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Abstract

We address the task of fine-grained image-based geolo-
cation within a single city. Focusing on San Francisco, we
evaluate two approaches: (1) a probabilistic model that
outputs a mixture of spatial Gaussian distributions and (2)
a grid-based classifier that discretizes the city into a fine
spatial mesh. Both are built on top of vision transformers:
either the pre-trained StreetCLIP model or a custom ViT
trained from scratch. Trained on over 70,000 street-level
images, our models achieve localization accuracy within
600 meters on average. While the grid-based classifier of-
fers higher top-1 accuracy, the Gaussian model provides
richer uncertainty estimates. We further analyze model be-
havior using attention rollout techniques, showing that pre-
training enables the network to focus on meaningful geo-
graphic cues such as building façades and road features.
Our results highlight the feasibility of lightweight, image-
only localization in dense urban environments and the
complementary strengths of classification and distribution-
based approaches.

1. Introduction
Accurately geo-localizing street-level images is a long-

standing challenge in computer vision, traditionally tackled
at global scales. However, fine-grained localization within a
single city remains underexplored and presents unique dif-
ficulties. Urban environments often contain highly repet-
itive visual elements, such as similar-looking buildings,
tree-lined streets, or traffic signs, making precise geo-
localization within a dense cityscape like San Francisco a
non-trivial task. Solving this problem requires models ca-
pable of identifying subtle, location-specific visual details
that distinguish one neighborhood from another.

In this project, we tackle the task of high-resolution
image-based localization within the city of San Francisco.
Using a custom dataset of over 70,000 street-level im-
ages collected via the Mapillary API [8] (each annotated
with precise GPS coordinates) we train and evaluate two
types of neural network models for local-scale image geo-

localization:

1. A Gaussian regression model, which predicts k 2D
Gaussian distributions over latitude and longitude co-
ordinates, each one weighted with the probability of
the mean to be the actual location of the image. We ex-
periment with data augmentation and compare perfor-
mance using both a custom Vision Transformer (ViT)
and a pre-trained StreetCLIP model.

2. A grid-based classification model, which discretizes
the San Francisco area into a 31 × 31 spatial grid (961
cells), and classifies each input image into one of these
fine-grained spatial tiles. This model also uses Street-
CLIP and benefits from data augmentation to improve
generalization.

Beyond model training and evaluation, we conduct de-
tailed prediction analysis and explore the internal decision-
making process of our models. Using attention rollout tech-
niques, we visualize the attention maps of our transformer-
based architectures to better understand which image re-
gions are driving the localization predictions. This analysis
reveals that models often focus on distinctive elements such
as unique building facades, signage, and street layouts, val-
idating their potential to learn localized geographic priors.

This work contributes a lightweight, image-only solution
for high-resolution urban localization, with potential appli-
cations in:

• Reconstructing the location of untagged or historical
images (e.g., vacation photos).

• Forensic analysis of crime scene imagery.

• Enhancing autonomous driving systems in environ-
ments with poor or unavailable GPS signals.

By comparing probabilistic regression and classification-
based approaches, and analyzing model attention patterns,
we demonstrate the feasibility and complementary strengths
of different techniques for city image localization. Our re-
sults suggest that while classification offers speed and sim-
plicity, Gaussian models provide richer spatial uncertainty,
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offering a valuable tradeoff depending on the application’s
needs.

2. Related Work
2.1. Global Image Geolocation

Early approaches to image geolocation, such as Im2GPS
[7], framed the problem as an image retrieval task: a query
image was matched to a large database of geotagged im-
ages using hand-crafted visual features like GIST or SIFT.
Although effective at the time, these methods struggled with
generalization and scalability. The introduction of deep
learning brought significant advances, PlaNet [14] proposed
treating geolocation as a classification problem over thou-
sands of discrete geographic cells, using convolutional neu-
ral networks (CNNs) to directly predict location classes.
This significantly improved robustness and allowed end-to-
end learning. Later, CPlaNet [13] extended this idea by in-
corporating combinatorial partitioning, refining the spatial
resolution of predictions without exponentially increasing
the number of output classes. Despite these advances, most
global models still localize at the city or country level, lack-
ing precision for urban-scale applications.

2.2. City-Scale and Local Place Recognition

While global-scale geolocation has seen extensive re-
search, urban or city-scale localization remains more chal-
lenging and less explored. The high visual similarity be-
tween different locations within a city (e.g., repeating ar-
chitecture or vegetation) makes precise localization harder.
NetVLAD [2] proposed a CNN-based architecture for place
recognition using weak supervision, relying on triplet loss
and a trainable VLAD layer to create compact and dis-
criminative global descriptors. This model became a foun-
dational method for urban localization tasks and inspired
many retrieval-based approaches. Meanwhile, datasets such
as StreetLearn [9] have enabled research into realistic, city-
scale navigation, offering panoramic views and GPS data
across urban areas. These benchmarks promote tasks like
loop closure detection, route planning, and vision-based ge-
olocation within a constrained map.

2.3. Vision-Language Models for Geolocation

Recent work has explored the use of vision-language
models for geolocation. CLIP [11] learns joint represen-
tations of images and text through contrastive pretraining
on 400 million image-text pairs, providing strong zero-shot
generalization. Building on this, StreetCLIP [5] fine-tunes
CLIP for geo-grounded tasks by training on 1.1 million
street-level images annotated with GPS coordinates. By
synthesizing text prompts that describe geographic context
(e.g., ”a street in downtown Tokyo”), StreetCLIP aligns im-
ages with location-aware textual embeddings, enabling fine-

grained localization across diverse environments. These
models benefit from broad pretraining and offer seman-
tic reasoning that complements traditional geometric ap-
proaches, making them highly promising for urban-scale
localization tasks like ours.

3. Methodology
3.1. CLIP-Based Visual Encoder

To address the geolocalization task, we employed Street-
CLIP, a robust foundation model tailored for open-domain
image geolocalization and other geography-related tasks.
StreetCLIP is built upon OpenAI’s CLIP (Contrastive Lan-
guage–Image Pre-training) model, specifically the ViT-L/14
architecture, which utilizes Vision Transformers with 14x14
pixel patches and processes images resized to 224×224 pix-
els. The original CLIP model was trained on a large dataset
of 400 million image-text pairs, enabling it to learn a wide
range of visual concepts from natural language supervision
[10].

StreetCLIP adapts this architecture by fine-tuning it on
a dataset of 1.1 million geo-tagged street-level images from
101 countries, encompassing both urban and rural scenes.
To align the model with geolocalization tasks, synthetic
captions were generated from image class labels using a
domain-specific caption template. This approach allows
StreetCLIP to transfer its generalized zero-shot learning ca-
pabilities to the specific domain of image geolocalization
[6].

In our implementation, we utilize the vision en-
coder component of StreetCLIP, which processes input
images and returns a pooled visual embedding via its
pooler output. This embedding serves as the input to
our custom classification or density-estimation heads. We
do not modify the architecture of the encoder itself, allow-
ing us to benefit directly from the robust geographical priors
learned during pretraining. In subsequent sections, we de-
scribe how we build on top of this backbone for both our
grid-based classifier and our probabilistic Gaussian output
model.

3.2. Gaussian-Based Classification

The first prediction method that we proposed to be useful
for geolocalization, was a Mixture Density Network (MDN)
[3]. The idea behind this is that the model should predict a
probability distribution over San Francisco. Specifically in
cases where more images could come from more then one
distant positions, we wanted the model to be able to give a
high probability for all of the locations. A simple example
for such an image would be a picture of a forest without
any signs or other specific features. This image could be
shot in multiple forests possibly far away from each other.
Predicting the mean location of the forests would not be
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meaningful. Multiple Mixture Density Networks solve this
issue by using multiple Gaussian curves, where the model
can predict each mean and standard deviation of the Gaus-
sian curves, together with a weight which is used to weight
the individual Gaussian. In theory, this could lead to a much
more understandable and intuitive prediction. For the train-
ing, we used the Mixture Density Network loss, which is
the negative logarithmic likelihood of the true coordinates.
This Gaussian-based classification was used in three differ-
ent model and each model was predicting and weighting six
Gaussians. One without data augmentation, one with data
augmentation and a third Custom ViT which didn’t use the
pretrained StreetCLIP model, but also used data augmenta-
tion. We will explain the architecture in 3.4. Custom ViT.

3.3. Grid-Based Classification

The second proposed method is a classification-based
approach that divides the San Francisco area into a 31× 31
spatial grid, resulting in 961 distinct tiles (classes). Each
image is classified into one of these tiles. This method
uses the StreetCLIP transformer model, replacing its orig-
inal projection head with a custom multilayer perceptron
(MLP). The new head consists of a linear layer with 512
hidden units, followed by a normalization layer, a ReLU
activation function, and a final output layer that produces
a score vector over the 961 classes. In this case, we focus
exclusively on one prediction (the highest probability), al-
though for validation purposes we can check the highest k
probabilities to increase accuracy of the model. The loss
function used for this model is the Cross Entropy Loss,
which performs well for classification tasks and consis-
tently delivers strong performance in similar settings. The
model was also trained using data augmentation techniques
to avoid overfitting and improve generalization.

The motivation behind this approach is to simplify the
learning of a continuous output space by framing the task
as a classification problem. This discrete formulation offers
a more straightforward training procedure and may outper-
form the Gaussian-based model in terms of prediction accu-
racy and speed. However, the Gaussian approach provides a
richer representation of uncertainty, which may be advanta-
geous in scenarios where multiple regions in the city present
high likelihoods (e.g., parks, the wharf or other ambiguous
areas).

3.4. Custom ViT

To check how important the pretraining is for the ge-
olocalization task, we trained our own custom ViT from
scratch. The ViT takes a similar 224x224 image input and
does not utilize the preprocessor of the StreetCLIP model.
The architecture is a reduced version of the CLIP model.
It has 12 transformer layers and 16 heads in each of them.
(Clip uses 24 layers and also 16 heads.) The dimension of

all tokens is 1024 (similar to CLIP) and the hidden dimen-
sion of the FFN is 2048. (CLIP uses 2048.) The positional
embedding as well as the cls token are initialized randomly
and are both learnable by the ViT. We propose that the size
of our dataset with over 70.000 images and about 50.000
training images should be enough to train a model with-
out pretraining. This Custom ViT, therefore, can be used to
compare the result of pretrained and not pretrained models.

3.5. Training Setup

All models are initialized from pretrained StreetCLIP
weights and trained using the AdamW optimizer, since it
provides a good balance between regularization and consis-
tent stable training, while also adding momentum to avoid
local minima. We use a base learning rate of 1 · 10−4,
with a sinusoidal profile: the learning rate increases rapidly
during the initial epochs and gradually decreases in later
stages of training following a cosine curve. This strategy
enables faster convergence early on while allowing fine-
tuning during the final epochs, where smaller learning rates
are crucial for minimizing the loss and avoiding getting
stuck without going deeper into the loss function. To sta-
bilize optimization, we apply dropout (0.5), layer normal-
ization, and OneCycleLR learning rate scheduling. Train-
ing is performed in two stages: first training the output head
on frozen encoder features, then fine-tuning the full model.
We train using mixed-precision on a single GPU with batch
sizes ranging from 16 to 64, depending on the model and
memory constraints.

4. Dataset
Our dataset consists of 70,000 street-level images from

San Francisco, collected via the Mapillary API. Each im-
age is associated with precise GPS coordinates (latitude and
longitude). We define geographic bounds as (37.6, 37.9) for
latitude and (−123.0,−122.3) for longitude.

Figure 1: Visual Coverage of the total San Francisco Image
Dataset [4]
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For the classification model, coordinates are mapped to
a 31× 31 spatial grid as explained before.

Figure 2: Visual Coverage of the classification grid [4]

5. Experiments and Results
5.1. Data Augmentation

Data augmentation can be very important for ViTs to
learn robust predictions and to increase the performance
with noisy input data. It can reduce overfitting to the train-
ing data since the training data is varied each epoch. Ad-
ditionally, data augmentation can be used to synthetically
train the ViT to be robust against spatial, rotational changes
as well as mirrored images. We wanted to test the im-
portance of data augmentation on our task of geolocation.
Therefore, we implemented a stochastic image transforma-
tion which emphasizes changes in color, changes in the ro-
tation and changes within the perspective of the image. Ad-
ditionally, we used gaussian blur to synthetically train the
model on images with worse quality than our model. All
of these transformations were used in a stochastic manner,
meaning that the intensity of the transformations varied for
each image and each epoch. Specifically, we used the fol-
lowing values:

1. RandomAffine: 10 degrees, translation of (0.05, 0.05),
a scaling of (0.95, 1.05) and a probability of 0.8

2. GaussianBlur: kernel size of 3, sigma of (0.1, 0.5) and
a probability of 0.3

3. ColorJitter: brightness of 0.2, contrast of 0.3 and satu-
ration of 0.2

4. RandomPerspective: distortion scale of 0.2 and a prob-
ability of 0.3

A common transformation that we did not use is ”Hori-
zontalFlip”. Streets, facades and other important image fea-
tures are most often not symmetric and flipped images are

unlikely in normal usage of photos. Therefore, the ”Hor-
izontalFlip” does not provide more information about the
images and instead flipped images could generate confu-
sion, which is why we did not use that transformation.

5.2. Training Results

The training and validation curves of our models show
that all of them were able to learn a good prediction of the
geolocalisation of the street images. We used for all of our
models a ”One Cycle LR scheduler” [12] with a maximum
learning rate of 5 ∗ 10−5. The scheduler starts with a low
learning rate and increases its value over the first 30% of the
total batches. Afterwards it decreases the the value again
until the end of training. This can increase the stability and
learning speed of the model. A first trial with a maximum
learning rate of 1∗10−4 showed an instable learning process
and reduced performance, which is why we chose the final
maximum learning rate.

5.2.1 StreetCLIP with Gaussian Head

The learning curves of the three models with the Mixture
Density Network head show that they were able to learn to
predict reasonable coordinates. The Accuracy of the pre-
dictions were calculated by the distance between the gaus-
sian mean with the highest value and the true position of the
image. Both pretrained CLIP models were able they were
able to predict the actual position with an average error of
600 meters. The Custom ViT was trained for additional 25
Epochs to compensate the advantage of pretrained parame-
ters. The learning curves show that it took much longer for
the Custom ViT to learn good location predictions. Addi-
tionally, the custom ViT is struggling with overfitting to the
training data since the average validation accuracy 300 me-
ters higher than the training accuracy. All validation accura-
cies started off below the training accuracies due to dropout
within the training, underlining the overfitting. That behav-
ior can not be seen for the CLIP-based models. Both the
model with and without augmentation show a very similar
performance in training and validation. This indicates that
the pretraining supports generalization even in the case of
finetuning without augmentation and shows the robust per-
formance of the CLIP model.

(a) Training loss curve (b) Validation loss curve

Figure 3: Gaussian-based models training curves
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5.2.2 Grid-Based Classification Model

Regarding the learning curves for the grid-based classifica-
tion model, we can see in Figure 4a that, after 25 epochs,
the loss curve on the training dataset goes almost to 0 (with
the real value being 0.00022). This indicates that the model
was able to almost perfectly predict the classes of the pic-
tures in the training dataset, as we are using the cross en-
tropy loss for this model, as explained above. It also could
indicate that the model has reached the global minima and
not just local minima. Additionally, during the fine-tune
of the model, the validation loss kept going down, as Fig-
ure 4b shows. In fact, the validation accuracy presented a
logarithmic profile, with a final accuracy of a 66.82% on
the validation dataset, staying almost stationary but always
increasing after 18-20 epochs. With these results, we can
assert that the agent was able to learn the important features
on the dataset to classify the images while not overfitting
the training data.

(a) Training loss curve (b) Validation loss curve

Figure 4: Grid-based classification model training curves

5.3. Qualitative Analysis of the Prediction Perfor-
mance

To validate the trained models, we performed some pre-
diction tasks with each of the presented models. For all
predicted images, the purple circles show the predictions
and the green circles show the actual location of the image.
For additional prediction results, please refer to the ZIP file
attached with this report.

5.3.1 Gaussian-Based Classification Models

As discussed before, the Mixture Density Model outputs six
Gaussian probability density functions and weights them.
This can be visualized as a probability density function
over the landscape of San Francisco. A Qualitative analysis
showed that both the model with and without augmentation
do not use more than one Gaussian to predict the location
of an image. A typical prediction is shown in 5. In this
case, the purple circles show the area within each of the
gaussians standard deviation. It can be seen that the predic-
tions of five of the gaussians isn’t close to the target at all.
Only one prediction lays on the edge of actual location in
green. It’s standard deviation is much smaller. The other

5 predicted gaussians are usually between to the mid of the
city and the actual coordinate. Only the last gaussian gives
a valuable prediction with a much smaller standard devia-
tion. The weight is only focused on this one last predic-
tion often with a weight bigger than 99%. The indice of the
main gaussian also did not change, which clearly shows that
the model learned only one good prediction. That behavior
reduces the geolocalization to a regression problem. The
unintended outcome does not keep the model from making
good prediction like the validation accuracy shows.

(a) Image 1 [8] (b) Prediction 1 [4]

(c) Image 2 [8] (d) Prediction 2 [4]

Figure 5: Typical prediction of a gaussian-based mode,
where only one gaussian was used with a weight larger than
0.99 and a very small standard deviation

The qualitative analysis of the prediction of our custom
ViT shows a similar result. The prediction of all six gaus-
sian densities is closer to each other, but the weights are
still focused on just one gaussian. This underlines that the
behavior is likely due to other factors besides the model.

The most likely reason for the behavior is that the model
largely reduced the weights for some of the gaussians very
early, so that they were not able to learn better predictions
due to vanishing gradients. Their worse performance would
cause their weights to decrease further over time. To pre-
vent this, another training could force a minimum weight
value for all of the gaussians within training time. This
would force the model to learn meaningful predictions with
all gaussians. Good predictions could then lead to higher
weights and might result in the intended behavior. Due to
the generally good performance, it is also reasonable to treat
the problem again as regression model. This indicates that
the task of geolocalization within one city is not complex
enough to benefit from the Mixture Density Model. This
might change for the task of geolocalization in a bigger area.
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5.3.2 Grid-Based Classification Model

Regarding the performance of the grid-based classification
model, Figures 6b and 6d show the predictions and corre-
sponding ground truth for the images in Figures 6a and 6c,
respectively. Based on these examples and further analysis
of predictions on the test dataset, the model demonstrates
strong performance, particularly when considering the top
6 predicted scores (visualized as smaller purple circles).

As this is a classification task, all images assigned to the
same cell result in identical predicted coordinates. How-
ever, because the grid tiles are sufficiently small, the pre-
dicted locations align closely with the actual coordinates.
In cases of misclassification, many errors involve neighbor-
ing tiles that are adjacent to the true cell. This behavior sug-
gests that even when the prediction is not exact, the model is
still able to estimate the location with high spatial accuracy,
often within a few hundred meters of the ground truth.

(a) Image 1 [8] (b) Prediction 1 [4]

(c) Image 2 [8] (d) Prediction 2 [4]

Figure 6: Examples of predictions of the grid-based classi-
fication model

When comparing the grid-based model with the
Gaussian-based models, we observe that the former
achieves higher accuracy, improved performance and faster
training times. However, it provides only a single prediction
(or a top-k set of most probable cells), which can be limiting
in cases where the image is difficult to localize, particularly
in urban areas where many locations share similar visual
features, such as architecture, vegetation or traffic elements.

In contrast, the Gaussian model offers a more informa-
tive representation of uncertainty, providing not only a pre-
dicted location but also additional details such as the stan-
dard deviation and secondary peaks in the probability dis-
tribution. This richer output is especially beneficial in am-
biguous settings, such as parks or waterfronts, where visual

details may not be distinctive enough for confident classifi-
cation.

5.4. Qualitative Analysis via Attention Visualization

To better understand the spatial reasoning of our mod-
els, we apply attention rollout visualization [1], which ag-
gregates attention weights across all transformer layers to
reveal which regions of the input image the model attends
to when making predictions. This technique helps expose
implicit model biases and highlights differences in how var-
ious architectures process geographic cues.

(a) Custom ViT +
Gaussian [8]

(b) StreetCLIP +
Gaussian [8]

(c) StreetCLIP +
Grid [8]

Figure 7: Attention-rollout visualizations for the same input
scene under three model variants.

5.4.1 Custom ViT with Gaussian Head

In this experiment, we analyze attention rollouts from our
custom Vision Transformer (ViT) trained from scratch and
coupled with a six-component Gaussian mixture head. As
shown in Figure 7 (left), the model consistently attends
to the sky or upper regions of the image, regardless of
scene type. We believe this behavior arises because, with-
out large-scale pretraining, the model over-relies on low-
information cues such as sky color and illumination, and
because most of the 70,000 Mapillary images were captured
on a single day, so sky features (sun angle, cloud patterns)
correlate with location. Future improvements may include
augmenting sky features (e.g., randomized hue or contrast),
balancing temporal distributions in the training data, and in-
troducing regularization to encourage more diverse mixture
predictions.

5.4.2 StreetCLIP with Gaussian Head

Figure 7 (middle) shows attention rollouts after fine-tuning
the StreetCLIP ViT-L/14 encoder with our six-component
Gaussian head. Unlike the scratch-trained ViT, this model
consistently highlights semantically rich cues such as
façade edges, road markings, street signs, vehicles, curb
cuts, and the road’s vanishing point, while devoting only
limited focus to the sky, primarily along the horizon where
colour and illumination gradients correlate with depth. We
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attribute this behaviour to two key advantages of pretrain-
ing. First, StreetCLIP begins with CLIP’s large-scale pre-
training on 400 M image–text pairs, which teaches it to
identify objects and scene layouts across diverse contexts;
it is further fine-tuned on 1.1 M geo-tagged street-level im-
ages, reinforcing its ability to extract location-specific fea-
tures such as building façades, curb geometry, and signage.
As a result, during fine-tuning on our San Francisco Map-
illary set, the encoder naturally attends to these high-level,
place-relevant elements rather than lower-information cues
like sky colour alone. Second, although our 70 000 Map-
illary images were collected on a single day, StreetCLIP’s
pretrained weights act as a strong regulariser. By adopting
a low learning rate and applying early stopping, we allow
only the final transformer layers to adapt to the new domain;
earlier layers (encoding fundamental geometry, texture, and
object semantics) remain close to their pretrained state, mit-
igating overfitting to transient lighting or weather condi-
tions inherent in a single-day capture. These combined ef-
fects yield attention maps that focus on structurally infor-
mative regions of the scene, improving the model’s ability
to localize images based on meaningful visual landmarks
rather than transient environmental factors.

5.4.3 StreetCLIP with Grid Classifier

Figure 7 (right) displays attention rollouts for the grid head
(961 classes; 31×31 bins) attached to the frozen StreetCLIP
encoder. Surprisingly, the model now concentrates much
of its attention on large blobs in the sky, the opposite of
what we observe with the Gaussian head, despite both us-
ing the same pretrained backbone. One possible explana-
tion is that with only 31×31 discrete cells, many adjacent
bins share similar ground-level content, making subtle sky
hue or horizon position the easiest separable signal. Addi-
tionally, the cross-entropy loss may encourage the model
to exploit global illumination cues (since a single high-
confidence token can determine the class) instead of aggre-
gating many local features. Finally, if certain grid cells cor-
relate with specific capture times or sun angles, the classifier
could be overfitting to those lighting patterns. While these
factors offer a plausible explanation, other elements (such
as head capacity or optimization nuances) cannot be ruled
out; further analysis, such as ablating sky patches or enforc-
ing balanced sampling across time of day, will be needed to
confirm the true cause.

5.4.4 Data Augmentation vs. No Augmentation (Street-
CLIP + Gaussian)

Figure 8 shows the attention rollout for the model without
our augmentation pipeline. When augmentation is applied,
diverse colour and geometric jitter dilute sky cues, encour-
aging the model to spread its attention over façades, trees,

and curb geometry. In contrast, without augmentation, sky
hue remains the dominant, easiest signal, causing attention
to collapse around a single bright horizon patch.

Figure 8: StreetCLIP + Gaussian without augmentation: at-
tention collapses on a single horizon blob. [8]

6. Conclusion and Future Work
Our experiments show that fine-grained, image-only ge-

olocation at city scale is already feasible with current
vision-language foundations, provided that the output head
is matched to the spatial structure of the task. The grid clas-
sifier built on a finetuned StreetCLIP encoder achieved the
highest top-1 accuracy (66.8 % on a 31 × 31 mesh) and rou-
tinely placed images within a few hundred meters of their
true GPS coordinates. The mixed-density (Gaussian) head
reached comparable mean errors ( 600 m) while addition-
ally yielding calibrated spatial uncertainty, and the scratch-
trained ViT confirmed that most of this performance stems
from geographic priors inherited during pre-training rather
than from dataset peculiarities. Taken together, these find-
ings demonstrate that a lightweight fine-tuning stage (often
only a few epochs) is enough to repurpose StreetCLIP for
dense urban localisation without any textual cues.

Equally important, our qualitative analyses highlight
how model choice affects interpretability and error modes.
Attention-rollout visualisations show that the Gaussian
head encourages the network to attend to semantically rich,
street-level landmarks (façades, curb geometry, signage)
whereas the coarse grid head sometimes falls back on global
illumination cues, such as sky hue, to separate adjacent
cells. Although both strategies perform well numerically,
the probabilistic formulation theoretically provides action-
able uncertainty estimates (for example, flagging images
whose highest-likelihood location is ambiguous among
multiple neighbourhoods) while the classifier offers only
discrete guesses. These complementary strengths suggest
a two-stage pipeline in which a fast grid model prunes the
search space and a density estimator refines the prediction
and supplies confidence contours.

Looking ahead, three directions appear most promising.
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First, extending the Gaussian head to a mixture with en-
forced component utilization would unlock its full expres-
siveness and mitigate the single-mode collapse observed in
this study. Second, incorporating temporal and multimodal
signals (time-of-day metadata, inertial cues, or short text
snippets) could disambiguate visually similar blocks and re-
duce the residual kilometre-scale errors. Finally, evaluat-
ing the system on multiple cities and under varying capture
conditions will clarify how well the learned spatial priors
transfer and where additional domain adaptation is needed.
By releasing our code, dataset splits, and trained weights,
we hope to catalyse further work on reliable, uncertainty-
aware urban geolocation and its downstream applications in
autonomy, augmented reality, and urban analytics.
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