near-
miss” relies heavily on an understanding of where the lanes
on the road are, which our model is not explicitly trained to
identify.

One contributing factor to this confusion may be the la-
beling scheme in our dataset, both accidents (with physical
collisions) and near misses are grouped under a single “pos-
itive” label. This creates a wide and heterogeneous class
of positive samples ranging from high-impact collisions to
minor evasive maneuvers. This diversity likely introduces
noise into the training signal, making it harder for the model
to learn a consistent definition of what constitutes a “posi-
tive” event.

If this dataset was labeled with a multi-class labeling
scheme – separating “accidents”, “near misses”, and “nor-
mal driving” as distinct classes - this could help models
learn more distinctive features.

5.4.2 False Positives

Although the number of false positives was relatively low
in our results, manual inspection revealed various patterns
in the false positive failure cases.

Many of these scenarios generally involved nearby vehi-
cles entering the dashcam’s field of view at high speeds,
or at a close proximity. While these events can appear
abruptly, they are not necessarily considered near misses if
the vehicle’s path is not headed towards the vehicle. These
motion cues may resemble pre-collision trajectories, caus-
ing the model to incorrectly classify the event as a near miss.

5.5. Limitations and Discussion

We observed signs of slight overfitting during training.
Specifically, Figure 3 shows the training loss continued to
decline slightly while the validation loss plateaued after a
certain point. This divergence, though not severe, sug-
gests that the model may be overfitting to subtle patterns
in the training data. To mitigate this, we incorporated sev-
eral strategies, including weight decay via the AdamW op-
timizer [8], a OneCycle learning rate schedule [12], and
dropout layers within the attention mechanism. We also
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tuned our hyperparameters to minimize the gap between
training loss and validation loss.

One notable limitation of our approach was the reliance
on optical flow for motion representation. While optical
flow captured short-range motion effectively, we found that
it struggled in extremely high-speed scenarios when objects
moved large distances between frames. This limitation may
impact the model’s ability to detect motion cues preceding
accidents, especially when those cues occur rapidly.

Additionally, as discussed in our qualitative analysis,
a more nuanced multi-class labeling scheme could en-
able finer-grained modeling and improve prediction perfor-
mance across the spectrum of risky driving events.

Upon inspection of the misclassified examples, particu-
larly false positives, some appear to involve close calls that
resemble near misses, but are not labeled as such. However,
due to the subjective nature of interpreting motion and risk
from video, it’s difficult to definitively label such border-
line cases. Identifying and removing outliers in video data
is challenging, as context unfolds over time and depends on
subtle temporal and spatial cues that are not easily separable
with simple heuristics.

In general, our model demonstrates good qualitative be-
havior on clear-cut accident cases with distinctive visual
cues such as sudden stops, collisions, or vehicles crossing
boundaries aggressively. However, it struggles with am-
biguous cases, especially subtle near misses. These find-
ings suggest that while the model is sensitive to prominent
visual anomalies, it may benefit from further refinement
in capturing context. Future work could improve robust-
ness by incorporating additional modalities (such as audio
or speed) or through more granular labels and human-in-
the-loop feedback mechanisms.

6. Conclusion
In this project, we tackled the task of predicting traffic

accidents and near misses from dashcam video footage us-
ing spatio-temporal deep learning models. We explored a
variety of architectures combining CNN-based visual en-
coders with hierarchical transformers. Among these, our
highest-performing model was a hierarchical transformer
operating on features from both EfficientNet RGB frames
and optical flow. This achieved the best test performance,
with an ROC-AUC of 0.79 and accuracy of 0.72.

We found that the addition of optical flow features gen-
erally helped all models achieve better performance across
the board. Transformer-based architectures outperformed
simpler baselines by better capturing long-range temporal
dependencies and contextual interactions in driving scenes.
However, limitations in optical flow quality and label gran-
ularity (e.g., grouping accidents and near misses together)
posed challenges for fine-grained discrimination. False pos-
itives were often caused by sudden but non-threatening vi-

sual motion, and false negatives by subtle near misses that
may lack obvious visual precursors.

Future work could explore additional data modalities, in-
cluding audio and speed information from dashcam footage,
to further enrich contextual understanding. Due to time
and memory constraints, we did not extensively pursue data
augmentation for video; however, with more time and com-
pute resources, augmentation techniques could boost model
performance. Finally, while our models focused on extract-
ing features from individual video frames, leveraging video-
focused architectures such as 3D CNNs or advanced models
like Video MAEv2 [15] could yield promising results.
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